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1 Introduction

This Supplementary Information (SI) contains all information on the numerical evalu-

ation of the reaction rates for the InsP5[2OH]- and InsP6-dephosphorylation from the

experimental data. For additional information on the experimental part and figures S1 -

S12, please consult the other SI file. Here, we explain the theoretical background of the

applied model and the procedure and assumptions that let to the final results presented

in main part Fig. 6a and 6b. In this SI, we introduce a six-digit binary representation

of the structure names as shown in S18. The numbers in the binary code represent the

groups attached to the Cyclohexane scaffold, where the number ”0” encodes the hydrox-

yle group -OH and the number ”1” encodes the phosphoryl group -OPO2−
3 . The position

of the number in the binary code (read from left to right) corresponds to the position of

the corresponding group in the Cyclohexane scaffold (see S18). For example, the binary

representation of Ins(1,2,5,6)P4 reads 110011 and the binary representation of Ins(4,6)P2

is 000101.

S 18:
InsP5[2OH] and InsP6 and their corresponding binary representations and structures.

2 Theory

2.1 Full InsP5[2OH] dephosphorylation network

S19 depicts the full reaction pathway of the MINPP1-mediated dephosphorylation of

InsP5[2OH]. The network contains all possible intermediates and products including their

connection pattern. Each line in S19 represents a rate that describes the reaction from

the higher phosphorylated InsPx to the lower phosphorylated InsPx. Since MINPP1 is a

phosphatase, the respective reverse reactions are neglected and the network is to be read

from top to bottom. The full network contains a total of 75 rates and 31 species, 10 of
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S 19:
Full reaction network with all theoretically possible intermediates and reaction rates of the MINPP1-mediated dephospho-
rylation of InsP5[2OH]. The structures enclosed in a blue box have been identified in the NMR-experiments with the blue
lines depicting the corresponding connection pattern.

which have been identified in the NMR-experiments (blue boxes). We assume that the

dephosphorylation network of InsP5[2OH] is dominated by these 10 observed InsPx (see

S8) and the corresponding 13 rates (blue lines).

2.2 Full InsP6 dephosphorylation network

S20 depicts the full reaction network of the MINPP1-mediated dephosphorylation of InsP6

in the binary representation. The network contains all possible intermediates and prod-

ucts including their connection pattern. Each line represents a rate that describes the

reaction from the higher phosphorylated InsPx to the lower phosphorylated InsPx. Since

MINPP1 is a phosphatase, the respective reverse reactions are neglected and the network

is to be read from top to bottom. The full network contains a total of 186 rates and

63 species, 14 of which have been identified in the NMR-experiments (blue highlighted

boxes) with symmetrically and asymmetrically 13C-labeled InsP6. We assume that the
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S 20:
Full reaction network with all theoretically possible intermediates and reaction rates of the MINPP1-mediated dephospho-
rylation of InsP6. The structures highlighted in blue have been identified in the NMR-experiments with the blue lines
depicting the corresponding connection pattern. The InsP5 dephosphorylation network (S19) is highlighted in green.

InsP6 dephosphorylation pathway is dominated by the observed 14 InsPx (see S9) and

the corresponding 21 rates (blue lines). Additionally, S20 compares the InsP6 dephos-

phorylation network (highlighted in blue) to the InsP5[2OH] dephosphorylation network

(highlighted in green). We can clearly see that the two networks do not overlap and

therefore do not share a single structure or rate.

2.3 Master equation formalism

All processes in the InsP5[2OH] dephosphorylation network (SI Fig 19) as well as in the

InsP6 dephosphorylation network (S20) are irreversible chemical reactions of the type

Aj
kij−→ Ai with i, j = 0, 1, . . . , N − 1, i ̸= j , (2.1)

where species Aj reacts to species Ai with the rate constant kij. N is the total number of

species within the network. Please note that we start counting from zero to present the

theory in line with the implementation of our analysis in Python3. The rate constants kij

are the matrix elements of the rate matrix K ∈ RN×N . To ensure mass conservation the
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diagonal elements of K are defined as the negative of the sum of all other elements in the

same column (constraints to master equation)

kii = −
N∑
j=1

kji for i = 0, 1, . . . , N − 1 and i ̸= j (2.2)

such that the sum over each column evaluates to zero. In other words, K is column-

normalized to zero. The vector ϕ(t) ∈ RN collects the density (or concentration) ϕAi
(t)

at time t of all species. The master equation that corresponds to scheme 2.1 reads

ϕ̇(t) = Kϕ(t) , (2.3)

where ϕ̇(t) is the first derivative of ϕ(t) with respect to time. Eq. 2.3 yields N coupled

linear homogeneous first order differential equations which describe the kinetics of the

entire network. Given the time series ϕ(t) (e.g. from experimental data), the master

equation can be used to numerically determine the corresponding rates kij and incorporate

additional constraints.[1,2]

2.4 Propagator formalism

In the previous subsection, we describe the kinetics with the corresponding master equa-

tion, that is via the change of the density (or concentration) with respect to time. Next,

we want to introduce the propagator formalism with which the time evolution of the den-

sity (or concentration) for N species can be described directly without the use of time

derivatives.

