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Supplementary Material

S1. Morphological ensemble of a cell on a substrate subjected to cyclic strain

We consider an adherent cell on a cyclically strained elastic substrate within a nutrient bath (Fig. 1). We will extend the framework

of the homeostatic ensemble [1] to such a dynamic straining situation. The resulting statistical mechanics description is applicable

for cells that have attained a dynamic equilibrium under cyclic strain such that key observables including stress-fiber arrangements

within cells and cell morphologies are statistically time invariant. Under these circumstances, following Shishvan et al. [1], we will

use the ansatz that the distribution of morphologies that the cells assume in this steady or dynamic equilibrium state maximise

the morphological entropy of the system.

S1.1. Morphological entropy under cyclic strain

We define the system as the cell and the cyclically loaded elastic substrate to which the cell is adhered. This system is immersed in a

nutrient bath so that we can only control macroscopic variables such as the temperature, bath pressure, nutrient concentrations in

the nutrient bath and the imposed strain on the substrate. This results in an inherent uncertainty (sometimes referred to as missing

information) in microscopic variables (i.e., microstates) of the system such as the cell morphology. This uncertainty stems from

the fact that the homeostatic processes within the cell that include (but not restricted to) metabolic processes such as ion pumps,

osmosis, di↵usion, cytoskeletal reactions, and ATP regeneration are not precisely regulated and this translates to spatio-temporal

fluctuations of the cell morphology. The consequent entropy production (or build-up of missing information) is the basis of the

framework of homeostatic ensemble.

Shishvan et al. [1] defined a morphological microstate by the mapping/connection of material points on the cell membrane to

material points on the substrate, with the remaining cell surface under fixed pressure. In broad terms, the morphological microstate

specifies the shape of the cell. In absence of any external loading, as considered by Shishvan et al. [1], the intracellular structure was

assumed to be fixed in given a morphological microstate as they assumed a separation of timescales between the evolution of the

intracellular structure and the cell morphology. This separation of timescales follows from the fact that the intracellular structure is

driven by a range of bio-chemical processes such as actin polymerization, myosin power strokes driving stress-fiber contractility and

di↵usion of species via unbound cytoskeletal processes within the cell. These processes are relatively fast and limited by the di↵usion

rate of species such as unbound actin within the cell (chemical reactions and mechanical processes such as wave propagation are

typically much faster and thus not the rate limiting processes) [2]. Thus, the timescale to develop intracellular structure, Tcyto, is

on the order of a few seconds, Tcyto = O(1 sec). By contrast, the evolution of cell morphology requires co-operative cytoskeletal

processes within the cell such as cytoskeletal reorganization orchestrated by coordinated actin polymerization, dendritic nucleation

[3, 4, 5]. The coordinated cytoskeletal processes are much slower and the timescale for the cell morphological evolution Tcell is on

the order of minutes, i.e., Tcell = O(1 min). This enabled Shishvan et al. [1] to assume that the intracellular structure is determined

solely by the morphological microstate.

We extend these ideas to cells on substrates subjected to cyclic strain with a period Tp. In particular, we will restrict the model

to loading where Tp ⌧ Tcell. The physiologically relevant frequency for the cyclic strain is typically around 1 Hz and the two of

the three relevant timescales are separated as Tcyto ⇠ Tp ⌧ Tcell. A consequence of this separation of timescales is that over the

period Tp, to a very high degree of accuracy, the connections between the cell membrane and substrate remain intact (i.e. the

morphological microstate remains unchanged) and the strain-rate of the substrate gets directly transmitted to the portion of the

cell membrane adhered to the substrate. Thus, the intracellular structure at a time t within the period Tp is determined only by

the cell morphology and substrate loading.

We assume there are Np discrete strain states that the substrate and consequently the cell assumes over the period Tp. Let P
(c)

to denote the probability of morphological microstate (c) so that then the probability of the i
th state of the system in morphological

microstate (c) at time t = iTp/Np within period Tp is P
(i,c) = P

(c)
/Np. Then, the Gibbs entropy is given by

IT = �

X

c

NpX

i=0

P
(c)

Np
ln
⇣
P

(c)

Np

⌘
= lnNp �

X

c

P
(c)lnP (c)

. (S1)

S1.2. The free-energy of morphological microstate (c)

The entropy Eq. (S1) is maximised subject to the constraint that the cell maintains a state of homeostasis. Shishvan et al. [1]

demonstrated that for a cell interacting with an elastic substrate that is not subject to cyclic strain, the system on average attains

a fixed specific value of the free-energy that is independent of extracellular environment. We will proceed to show in Section S1.3

that while this result does not hold for a cyclically strained of the substrate, there is a closely analogous requirement that specifies

the homeostatic constraint of the cell under an imposed cyclic strain. As a first step, we need to define the free-energy of the system

for a given morphological microstate state (c) with the substrate subjected to a cyclic strain.

The average Helmholtz free-energy of the system over all cellular fluctuations is given by

hHci =
X

c

NpX

i=0

P
(c)

Np
H

(i,c) =
X

c

P
(c)
⇣ 1

Np

NpX

i=0

H
(i,c)

⌘
, (S2)

where H
(i,c) is the Helmholtz free-energy of state (i) of the morphological microstate (c). Taking the limit Np ! 1, Eq. (S2)

reduces to

hHci =
X

c

P
(c)

H
(c)

, (S3)
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where

H
(c) =

1

Tp

Z tI+Tp

tI

Hdt, (S4)

H(t) = H
(i,c) at time t = iTp/Np and tI an arbitrary time that defines the initial state over which the averaging performed after

the microstate (c) has attained its cyclic steady-state. The entropy maximisation problem can then be expressed as

max
P (c)

IT = lnNp � min
P (c)

⇣X

c

P
(c)lnP (c)

⌘
,

subject to constraints
X

c

P
(c)

H
(c) = H0 and

X

c

P
(c) = 1,

(S5)

where the ensemble average of H(c) is the homeostatic energy H0 for an imposed substrate cyclic loading that we will proceed to

derive.

S1.3. The cellular free-energy at dynamic equilibrium

First consider a free-standing cell (i.e., a cell in suspension and not adhered to the substrate). As discussed by Shishvan et al. [1],

suspended cells assume a unique morphological microstate with the Helmholtz free-energy Hs. Also, without loss of generality we

can set the Helmholtz free-energy of the isolated elastic substrate to be zero.

Now consider the system in state (i 2 c) where the external agency imposes a displacement u
(i)
m and corresponding traction

T
(i,c)
m on the remote surface �e of the substrate with the remainder to the remote surface subjected to zero tractions. To derive

the homeostatic constraint, we consider the isolated cell and the isolated substrate (i.e., without the cell adhered to it) subject

to the traction T
(i,c)
m on �e, i.e., equal to the traction when the cell and the substrate are interacting. Now since the cell is not

interacting with the substrate, the corresponding displacement on surface �e is in general di↵erent from u
(i)
m and we denote the

imposed displacement on the isolated substrate by u
(S|i,c)
m . The corresponding Helmholtz free-energy of the substrate in this state

is H
(S|i,c)
sub . The cell and substrate are now brought together while keeping the imposed substrate traction fixed at T

(i,c)
m . Recalling

that the temperature of the system remains fixed throughout this process and there are no changes in species in a purely elastic

substrate, the Helmholtz free-energy H
(i,c) is given by

H
(i,c) = Hs + H

(S|i,c)
sub +

Z

�e

T
(i,c)
m (u(i)

m � u
(S|i,c)
m )d�+

X

↵

�
S
↵�N

(i,c)
↵ (S6)

where �
S
↵ is the chemical potential of species ↵ in the cell in the suspended state and �N

(i,c)
↵ the change in the number of species

↵ in state i 2 c with respect to its number in the suspended state. Denote

�(i,c) = H
(S|i,c)
sub +

Z

�e

T
(i,c)
m (u(i)

m � u
(S|i,c)
m )d�, (S7)

and the ensemble average Helmholtz free-energy of the system over all the fluctuations is then given by

hHci =
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(S8)

where

H
(c) =

NpX

i=0

1

Np
H

(i,c) =
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Z tI+Tp

tI

Hdt,

�(c) =
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Np
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1
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Z tI+Tp
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(S9)

with H(t) = H
(i,c)

,�(t) = �(i,c) at time t = iTp/Np and tI an arbitrary time that defines the initial state over which the averaging

performed when the microstate (c) has attained its cyclic steady-state. Cellular homeostasis dictates that the ensemble average

number hN↵i is independent of the environment and substrate loading. Thus,

h�N↵i =
X

c

P
(c)
⇣ NpX

i=0

1

Np
�N

(i,c)
↵

⌘
= 0 (S10)

and Eq. (S8) reduces to

hHci =
X

c

P
(c)

H
(c) = Hs +

X

c

P
(c)�(c)

. (S11)
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S1.4. The equilibrium probability of microstates

We employ the ansatz that at dynamic equilibrium P
(c) attains a distribution P

(c)
eq that maximises IT subject to the constraints

that
P

c P
(c)
eq = 1 and

P
c P

(c)
eq (H(c)