The solution of eq. 2.3 is given as

ϕ(τ) = exp(Kτ)ϕ0 , (2.4)

where ϕ0 = ϕ(τ = 0) denotes the initial condition at time τ = 0. Eq. 2.4 contains the

operator

P(τ) = exp(Kτ) with: P(τ) ∈ RN×N , (2.5)

which is called propagator and acts on the initial density ϕ(0) = ϕ0 ∈ RN to yield the

density ϕτ after time τ . A given propagator P(τ) can only propagate the density in

increments of the lag time τ to yield the time series ϕ0,ϕτ ,ϕ2τ , . . . ,ϕnτ with n ∈ N
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according to

ϕτ = P(τ)ϕ0

ϕ2τ = P(τ)ϕτ

ϕ3τ = P(τ)ϕ2τ

...

ϕnτ = P(τ)ϕ(n−1)τ (2.6)

By recursively inserting each equation into the other we get

ϕnτ =

n times︷ ︸︸ ︷
P(τ)P(τ) · · ·P(τ) ϕ0

ϕnτ = Pn(τ)ϕ0 . (2.7)

We want to emphasize that, similar to the master equation formalism, conservation of

mass is automatically incorporated into the propagator formalism via the rate matrix K

(see eq. 2.2) such that P is column-normalized to one. In summary, given a propagator

P(τ) we can compute the density ϕnτ at time nτ either by computing all intermediate

steps as described in eqs. 2.6 or evaluate ϕnτ directly via eq. 2.7. In other words, given

all rates kij we can use the propagator formalism to predict the progress curves of all N

species in the network.[2,3]

2.5 Minimization method to numerically determine rates

Let’s assume we experimentally obtained the concentration of all N species within a

network at different discrete times. In other words, we know the density (concentration)

vectors ϕexp
0 ,ϕexp

τ ,ϕexp
2τ , . . . ,ϕexp

nτ ∈ RN at times 0, τ, 2τ, . . . , nτ . From this time series, we

can numerically determine the time-derivatives as a finite difference

ϕ̇
exp

mτ =
ϕexp

(m+1)τ − ϕexp
mτ

τ
with m = 0, 1, . . . , n− 1 . (2.8)

Additionally, we can define a set of n master equations

ϕ̇mτ = Kϕexp
mτ , (2.9)

where the elements of K are unknown. With eq. 2.9 we can predict ϕ̇mτ for a specific

choice of K. By selecting one value of m we obtain one master equation for this specific
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m as

y = Kxexp , (2.10)

where we abbreviate ϕexp
mτ = xexp = (xexp

0 , xexp
1 , . . . , xexp

N−1)
T and ϕ̇mτ = y = (y0, y1, . . . , yN−1)

T .

Let ϕ̇
exp

mτ = yexp = (yexp0 , yexp1 , . . . , yexpN−1)
T be the density vector at time mτ which was cal-

culated numerically from the experimental data via eq. 2.8. We use the mean squared

error ∆(mτ)

∆(mτ) =
N−1∑
i=0

(yi − yexpi )2 , (2.11)

to measure the error of the prediction of y described in eq. 2.10 and the experimentally

obtained yexp (eq. 2.8).

K is column-normalized to zero such that we can substitute the diagonal matrix elements

kii by eq. 2.2. The error in eq. 2.11 then only depends on the off-diagonal elements of

K. We can now use a least-square method to minimize ∆(mτ) with respect to these

off-diagonal elements to get a rate matrix K that produces y as close as possible to the

experimentally observed yexp.

With eqs. 2.10 and 2.11 we only made use of the experimental data ϕexp
(m+1)τ and ϕexp

mτ at

two distinct times m and m + 1 to determine K. Next, we extend our approach to all

values of m such that we can include the entire experimental time series as described in

eq. 2.9. In this context, we define the overall error ∆ as a sum over all individual errors

∆(mτ) (eq. 2.11)

∆ = ∆(τ) + ∆(2τ) + · · ·+∆(nτ) . (2.12)

and minimize eq. 2.12 with respect to the off-diagonal elements kij in order to get a good

estimate for the rate matrixK. Please note, that the described least-square method is par-

ticularly effective if the unknownK is sparse, meaning if it contains a lot of zeros. Further-

more, the method allows for additional constraints (additional to column-normalization,

e.g. fixing certain reaction rates to a predefined value) and upper and lower limits for the

value of the unknown parameters (e.g. for reaction rates we have kij ∈ [0, 1]). As indicated

in S20, the InsP5[2OH] dephosphorylation is dominated by 10 different InsPx forming a

network that includes 13 different rates. Consequently, the corresponding rate matrix K

is 10×10-dimensional and sparse, which makes the minimization process described above

a very well suited tool to determine the reaction rates of the kinetic network. The same

argument holds for the InsP6 dephosphorylation network which consists of 12 species and