��(c)) = Hs. We impose these constraints via Lagrange multipliers (⇤�1) and �, respectively,

such that the equilibrium distribution satisfies

dIT = d

h
lnNp �

X

c

P
(c)
eq lnP (c)

eq � (⇤� 1)
⇣X

c

P
(c)
eq � 1

⌘
� �

⇣X

c

P
(c)
eq H

(c)
� Hs �

X

c

P
(c)
eq �

(c)
⌘i

= 0. (S12)

Using the fact that variations dP
(c)
eq for di↵erent microstates are independent and arbitrary while Np is a constant, we obtain

lnP (c)
eq + �(H(c)

� �(c)) + ⇤ = 0. (S13)

The equilibrium distribution then follows as

P
(c)
eq =

exp
h
� �

⇣
H

(c)
� �(c)

⌘ i

Z
, (S14)

where Z = exp(⇤) =
P

c exp
h
��(H(c)

� �(c))
i
is the partition function and the Lagrange multiplier � follows from the constraint

Eq. (S11).

S1.5. Special case of “sti↵” substrates

In most cyclic strain experiments, “sti↵” elastic substrates are used such that tractions exerted by the cell on the substrate result in

negligible substrate deformation. The advantage of such an experimental setup is that the remote strains imposed on the substrate

are directly transmitted to the cell allowing for a simple interpretation of the experimental observations. We proceed to reduce the

above formulation for this special case.

First consider the free-energy of the system in microstate (c) given by

H
(c) =

1

Tp

Z tI+Tp

tI

H(t)dt =
1

Tp

Z tI+Tp

tI

[Hcell(t) + Hsub(t)] dt, (S15)

where Hcell(t) = H
(i,c)
cell and Hsub(t) = H

(i,c)
sub are the Helmholtz free-energies of the cell and substrate, respectively at time

t = iTp/Np. For convenience we choose tI to be a time in the loading history when the imposed cyclic strain is a minimum. Now

consider the term �(c). For the assumption of “sti↵” substrates where cell causes no additional substrate deformation, u(i)
m = u

(S|i,c)
m

and H
(S|i,c)
sub is independent of the microstate (c) and only dependent on the imposed cyclic strain. Thus, from Eqs. (S7) and (S9),

�(c) =
1

Tp

Z tI+Tp

tI

Hsub(t)dt. (S16)

The equilibrium probability distribution Eq. (S14) then reduces to

P
(c)
eq =

exp
⇣
� �H

(c)
cell

⌘

Zstiff
, (S17)

where H
(c)
cell = (1/Tp)

R tI+Tp

tI
Hcell(t)dt, Zstiff =

P
c exp(��H

(c)
cell) with the corresponding homeostatic constraint

X

c

P
(c)

H
(c)
cell = Hs. (S18)

At equilibrium, the total morphological entropy under cyclic strain is then given by ST = lnNp �
P

c P
(c)
eq lnP (c)

eq such that

ST = lnQ + �Hs, (S19)

where Q = ZstiffNp. Then defining the homeostatic potential for the case of cyclic imposed strain as

M = �
1

�
lnQ = Hs �

1

�
ST, (S20)

it follows that at equilibrium while the Helmholtz free-energy H
(c)
cell fluctuates, the homeostatic potential M remains constant.
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S2. Cell components and their free-energies

Cells are idealized to comprise a nucleus and cytoplasm. We model the nucleus as a passive hyperelastic material while both active

and passive responses of the cytoplasm are modeled. Specifically, we model the active stress-fiber (SF) cytoskeleton and the passive

components arising from the elasticity of the membrane, intermediate filaments etc. all again lumped into an hyperelastic model.

Thus, the total free-energy is decomposed into the energies of the cytoskeletal and hyperelastic components; see Eq. (8). Under a

given cyclic loading, SF components assemble or dissemble via ATP-driven chemical reactions, the kinetics of which depend on cell

morphology and imposed substrate loading. The elliptical cell tends to align SFs along its major axis, while the cyclic strain tends

to align SFs predominately along the direction perpendicular to the imposed cyclic strain. These two mechanisms could compete or

cooperate, depending on whether cell is aligned along the cyclic strain direction or the perpendicular. In the following, we provide

a detailed description of the SF kinetics and the associated Helmholtz free-energies of the cell cytoskeleton and passive elements.

We present equations for a spatially uniform 2D cell in the x1 � x2 plane with the out-of-plane Cauchy stress �33 = 0.

S2.1. Stress-fiber kinetics and the cytoskeletal free-energy Hcyto(t)

The SF kinetics is assumed to be governed by the thermodynamic model proposed by Vigliotti et al. [6] and readers are referred

to this original reference for details. Here we provide a brief summary for the sake of completeness and give the relevant equations

in the context of a spatially uniform cell as assumed here i.e., the cell is assumed to be a uniformly strained ellipse described by

the coe�cients (h, k, l) in Eq. (6).