17 rates, yielding a sparse 12×12-dimensional rate matrix. Finally, we want to emphasize

that a good initial guess for all elements of K is crucial for the convergence behaviour of

a minimization routine as described above.
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2.6 Consecutive first-order kinetics

We consider the simplest example of consecutive first order kinetics which is given as

A1
k21−−→ A2

k32−−→ A3 . (2.13)

where one irreversible reaction from species A1 to A2 with the reaction rate k21 is followed

by a second irreversible reaction from A2 to A3 with the reaction rate K32. The naming

convention of the reaction scheme follows eq. 2.1. The corresponding master equation is

defined in eq. 2.3 with ϕ(t) = (ϕA1(t), ϕA2(t), ϕA3(t))
T ∈ R3 and K ∈ R3×3. The diagonal

elements of K are given as k11 = −k21 and k22 = −k32 (see eq. 2.2). The master equation

yields a system of three coupled linear differential equations

ϕ̇A1(t) =
dϕA1(t)

dt
= −k21ϕA1(t) (2.14)

ϕ̇A2(t) =
dϕA2(t)

dt
= k21ϕA1(t)− k32ϕA2(t) (2.15)

ϕ̇A3(t) =
dϕA3(t)

dt
= k32ϕA2(t) , (2.16)

with the analytic solution

ϕA1(t) = ϕ0
A1

exp(−k21t) (2.17)

ϕA2(t) = k21ϕ
0
A1

exp(−k21t)− exp(−k32t)

k32 − k21
(2.18)

ϕA3(t) = ϕ0
A1

(
1 +

k21 exp(−k32t)− k32 exp(−k21t)

k32 − k21

)
, (2.19)

for the case k21 ̸= k32 and the initial condition ϕA1(0) = ϕ0
A1
.[4] S21 shows an example for

the progress curves defined in eqs. 2.17-2.19 for randomly selected rates.
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S 21:
The progress curves for two consecutive first order reactions as defined in eq. 2.13 for a set of example rates.

3 Analysis

3.1 Analysis protocol

To extract the reaction rates from the scaled experimental data shown in S22 and S22 we

use the least-square minimization routine described in SI section 2.5 following the protocol

presented below for both replicas of the InsP5[2OH] dephosphorylation respectively as well

as for the InsP6 dephosphorylation.

1. scale experimental data such that conservation of mass is fulfilled

2. fit scaled experimental data with analytic fit functions

3. create network assumption

4. use fit functions to generate time-equidistant series ϕexp
0 ,ϕexp

τ , . . . ,ϕexp
nτ with resolu-

tion τ = 1 min

5. use analytical time-derivatives to compute time series ϕ̇
exp

0 , ϕ̇
exp

τ , . . . , ϕ̇
exp

nτ

6. use corresponding network to set-up rate matrix K and identify all elements that are

not equal zero

7. set-up corresponding master equation and extract set of coupled differential equations

8. determine boundary conditions (bounds) and constraints

9. generate initial guess

10. write numerical program using scipy.optimize.minimize

11. compute all rates

12. use the rates to predict corresponding progress curves (eq. 2.7) and compare to scaled

experimental data
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3.2 Experimental data InsP5[2OH] dephosphorylation
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S 22:
Measured progress curves (solid lines) and scaled progress curves (dashed lines) of MINPP1 reaction with 175 µM
[13C6]InsP5[2OH] as a concentration time series for two replicas with identical experimental setup. The top row mag-
nifies the first 180 min, the middle row shows the full 96 hours and the bottom row represents the sum over all progress
curves, for each of the experiments respectively. The dashed lines in the left column top and middle represent the same
data set as main part Fig. 5a.

S22 shows the progress curves of two replicas of the MINPP1 reaction with 175 µM

[13C6]InsP5[2OH] (columns) with identical experimental setup, where we conducted NMR-

measurements at 10 different points in time for replica 1 and at 8 different points in time

for replica 2. The plot at the top magnifies the first 180 min of the experiment and the plot

in the middle shows the full 96 hours time interval of the measurements, respectively. The

solid lines represent the experimentally measured concentration time series ϕexp
i (t) with

i = 0, . . . , N − 1 of the N = 10 species that could be identified in the NMR-experiments.

The orange line in the bottom plot represents the corresponding sum Sexp(t) over the
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concentrations of all 10 species at each point in time

Sexp(t) =
N−1∑
i=0

ϕexp
i (t) , (3.1)

We can clearly see that Sexp(t) ̸= 175 µM for all t, meaning that we ”loose” mass during

the course of the experiment and conservation of mass is not fulfilled by the original

experimental data. Since conservation of mass is crucial for the kinetic model we use to

extract rates from the experimental data, we correct for the loss of mass by scaling the

experimental data according to

ϕscaled
i (t) =

ϕoriginal
i (t)

Sexp(t)
· 175 µM (3.2)

such that

Sscaled(t) =
N−1∑
i=0

ϕscaled
i (t) = 175 µM ∀t . (3.3)

The scaled progress curves ϕscaled
i (t) are shown as dashed lines in S22 and in main part

Fig. 5a. The results of of both replicas exhibit similar behaviour but the progress curves

of replica 2 indicate slightly faster kinetics. In the main part we chose replica 1 as repre-

sentative for both replicas. To extract kinetic of the InsP5 dephosphorylation, we perform

the numerical analysis on both replicas separately and compare the resulting rates in SI

section 4.1. Please note that we solely use the scaled progress curves for the numerical

analysis.

To prepare the scaled experimental data for the numerical analysis, we fitted the progress

curves of each species with an analytic fit function. The fit functions provide access

to more and time-equidistant data points and analytical derivatives for each progress

curve (no numerical derivatives necessary). S23 compares the fit function to the scaled

experimental data for both replicas and SI table 1 summarizes the fit functions and the

corresponding fit parameters. Please note, that we used the kinetic function defined in

eq. 2.18 to fit the progress curve of Ins(1,4,5)P3 (dark green circles) meaning that the fit

parameters k1 and k2 can already be interpreted as reaction rates.
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S 23:
Scaled progress curves (dashed lines) of MINPP1 reaction with 175 µM [13C6]InsP5[2OH] as a concentration time series
and corresponding fit functions (solid lines). The top row magnifies the first 180 min and the bottom row shows the full 96
hours.
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SI Table 1:
Fit functions and parameters used to fit the scaled experimental data of [13C6]InsP5[2OH] dephosphorylation for two
replicas.

species Replica 1 Replica 2

InsP5[2OH]
f(t) = a exp(−kt)

a = 182.834
k = 0.100

f(t) = a exp(−kt)
a = 182.020
k = 0.114

Ins(1,3,4,6)P4

f(t) = a · tb · exp(−kt)
a = 0.734
b = 0.459
k = 0.0008

f(t) = a · tb · exp(−kt)
a = 0.575
b = 0.612
k = 0.002

Ins(1,4,5,6)P4

f(t) = a · tb · exp(−kt)
a = 7.508
b = 1.322
k = 0.048

f(t) = a · tb · exp(−kt)
a = 7.722
b = 1.520
k = 0.080

Ins(1,4,5)P3

f(t) =
c0 k1

k2 − k1
(exp(−k1t)− exp(−k2t))

k1 = 0.006
k2 = 0.000262
c0 = 167.378

f(t) =
c0 k1

k2 − k1
(exp(−k1t)− exp(−k2t))

k1 = 0.0153
k2 = 0.000553
c0 = 169.494

Ins(1,4,6)P3

f(t) = a · tb · exp(−kt)
a = 0.181
b = 0.937
k = 0.003

f(t) = a · tb · exp(−kt)
a = 0.111
b = 1.115
k = 0.005

Ins(1,4)P2

f(t) = S − (S − a) · exp(−bt)
a = −0.052
b = 0.0003
S = 70.446

f(t) = S − (S − a) · exp(−bt)
a = −2.263
b = 0.0005
S = 95.617
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species new experiment old experiment

Ins(1,5)P2

f(t) = S − (S − a) · exp(−bt)
a = −0.289
b = 0.0003
S = 17.523

f(t) =
d

a+ b exp(−ct)
exp(−gt)

a = 2.029
b = 78.948
c = 0.003
d = 33.623
g = 0.00007

Ins(4,5)P2

f(t) = S − (S − a) · exp(−bt)
a = −0.582
b = 0.0002
S = 71.352

f(t) = S − (S − a) · exp(−bt)
a = −1.303
b = 0.0005
S = 51.389

Ins(1)P1

f(t) = a t2

a = 7.89 · 10−8
f(t) = a t2

a = 1.7 · 10−7

Ins(4)P1

f(t) = a t2

a = 7.06 · 10−8
f(t) = a t2

a = 9.64 · 10−8
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3.3 Experimental data InsP6 dephosphorylation
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S 24:
Measured progress curves (solid lines) and scaled progress curves (dashed lines) of MINPP1 reaction with 175 µM
[13C6]InsP6 as a concentration time series (top) and the sum over all progress curves at each point in time (bottom).
The dashed lines in the top plot represent the same data set as main part Fig. 5c.

S9 and S20 depict our assumption of the complete MINPP1-mediated InsP6 dephos-

phorylation pathway and main part Fig. 5d shows the corresponding simplified version.

The pathway contains the enantiomers Ins(1,2,4)P3 and Ins(1,2,6)P3 and the enantiomers

Ins(1,2)P2 and Ins(2,3)P2 which can only be distinguished in asymmertrically 13C-labeled

NMR experiments. However, we base our numerical analysis on the progress curves

shown in S24,top which resulted from the MINPP1 reaction with symmetrically labeled