In this model, SFs are characterized by their angular concentrations ⌘̂(�) and the number of functional units in each stress-fiber

n̂(�) at an angle � relative to the major axis of the ellipse. The angular concentration ⌘̂(�) is dictated by formation of new SFs

as the fundamental constituents of the SFs transform from their unbound to bound states via ATP-driven reactions. This reaction

kinetics is described by a transition state theory at thermodynamic temperature T in terms of the Boltzmann constant kB by

d⌘̂(�)

dt
=

N̂u(1 � ⌘̂/⌘̂max)

⇡n̂(�)
!exp

h
� n̂(�)

µa � µu

kBT

i
� ⌘̂(�)!exp

h
� n̂(�)

µa � µb(�)

kBT

i
. (S21)

Here N̂u is a non-dimensional concentration of the SF units at unbound states which is related to ⌘̂(�) and n̂(�) by conservation

of the total number of SF proteins via

N̂u = 1 �

Z ⇡/2

�⇡/2

⌘̂(�)n̂(�)d�. (S22)

This SF kinetics is governed by a collision frequency ! combined with the barriers µa �µu and µa �µb(�) for the transition of the

unbound constituents to their bound state and vice-versa, respectively. In particular, µu and µb(�) are the enthalpies of a reference

number nR of the unbound constituents units and the bound units at an angle �, respectively, while µa is the corresponding

enthalpy of the activated state. The enthalpy of the bound units is written in terms of their volume ⌦ as

µb(�) =  (�) � �SF(�)[1 + ✏̃n(�)]⌦, (S23)

where  (�) represents the internal energy of the SF at � with nR units and is given in terms of a non-dimensional constant ⌫ by

 (�) = µb0(1 + ⌫✏̃
2
n(�)), (S24)

with ✏̃n the nominal strain of a functional unit and µb0 the enthalpy of a SF with nR units all in their elastic ground state (✏̃n = 0).

The stress in the stress-fiber �SF(�) is given by a Hill-type constitutive relation [6]

�SF(�)

�0(✏̃n)
=

1

2

h
erf
⇣4 ˙̃✏(�)

✏̇0
+ 2

⌘
+ 1

i
, (S25)

with
�0(✏̃n) = �max |✏̃n|  ✏p,

= �maxexp
h
�

⇣
|✏̃n| � ✏p

✏s

⌘2i
otherwise,

(S26)

where �max is the isometric tension of the SF and ˙̃✏(�) is the true strain-rate in the functional unit. This Hill-type relation

includes the strain-rate dependence of the SF stress characterised through the reference strain-rate ✏̇0 (Fig. S1a) as well as a strain

dependence (Fig. S1b) characterised through two parameters ✏p and ✏s that govern the regime over which the isometric stress is

strain independent and the drop of of the isometric stress as a functional unit is either excessively stretched or compressed.

Now recall that we are considering a 2D cell model with the cell under uniform strain. Moreover, the separation of timescales

implies that the morphological microstate of the cell or equivalently the connection between material points on the cell and the

substrate remain unchanged over the period when SFs evolve. Thus, the substrate strain-rate is directly transferred to the cell and

therefore the SF stretch rate �̇SF(�) for a SF orientated at an angle � with respect to the cell major axis is related to the substrate

stretch rates �̇1(t), �̇2(t) in the x1 and x2 directions, respectively via

�̇SF(�) = �̇1cos
2(✓ + �) + �̇2sin

2(✓ + �), (S27)

where ✓ is the orientation of the major axis with respect to the x1 direction. Then integrating this stretch rate from time tI when

the imposed cyclic strain is a minimum and recalling that mean stretch is set by the morphological microstate of the cell gives the
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stretch �SF(�) as

�SF(�, t) = �̄SF(�) +
⇣ Z t

tI

�̇1(t
0)dt0

⌘
cos2(✓ + �) +

⇣ Z t

tI

�̇2(t
0)dt0

⌘
sin2(✓ + �), (S28)

where the mean stretch �̄SF(�) is

�̄SF(�) =
a1

R0
cos2(�) +

a2

R0
sin2(�). (S29)

Finally, the nominal strain ✏̃n(�) in the functional unit is kinematically related to the SF stretch �SF(�) through the number of

functional units in the SF such that

✏̃n(�) =
�SF(�)

n̂(�)
� 1, (S30)

and the true stain rate ˙̃✏(�) is related to the SF stretch rate by

˙̃✏(�) =
�̇SF(�)

�SF(�)
�

˙̂n(�)

n̂(�)
. (S31)

The kinetics of the number of functional units n̂ driven by the release of the internal energy in functional units as they strain

to a more energetically favourable state with this energy consumed in the dissipation associated with the breakage of bonds as

functional units and removed/added to the SFs. This kinetics is described by

dn̂

dt
= �

1

n̂

✓
N̂u

⇧̂

◆2 
 (✏̃n) �

@ 

@✏̃n
(1 + ✏̃n)

�
↵

µb0
for

@ 

@n̂
 0,

= �
n̂

4


 (✏̃n) �

@ 

@✏̃n
(1 + ✏̃n)

�
↵

µb0
otherwise,

(S32)

where ↵ is a rate constant associated with dissipation while ⇧̂ =
R ⇡/2
�⇡/2 ⌘̂d� is total number of SFs. The reader is referred to [6]

for a detailed derivation of the SF kinetics.

The structure of the SFs and the units in the unbound states set the cytoskeletal free-energy such that cytoskeletal Helmholtz

free-energy (including contributions from the energy carriers such as ATP; see Ippolito and Deshpande [7]) is given in terms of the

chemical potentials �u,�b of the unbound and bound SF units for an incompressible cell of volume Vcell by

Hcyto(t) = Vcell(1 � fnuc)⇢0

⇣
N̂u�u +

Z ⇡/2

�⇡/2

⌘̂(�)n̂(�)�b(�)d�
⌘
, (S33)

where ⇢0 is the volumetric concentration of SF functional units protein packets within the incompressible cytoplasm and fnuc the

volume fraction occupied by the nucleus. The associated chemical potentials are

�u =
µu

nR
+ kBT ln(N̂u),

�b =
µb

nR
+

kBT

nRn̂
ln

 
⇡⌘̂n̂

N̂u(1 � ⌘̂/⌘̂max)

!
+ kBT ln(N̂u),

(S34)

where ⌘̂max is the maximum angular concentration that SFs can attain. For a detailed derivation and discussion of these chemical

potentials, the reader is referred to Shishvan et al. [1]. It is emphasized here that we assume that cells are incompressible in three

dimensions. In the context of the 2D cells modelled here, the cells are elliptical cylinders and change their area by appropriately

adapting their thickness so as to maintain their volume. Moreover, since we are assuming the cells are 2D and spatially uniform

there is no variation of the SF organisation within the cytoplasm.

S2.2. The passive free-energy Hpassive(t)

The total Helmholtz free-energy cell is Hcell = Hcyto +Hpassive with the passive energy arising from the elastic deformation of the

nucleus and cytoplasm. Thus,

Hpassive = Vcell [fnuc�nuc + (1 � fnuc)�cyto] , (S35)

where �nuc and �cyto are the strain energies per unit volume in the nucleus and cytoplasm, respectively with contributions to

elasticity from cell membrane and cell-substrate adhesion complexes lumped into �cyto. We assume these strain energy densities

are given by an Ogden-type [8] relation in terms of the principal stretches �̃1 and �̃2 that the spatially uniform cell is subjected at

time t. These stretches are then follow in a manner analogous to Eqs. (S28) and (S29) as

�̃1(t) =
a1

R0
+

✓Z t

tI

�̇1(t
0)dt0

◆
cos2 ✓ +

✓Z t

tI

�̇2(t
0)dt0

◆
sin2

✓ (S36)

�̃2(t) =
a2

R0
+

✓Z t

tI

�̇1(t
0)dt0

◆
sin2

✓ +

✓Z t

tI

�̇2(t
0)dt0

◆
cos2 ✓, (S37)

with the Ogden-type hyperelastic relation is given by

�i =
2µi

m
2
i

✓
�̃1

�̃2

◆mi/2

+

✓
�̃2

�̃1

◆mi/2

� 2

�
+

ki

2
(�̃1�̃2 � 1)2. (S38)

This hyperelastic strain energy density function is written in terms of the shear modulus µi, area modulus ki and a strain sensitivity

exponent mi with i representing these parameters in the nucleus or cytoplasm, i.e., i = nuc, cyto.
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All the required parameters for the cell free-energy are listed in Tables S1 and S2. The parameters that determines the SF

organization as well as the elastic constants for the passive properties of the cytoplasm and nucleus are consistent with Buskermolen

et al. [9]. However, Buskermolen et al. [9] did not investigate cyclic loading and hence did not provide the SF kinetic parameters. For

SF kinetics, we chose parameters similar to the fast SF remodelling case in [6]. Note that, the normalized free-energy Ĥ = H
(c)
cell/|Hs|

is independent of the cell volume Vcell, thus all results presented in this study are independent of Vcell, and hence this parameter is

not specified here. Equally, the results are also independent of the choice of ! and hence this parameter is not listed in Table S1.

However, this parameter is used as part of the numerical scheme detailed in Section S4.1 and in all computations presented here

we employed ! = 20 Hz.