[13C6]InsP6. Consequently, both pairs of enantiomers are represented by one progress

curve each, which we labeled with one representative for each pair of enantiomers. This

reduces the network in S20 from 14 to 12 different species. The solid lines in S24,top, rep-

resent the experimentally measured concentration time series ϕexp
i (t) with i = 0, . . . , N−1

and N = 12. The orange line in S24, bottom represents the sum Sexp(t) over the con-

centrations of all 12 species at each point in time. Since the original experimental data

does not obey conservation of mass over the entire time axis, we scale the data accord-

ing to eq. 3.2. The scaled progress curves are shown as dashed lines and are equivalent

to the solid lines in main part Fig. 5c. We want to emphasize that we solely use the

scaled progress curves for all further analysis. To prepare the scaled experimental data
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for the numerical analysis, we fitted the progress curves of each species with an analytic

fit function. S25 compares the fit function to the scaled experimental data and SI table 2

summarizes the fit functions and the corresponding fit parameters. We used eq. 2.17 as

fit function to fit the InsP6 progress curve which means that we can interpret the fit

parameter k as the reaction rate that quantifies the depletion of InsP6 over time. More-

over, we used eq. 2.18 to fit the InsP5[3OH] progress curve and thus we can interpret the

fit parameters k1 and k2 as reaction rates that dictate the growth and the depletion of

InsP5[3OH] concentration in time.
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S 25:
Scaled progress curves (dashed lines) of MINPP1 reaction with 175 µM [13C6]InsP6as a concentration time series and
corresponding fit functions (solid lines).
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SI Table 2:
Fit functions and parameters used to fit the scaled experimental of [13C6]InP6 dephosphorylation.

species fit data

InsP6

f(t) = a exp(−kt)
a = 175.00
k = 0.000932

InsP5[4OH]

f(t) = atb exp(−kt)
a = 6.2 · 10−18

b = 6.697
k = 0.00460

InsP5[3OH]

f(t) =
k1 c0

k2 − k1
(exp(−k1 t)− exp(−k2 t))

k1 = 0.00074
k2 = 0.00093
c0 = 175

Ins(1,2,3,6)P4

f(t) = a · exp
(
− (t− µ)2

σ2

)
a = 45.149
µ = 2057.099
σ = 709.875

Ins(1,2,5,6)P4

f(t) = atb exp(−kt)
a = 0.0000021
b = 2.603
k = 0.00272

Ins(1,2,4,5)P4

f(t) = a · exp
(
− (t− µ)2

σ2

)
a = 55.045
µ = 2849.46
σ = 1045.39
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species fit data

Ins(1,2,3)P3

f(t) = a exp

[
− b

(
1− exp(−c(t− d))

)2]
a = 61.89
b = 4.578
c = 0.00076
d = 3133.40

Ins(1,2,6)P3

f(t) =
d

a+ b exp(−c t)
exp(−e t)

a = 0.0973
b = 45.655
c = 0.00249
d = 7.480
e = 0.00014

Ins(1,2,5)P3

f(t) = a · exp
(
− (t− µ)2

σ2

)
a = 9.909
µ = 3338.044
σ = 626.472

Ins(1,2)P2

f(t) =
d

a+ b exp(−c t)
a = 0.000046
b = 1394.199
c = 0.00442
d = 0.00590

Ins(2,5)P2

f(t) =
d

a+ b exp(−c t)
exp(−e t)

a = 11.970
b = 0.000024
c = −0.00497
d = 0.000468
e = −0.00486

Ins(2)P1

f(t) =
d

a+ b exp(−c t)
a = −8.741
b = −3609.11
c = 0.000978
d = −168.34
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3.4 Analysis setup InsP5[2OH] dephosphorylation

S 26:
(a) Assumed network for MINPP1 reaction with 175 µM InsP5[2OH] including all reactions rates. A copy of this network
is shown in S8 and a simplified version is depicted in main part Fig. 5b.
(b) Schematic representation of the corresponding rate matrix and density (concentration) vector. Matrix: The white
squares mark all matrix elements that are equal to zero, the blue squares all elements that are not zero and the green
squares represent the diagonal elements defined via eq. 2.2. Vector: The representation indicates which vector element is
associated with which InsP.

Network:

Based on the NMR-data (see main part Fig. 3 and S22), we assume that the InsP5[2OH]

dephosphorylation network is dominated by 10 different InsPx that form the network

depicted in S26, a. All possible reactions from a higher phosphorylated InsPx to a lower

phosphorylated InsPx are indicated with a line and are associated with a reaction rate

kij ̸= 0.

Density (concentration) vector and corresponding time derivative:

We use the fit functions (SI table 1) to create time-equidistant data points ϕexp
0 ,ϕexp

τ , . . . ,ϕexp
nτ

and ϕ̇
exp

0 , ϕ̇
exp

τ , . . . , ϕ̇
exp

nτ (eq. 2.9) with a resolution of τ = 1 min for each replica.

Rate matrix:

To build the rate matrix K, we number all species in the network from zero to nine in a

left-to-right and top-to-bottom fashion and assign the corresponding rates according to

eq. 2.1. These rates are represented in S26, b as blue squares. The diagonal elements
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(green squares) are defined via eq. 2.2 and given as

k00 = −(k10 + k20)

k11 = −k41

k22 = −(k32 + k42)

k33 = −(k53 + k63 + k73) (3.4)

k44 = −k54

k55 = −(k85 + k95)

k66 = −k86

k77 = −k97 .