S2.3. The free-energy of a cell in suspension

The cell in suspension cannot equilibrate itself via reaction forces from the substrate and hence is required to be in a stress-free state.

Recall that all microstates are spatially uniform ellipses with principal axes of lengths a1 and a2 we use the equilibrium condition

that a cell in suspension is stress-free to determine a1 and a2 for the cell in suspension. The cell stress comprises contributions

from the active contractile forces generated within the stress-fibers and the passive stresses due to elastic deformations. We thus

write the total stress Cauchy stress � as

� = fnuc�
p
nuc + (1 � fnuc)(�

a + �p
cyto), (S39)

where �a and �p
i , i = nuc, cyto, are the active and passive stresses, respectively, and we have used the fact that the stress-fibers

are only present in the cytoplasm. The principal components of �p are given by

�
p
k,i = �k

@�i

@�k
, k = 1, 2, i = nuc, cyto, (S40)

with the out of plane stress �
p
3,i = 0 in the 2D context modelled here. The active stress is calculated by averaging the stress of

each stress-fiber within a representative volume element [6] and given by

�a =
f0�max

2

Z ⇡/2

�⇡/2

⌘̂(�)�SF(�)

"
2cos2(✓ + �) sin(2(✓ + �))

sin(2(✓ + �)) 2sin2(✓ + �)

#
d�, (S41)

where f0 is the volume fraction of stress-fiber functional units. Solving for � = 0 provides a1 and a2 and thereby Hs that is required

to enforce the homeostatic constraint specified by Eq. (5). We note in passing that for a cell that is circular in its elastic resting

state, symmetry implies that a1 = a2 in the suspended state.

S3. Rod-like cells

To analyse the cell orientations for cells seeded on biaxially strained substrates we model cells as rod-like or one-dimensional (1D)

cells. The morphological microstate (c) of the cell is then fully described by (�, ✓) where � is the stretch of the rod and ✓ its

orientation with respect to the x1-direction of the substrate. The cyclic homeostatic framework remain unchanged except that the

ensemble is now over only (�, ✓) and of course we need to specify a model for the cell free-energy.

S3.1. Free-energy of rod-like cells

We reduce the model for 2D cells to the case of rod-like one-dimensional (1D) cells. The model now greatly simplifies as stress-fibers

are present in only one direction (i.e., aligned with the 1D cell). Similar to the 2D cells stress-fibers are again characterised by

two parameters, ⌘̂ that gives the concentration of stress-fibers in the 1D stress-fiber bundle and n̂ that characterises the number

of functional units forming the stress-fibers. The model equations are essentially identical to those for the 2D cell described above.

For example, the stress-fiber concentration ⌘̂ evolves by

d⌘̂

dt
=

N̂u(1 � ⌘̂/⌘̂max)

⇡n̂
!exp

h
� n̂

µa � µu

kBT

i
� ⌘̂!exp

h
� n̂

µa � µb

kBT

i
, (S42)

with the concentration of unbound functional units now simply given by N̂u = 1 � ⌘̂n̂ as stress-fibers are only present in one

direction. In fact Eqs. (S23) through (S32) remain unchanged expect that the stress-fiber angle is now synonymous with the

orientation ✓ of the rod-like cell and thus we set � = 0 and �̄SF = �. Then the cytoskeletal Helmholtz free-energy is given by

Hcyto(t) = Vcell(1 � fnuc)⇢0

⇣
N̂u�u + ⌘̂n̂�b

⌘
, (S43)

where �u,�b, are given by (S34) while ⇢0 and fnuc are again the concentration of the stress-fiber proteins and the volume fraction

of the nucleus, respectively.

The model is completed by specifying the elastic strain energy density functions for the nucleus and cytoplasm as

�i =
ki

2
(�̃ � 1)2, i = nuc, cyto, (S44)

where

�̃(t) = � +

✓Z t

tI

�̇1(t
0)dt0

◆
cos2 ✓ +

✓Z t

tI

�̇2(t
0)dt0

◆
sin2

✓. (S45)

Then Hcell = Hcyto+Hpassive with Hpassive given by (S35). Finally, to calculate the free-energy of this rod-like cell in the suspended

state we first need to estimate � in the suspended state. Recalling that the suspended cell is stress-free we set the total 1D stress



7

� = 0 where

� = (1 � fnuc) [f0�max⌘� + kcyto(� � 1)] + fnucknuc(� � 1). (S46)

Solving (S46) gives � and thereby provides Hs = Hcell. The parameters for this rod-like cell are identical to those used for the

elliptical cell and listed in Tables S1 and S2.

S3.2. Orientation of rod-like cells under cyclic loading

The analysis for the 2D elliptical cells discussed in the main text can be repeated for the rod-like cells to determine the distribution

of the two morphological variables (�, ✓) for substrate loadings specified by (10). These predictions are described in Section 3.3

with predictions included in Figs. S4a and S4b for loading at f = 1 Hz and "amp = 0.1 and di↵erent biaxiality ratios r. In all cases

modes of the p(✓) distribution are observed at ✓ = tan�1(1/
p
r) and ✓ = ⇡� tan�1(1/

p
r) corresponding to directions of vanishing

substrate strain-rate. This result arises from the fact that for any value of � in the rod-like cells, Hcell is minimised in the direction

where the cell (which in this case is synonymous with the stress-fiber bundle) is under isometric conditions such that �SF = �max.

Then via Eq. (4) the probability of observing the cell in this zero strain-rate orientation is a maximum.

S4. Numerical procedures

S4.1. Solution of the stress-fiber kinetics to obtain H
(c)
cell

Here we briefly describe the procedure to solve the evolution equations for stress-fiber remodeling for a morphological microstate

(c) and obtain the corresponding cell energy H
(c)
cell.

1. There are multiple timescales in Eqs. (S21) and (S32) which makes the corresponding ordinary di↵erential equations (ODEs)

sti↵. We thus employed the sti↵ solver ode15s in MATLAB to integrate these equations until ⌘̂(�, t), n̂(�, t) achieved a cyclic

steady-state.

2. At cyclic steady-state, the temporal variations of ⌘̂(�, t), n̂(�, t) then directly provide Hcyto(t), Hpassive(t) and thereby Hcell(t)

at every time t over a time period Tp

3. Finally, the cell free-energy H
(c)
cell is obtained by averaging Hcell(t) over the time period Tp.

S4.2. Computation of the cyclic steady-state

The Helmholtz free-energy H
(c)
cell is computed in the r = (h, k, l) space for specified values of the substrate strain amplitude "amp

and frequency f . The distribution parameter �̂ = �|Hs| is then computed from the relation

Z
PeqĤ(r)dr =

Hs

|Hs|
, (S47)

where Ĥ = H
(c)
cell/|Hs| and

Peq(r) =
exp (��̂Ĥ)

R
exp (��̂Ĥ)dr

. (S48)

This probability distribution function is then sampled to construct the probability distributions for all observables.

S4.3. Solution of the Langevin-type evolution equation

The numerical procedure to solve the non-dimensional Langevin-type equation (17) is outlined here with �̂ obtained from the

corresponding cyclic steady-state distributions reported in Section 3. The solution provides the temporal evolution of all observables

in terms of the non-dimensional time t̂ and thus no additional parameters are required to solve Eq. (17). Stochastic di↵erential

equations (SDEs) such as the Langevin equation are typically integrated using a Euler forward integration algorithm [10] and we

have employed this method to integrate the Langevin SDE as follows:

1. The cell with an prescribed initial configuration is placed on the substrate at time t̂ = 0.

2. For the microstate at time t̂ we evaluate the gradient of the cell free-energy @Ĥ/@ri where r = (h, k, l) by interpolation of

the cell free-energy phase space precomputed in the (h, k, l) space. We emphasize that the free-energy depends on both the

substrate cyclic strain amplitude and frequency, which means that the free-energy phase space needs to be computed for every

imposed strain frequency and amplitude.

3. For all three degrees of freedom (h, k, l), we then randomly select the value of the noise from the normal Gaussian distribution

N (0, 1) to obtain @ri/@t̂ from Eq. (17).

4. We then update the current configuration described by (h, k, l) via a forward Euler scheme

ri(t̂ +�t̂) = ri(t̂) +
@ri

@t̂
�t̂. (S49)

5. Repeat from steps (ii)-(iv) until t̂ = T̂sim where T̂sim is the simulation time.

Time evolution was computed by selecting �t̂ = 0.01 and most trajectories were computed over a period T̂sim = 100. Typically,

Langevin simulations were conducted for 50 initial configurations as detailed in the main text and for each of these initial
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configurations 20 Langevin trajectories (i.e., di↵erent realisations of the noise specified by N (0, 1)) were computed. All numerical

methods are implemented in in-house codes written in MATLAB. The probability distributions of all observables reported in the

main text were then computed from the temporal evolution of the microstate variables (h, k, l).

S5. E↵ect of the cyclic strain frequency and amplitude

A limited parametric study for the e↵ect of strain amplitude and frequency on key morphological observables is presented here.

Specifically, in addition to the reference case of "amp = 0.1 and f = 1 Hz, we report calculations with "amp = 0.05 and f = 0.5 Hz.