All other matrix elements are equal to zero (white squares in S26, b).

Set of differential equations:

With the rate matrix K defined, we can now formulate the corresponding master equation

(eq. 2.3) which yields the following set of 10 coupled first-order differential equations

ϕ̇0 = k00ϕ0

ϕ̇1 = k10ϕ0 +k11ϕ1

ϕ̇2 = k20ϕ0 +k22ϕ2

ϕ̇3 = +k32ϕ2 +k33ϕ3

ϕ̇4 = +k41ϕ1 +k42ϕ2 +k44ϕ4

ϕ̇5 = +k53ϕ3 +k54ϕ4 +k55ϕ5

ϕ̇6 = +k63ϕ3 +k66ϕ6

ϕ̇7 = +k73ϕ3 +k77ϕ7

ϕ̇8 = +k85ϕ5 +k86ϕ6

ϕ̇9 = +k95ϕ5 +k97ϕ7

(3.5)

Constraints and bounds:

Here, we report the applied constraints that yielded the best results for the reaction rates

reported in main part Fig. 6a and 6b. In total, we constrained 4 rates (k10, k41, k73 and

k42), which leaves us with 9 reaction rates that have to be optimized during the mini-

mization routine.

k10 and k41:

Since the progress curve of Ins(1,3,4,6)P4 evolves at very low concentrations (less than 9

µM for the entire time series), we decided to exclude this species from the analysis and
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set the corresponding rates to zero, k10, k41 = 0, for both replicas.

k73:

As mentioned in section 3.2 , we use eq. 2.18 as fit function for the progress curve of

Ins(1,3,4)P3 (SI table 1). Since this function emerges from a kinetic model, we can in-

terpret the corresponding fit parameters k1 and k2 as kinetic rates with k1 describing the

increase and k2 the decrease of concentration. The increase in Ins(1,3,4)P3 concentration

is determined by k32 and the decrease is determined by k53 + k63 + k73. We use the fit pa-

rameter k2 (2.62 ·10−4 min−1 for replica 1 and 5.53 ·10−4 min−1 for replica 2) to constrain

the rate k73 as k73 = k2−k53−k63 and leave k32 unconstraint for each replica respectively.

k42:

During our analysis, we found that the increase in Ins(1,4,6)InsP3 concentration was gen-

erally overestimated by the minimization routine and thus we decided to constrain the

rate k42 towards Ins(1,4,6)InsP3 by hand. In an iterative procedure, we found that the

constraint k42 = 0.001 yields the most promising results for both replicas.

bounds:

Since reaction rates are a real number between zero and one, we bound all rates to the

interval kij ∈ [10−6, 1].

Initial guess:

We built the rate matrix K by formulating an initial guess for each rate, used eq. 2.7 to

predict the corresponding progress curves and compared these prediction to the scaled

experimental data (S22, dashed lines). In an iterative procedure, we corrected the rates

by hand until the set of rates produced progress curves that roughly matched the scaled

experimental progress curves. The set of rates is summarized in SI table 3 and serves as

initial guess for our minimzation routine.

Technical details:

We used Python3 and scipy.optimize.minimize[5] to implement the minimization rou-

tine described in SI section 2.5, where we passed eq. 2.12 as objective function to be

minimized, the initial guess and bounds as described above and left all other parameters

at their default settings. Since we constraints 4 of the 13 rates, the implemented mini-

mization routine optimizes the remaining 9 rates such that the resulting rate matrix K

yields progress curves that are in excellent agreement with the scaled experiment data.
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SI Table 3:
Initial guess for all rates of the InsP5[2OH] dephosphorylation network in min−1 for both replicas.
∗) The marked rates are subject to constraints.

rate replica 1 replica 2

k10 0.00∗ 0.00∗

k20 9.76 · 10−2 9.76 · 10−2

k41 0.00∗ 0.00∗

k32 6.84 · 10−3 6.84 · 10−3

k42 1.00 · 10−3∗ 1.00 · 10−3∗

k53 1.09 · 10−4 1.09 · 10−4

k63 4.16 · 10−5 4.16 · 10−5

k73 (2.62 · 10−4 − k53 − k63)
∗ (5.53 · 10−4 − k53 − k63)

∗

k54 6.11 · 10−4 6.11 · 10−4

k85 1.00 · 10−5 1.00 · 10−5

k95 1.08 · 10−5 1.08 · 10−5

k86 5.77 · 10−5 5.77 · 10−5

k97 2.40 · 10−6 1.00 · 10−6
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3.5 Analysis setup InsP6 dephosphorylation

S 27:
(a) Assumed network for MINPP1 reaction with 175 µM InsP6 including all reactions rates.
(b) Schematic representation of the corresponding rate matrix and density (concentration) vector. Matrix: The white
squares mark all matrix elements that are equal to zero, the blue squares all elements that are not zero and the green
squares represent the diagonal elements defined via eq. 2.2. Vector: The representation indicates which vector element is
associated with which InsP.