Figures S2a and S2b show the probability distribution functions (PDFs) for normalized cell area p(Â) and aspect ratio p(As),

respectively1. As expected, the PDFs become wider with either decrease of "amp or f , and approach to those for the f = 0 Hz case.

Similar behavior is also observed for the PDF for cell orientations p(✓) and the stress-fiber angular concentration ⇢̂, respectively, in

Figs. S2c and S2d. Finally, decrease of either frequency or amplitude by half appears to be similar e↵ects consistent with the fact

that the cell free-energy depends on contractile strain-rate via the Hill-relation Eq. (S25) for tension generation in the stress-fibers.

1
Note that probability distribution p(Â) has two peaks f = 0 Hz with a significantly larger peak around Â = 1. The smaller peak

at lower values of Â is an artifact of the spatially uniform elliptical shapes assumed here and not been observed when Non-Uniform

Rational Basis Splines are used to describe realistic cell shapes [1]. However, given that the focus of this study is on cyclic rather

than the static behaviour of cells we do not expect this elliptical approximation to cause significant errors in the predictions
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Supplementary Figures
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Fig. S1. Sketches showing (a) the stress-fiber stress �SF normalised by the corresponding isometric value as a function of the normalized strain-rate

˜̇✏/✏̇0 and (b) the isometric stress normalised by the maximum isometric stress value versus the normalised functional unit strain ✏̃/✏p. In (b) the plot is

shown for the choice ✏p/✏s = 2.
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Fig. S2. E↵ect of cyclic strain amplitude "amp and frequency f on key observables for loading with r = 0. Probability density functions of (a) the

normalised cell area Â, (b) cell aspect ratio As and (c) cell orientation ✓. (d) Angular distribution of stress-fiber concentration relative to the major axis

of the elliptical cell, parameterized by ⇢̂(�) with the angle � measured with respect to the major axis of the cell. Predictions are show for "amp = 0.1

with f = 0.5, 1 Hz and "amp = 0.05 with f = 1 Hz, together with the case of no cyclic strain f = 0 Hz.
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Fig. S3. Replot of the landscape of the normalized energy Ĥ = H
(c)
cell/|Hs| in Fig. 4a to included contours of the (a) normalised cell area Â (dotted lines)

and (b) aspect ratio As (dashed lines). This plot shows how cell energy changes with cell area and aspect ratio. In brief, Ĥ varies non-monotonically

with both Â and As.
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Fig. S4. Predictions of the orientations of rod-like cells under cyclic loading with f = 1 Hz and "amp = 0.1 for di↵erent choices of the stretch biaxiality

r. (a) Predictions of the probability distribution p(✓) for selected values of r. For r > 0 there are two modes of the distribution corresponding to the

directions of vanishing substrate strain-rate. These two directions coincide at ✓ = 90
�
for r = 0. (b) Comparisons between predictions and measurements

[11] of the mode of the probability distributions (i.e. orientation at which cells are most likely to be observed) as a function of the loading biaxiality r.

Note that for r > 0 there exist two modes but here for simplicity we just show the mode corresponding to the acute value of ✓.
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Fig. S5. Two selected temporal Langevin trajectories for cells initially oriented at ✓0 = 0
�
. The cells were first allowed to equilibrate in the absence

of cyclic loading and then subjected to cyclic straining (r = 0) with "amp = 0.1 and f = 1 Hz commencing at normalised time t̂ = 0. The two selected

trajectories correspond to cases with cyclic strain avoidance by the rotation and strain modes. (a) Temporal variation of the cell rotation ✓r and (b) the

corresponding variation in the normalised cell-free-energy Ĥ. The spikes in ✓r at t̂ ⇡ 20 for the strain mode occur as the cell is approximately circular

at that time. In this circular state all orientations of the cell have equal energies and thus are equally likely. As a consequence the Langevin solution

samples all orientations. This transient in the cell rotation decays as the cell elongates and there is no residual net rotation from this transient.
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Supplementary Tables

Parameters for the SF cytoskeleton

T 310 K

µa 11kBT

µu 8kBT

µb0 9kBT

�max 240 kPa

⌘̂max 1.0

⌦ 10�7.101
µm3.

⌫ 1.2

✏̇0 0.265 s�1

✏p 0.4

✏s 0.2

↵ 50

nR 50

⇢0 3 ⇥ 106
µm�3

f0 0.032

fnuc. 0.2

Table S1. Parameters that characterise the stress-fiber cytoskeleton.

Elastic constants for cytoplasm

Shear modulus µcyto 0.3 kPa

Bulk modulus kcyto 50 kPa

mcyto 6

Elastic constants for nucleus

Shear modulus µnuc 1 kPa

Bulk modulus knuc 50 kPa

mnuc 15

Table S2. Passive elastic properties of the cytoplasm and nucleus.
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