Network:

S27a depicts the network assumption on which we base our numerical analysis. Ins(1,2,6)P3

and Ins(1,2)P2 are chosen as representatives for their respective pair of enantiomiers (see

also section 3.3). All possible reactions from a higher phosphorylated InsPx to a lower

phosphorylated InsPx are indicated with a line and are associated with a reaction rate

kij ̸= 0. The network consits of 12 different InsPx and 17 reaction rates.

Density (concentration) vector and corresponding time derivative:

We use the fit functions (SI table 2) to create time-equidistant data points ϕexp
0 ,ϕexp

τ , . . . ,ϕexp
nτ

and ϕ̇
exp

0 , ϕ̇
exp

τ , . . . , ϕ̇
exp

nτ (eq. 2.9) with a resolution of τ = 1 min.
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Rate matrix:

To build the rate matrix K, we number all InsPx included in the network from zero to

eleven in a left-to-right and top-to-bottom fashion and assign the corresponding rates

according to eq. 2.1. S27,b represents these rates as blue squares. The diagonal elements

(green squares) are defined via eq. 2.2 and given as

k00 = −(k10 + k20)

k11 = −(k31 + k41)

k22 = −(k42 + k52)

k33 = −(k63 + k73)

k44 = −(k74 + k84)

k55 = −k85 (3.6)

k66 = −k96

k77 = −k97

k88 = −(k98 + k108)

k99 = −k119

k1010 = −k1110 .

All other matrix elements are equal to zero (white squares).

Set of differential equations:

With the rate matrix K we can formulate the corresponding master equation (eq. 2.3)

which yields the following set of coupled first-order differential equations

y0 = +k00x0

y1 = +k10x0 +k11x1

y2 = +k20x0 +k22x2

y3 = +k31x1 +k33x3

y4 = +k41x1 +k42x2 +k44x4

y5 = +k52x2 +k55x5

y6 = +k63x3 +k66x6

y7 = +k73x3 +k74x4 +k77x7

y8 = +k84x4 +k85x5 +k88x8

y9 = +k96x6 +k97x7 +k98x8 +k99x9

y10 = +k108x8 +k1010x10

y11 = +k119x9 +k1110x10

(3.7)

S58



Constraints and bounds:

Here, we report the applied constraints that yielded the best results for the reaction rates

reported in SI table 5. In total, we constrain 3 reaction rates (k10, k20 and k52) which left

us with 14 reaction rates that have to be optimized during the minimization routine.

k20 and k52:

As mentioned in section 3.3, we used eq. 2.18 as fit function for the progress curve of

InsP5[3OH] (SI table 2). Consequently, we can interpret the fit parameter k1 as reaction

rate that describes build-up of concentration and k2 as reaction rate that describes the

decrease of concentration. According to the network in S27a, the increase of InsP5[3OH]

concentration is solely determined by k20 and thus we constrain k20 = k1 = 7.4 · 10−4

min−1. The decrease of InsP5[3OH] concentration is determined by k42 + k52 and we set

the constraint k52 = k2 − k42 = 9.3 · 10−4 − k42.

k10:

We used eq. 2.17 as fit function for the progress curve of InsP6 (SI table 2) and thus the fit

parameter k represents the reaction rate that dictates the decrease of InsP6 concentration

over time. According to the network in S27,a, this decrease is described by k10 + k20 and

we constrain k10 = k − k20 = 1.9 · 10−4 min−1.

bounds: We set the bounds k108 ∈ [10−3, 1], k119 ∈ [10−5, 1] and k1110 ∈ [10−4, 1] to brute-

force increase the influence of these rates on the network and prevent the minimization

routine from setting all of them to the lowest possible value 10−6. All other rates were

bound to the interval kij ∈ [10−6, 1].

Initial guess:

To generate a good initial guess for the unconstrained rates, we started with a reduced

network that included InsP6, InsP5[4OH], InsP5[3OH], Ins(1,2,3,6)P4, Ins(1,2,5,6)P4 and

Ins(1,2,4,5)P4 and performed a minimization run. Next, we increased the network by in-

cluding Ins(1,2,3)P3, Ins(1,2,6)P3 and Ins(1,2,5)P3 and repeated the minimization, where

we used the results from the previous run for k10, k31 and, k41 and the default initial guess

for the remaining rates. Finally, we repeated this step with the full network which yielded

a good initial guess for all 13 unconstrained rates as shown in SI table 4.

Technical details:

For all technical details, the reader is referred to section 3.4.
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SI Table 4:
Initial guess (in min−1) and bounds for all rates in the [13C6]InsP6 dephosphorylation network.
∗) The marked rates are subject to constraints.

rate initial guess bounds

k10 1.9 · 10−4∗ -

k20 7.4 · 10−4∗ -

k31 2.9 · 10−3 [10−6, 1]

k41 1.0 · 10−5 [10−6, 1]

k42 3.0 · 10−4 [10−6, 1]

k52 9.3 · 10−4∗ − k42 -

k63 5.0 · 10−4 [10−6, 1]

k73 3.7 · 10−4 [10−6, 1]

k74 1.4 · 10−3 [10−6, 1]

k84 1.5 · 10−4 [10−6, 1]

k85 4.2 · 10−4 [10−6, 1]

k96 2.0 · 10−4 [10−6, 1]

k97 2.0 · 10−4 [10−6, 1]

k98 3.9 · 10−3 [10−6, 1]

k108 1.0 · 10−5 [10−3, 1]

k119 1.0 · 10−3 [10−5, 1]

k1110 1.0 · 10−3 [10−4, 1]

4 Results

4.1 Results InsP5[2OH] dephosphorylation

The numerically determined set of rates for both replicas are presented in S29. We can

see that replica 2 exhibits slightly faster kinetics than replica although both share an

identical experimental setup. Excluding the rates k95 and k97, both sets of rates are in

good agreement (S29, b). The fastest process is described by k20 ≈ 10−1 min−1 which

governs the reaction InsP5[2OH] → Ins(1,4,5,6)P4. This result is in good agreement

with MINPP1’s annotation as a phosphatase that predominantly removes the phosphoryl

group at the 3-position.[6] The reaction rates of the subsequent dephosphorylation steps

are separated by at least one order of magnitude, where we get kij ≈ 10−2 min−1 for

reactions of the type InsP4 → InsP3, kij ≈ 10−4 min−1 for reactions of the type InsP3 →
InsP2 and kij ≈ 10−5 min−1 for reactions of the type InsP2 → InsP1.

In S28, we compare the scaled experimental data (dotted lines ) to the progress curves

(solid lines) predicted from the numerically determined set of rates (eq. 2.7) for each

replica. The predicted progress curves match the experimental data both qualitatively

and quantitatively which strongly supports the assumption that the reaction rates in the

InsP5[2OH] dephosphorylation network are time independent. Furthermore, the results
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S 28:
Predicted progress curves (solid lines) obtained via minimization routine and scaled experimental data (dashed lines) for
two replicas (columns) of MINPP1 reaction with 175 µM [13C6]InsP5[2OH], where the top row magnifies the first 180 min
and the bottom row the entire time axis of the experiment. The results for replica 1 are a copy of the results shown in main
part Fig. 6a.

S 29:
(a) Computed rates in min−1 for both replicas of the [13C6]InsP5[2OH] dephosphorylation. The column for replica 1 is a
copy of the results presented in main part Fig. 6b. ∗) The marked rates are subject to constraints.
(b) Visual comparison of the rates computed from the scaled experimental data of replica 1 and replica 2, respectively. The
rates k10, k41 = 0 are not included in the representation.

confirm that the network depicted in S26 accurately describes the MINPP1-mediated

dephosphorylation of InsP5[2OH].
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4.2 Results InsP6 dephosphorylation
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S 30:
Predicted progress curves (solid lines) obtained via minimization routine and scaled experimental data (dashed lines) of
MINPP1 reaction with 175 µM [13C6]InsP6.

SI Table 5:
Computed reaction rates in min−1 for [13C6]InsP6 dephosphorylation network.
∗) The marked rates were subject to constraints.

rate reaction rate

k10 1.90 · 10−4∗

k20 7.42 · 10−4∗

k31 2.95 · 10−3

k41 1.00 · 10−6

k42 2.88 · 10−4

k52 6.49 · 10−4∗

k63 5.10 · 10−4

k73 3.67 · 10−4

k74 1.56 · 10−3

k84 2.13 · 10−5

k85 5.99 · 10−4

k96 2.02 · 10−4

k97 2.22 · 10−4

k98 3.88 · 10−3

k108 1.00 · 10−3

k119 1.00 · 10−5

k1110 1.49 · 10−4

S30 shows the comparison between the scaled experimental data (dashed lines) and the

progress curves predicted by the numerically determined rates (solid lines). We can clearly

see that the computed rates yield a poor representation of the experimental progress

curves which strongly indicates that the applied time-constant rates model is insufficient
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to describe the InsP6 dephosphorylation. The shapes of the experimental progress curves

already indicate a kinetic network with time-dependent rates, e.g. the InsP6 progress

curve does not represent an exponential decay as we would expect from a first-order

reaction. Instead, we observe a damped decrease which could emerge from a inhibition

process. As mentioned in main part (Fig. 6c) we suggest that InsP6 itself could act as an

inhibitor for the dephosphorylation of its own MINPP1-mediated intermediates.[7] This

assumption is further supported by the fact, that the kinetics clearly accelerate as soon

as InsP6 is fully depleted. However, we can roughly approximate the rate at which InsP6

is depleted as k10+k20 = 9.3 · 10−4 min−1. Based on our results and the discussion above,

we conclude that our master equation ansatz (SI section 2.5) is not capable to capture

the true kinetics for the MINPP1-mediated dephosphorylation of InsP6 and thus does not

provide any more insight into the main pathways that generate the enantiomers Ins(1,2)P2

and Ins(2,3)P2. For the sake of completeness, we report the numerically determined rates

in SI table 5 but did not include these results in the main part of our work. We renounce

to extend our ansatz in order to include inhibition processes but this kind of analysis is

beyond the scope of this paper.
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