
SUPPLEMENTARY MATERIAL
FOR

Minimum complexity drives regulatory logic in Boolean models of

living systems

Ajay Subbaroyan,a,b Olivier C. Martinc,d, ∗ and Areejit Samala,b, ∗

aThe Institute of Mathematical Sciences (IMSc), Chennai, 600113, India, bHomi Bhabha National Institute (HBNI), Mumbai, 400094,

India, cUniversité Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France and
dUniversité de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
∗To whom correspondence should be addressed: olivier.c.martin@inrae.fr, asamal@imsc.res.in

1. Representation of Boolean functions

Let f = f(x1, x2, . . . , xk) be a BF of k input variables where each variable xi ∈ {0, 1}. A BF maps 2k different possibilities for the

k input variables to output values 0 or 1, i.e., f : {0, 1}k 7→ {0, 1}.

Truth table and associated ordered binary vector

A BF f with k inputs can be captured in the form of a truth table with 2k rows, each corresponding to a possible state of the set

of k input variables. In our convention the last entry of each row gives the output value for the corresponding state of the input

variables (Fig. S1(a)). Thus, a BF can be stored as a binary vector of size 2k, where each element of the vector corresponds to

the output value of the corresponding row of the truth table (Fig. S1(b)). A BF can also be encoded as the integer which is the

decimal equivalent of the binary vector of size 2k. Since the output value for each of the 2k different states of the k input variables

can take either of two values, 0 or 1, the number of possible BFs f with k inputs is 22k

. Thus, the number of possible BFs f blows

up quickly with increasing k [1], e.g., there are over 109 BFs with k = 5 inputs (see Table S1 and Fig. S2).

Boolean Expression

Alternatively, a BF f can instead be represented as an algebraic expression (Fig. S1(c)) constructed with the k input variables

which are combined via the logical operators AND (· or ∧), OR (+ or ∨) and NOT (′ or). For example, the AND function and

OR function of 2 input variables, x1 and x2, are given by the Boolean expressions, x1 · x2 and x1 + x2, respectively. Note that

the “+” symbol does not correspond to working modulo 2, instead (1+1) has the value “1”, not “0”. In this work, the term literal

refers to a Boolean variable (e.g., x1) or the complement of a Boolean variable (e.g., x1). Throughout this work, Boolean function

and Boolean variables refer to a logical update rule and to inputs, respectively, of nodes in a model.

Colored Boolean Hypercube

A visually illustrative representation of a BF is obtained by coloring a Boolean hypercube. A k-dimensional hypercube (k-cube) is

composed of vertices and edges where each vertex is labelled by a string of k bits, and is connected to vertices with labels that differ

from its label in exactly one bit. Two vertices connected by an edge are called “neighbors”. A k-cube thus has 2k vertices, with

each vertex having k neighbors. The total number of edges in a k-cube is (k × 2k)/2 (division by 2 removes the double counting

edges). A BF may thus be represented by a k-cube in which each vertex is labeled by the input combination xkxk−1xk−2 . . . x2x1

(xi ∈ {0, 1}) and is colored with an output bit (0 or 1) (Fig. S1(d)).

2. Combining two independent Boolean functions

Consider two independent BFs f1 and f2 with k1 and k2 inputs and bias P1 and P2, respectively. Here, the two BFs are independent

in the sense that they have no input variables in common. The truth tables for the BFs f1 and f2 have 2k1 and 2k2 rows, respectively.

A simple way to combine the two BFs is via the AND or OR logical operators. We use the notation f = f1 ⊙ f2 where ⊙ is either

the AND (∧) or OR (∨) operator. The procedure to generate f with 2k1+k2 rows in its truth table, by combining f1 and f2, can

be expressed compactly as follows:

© The Author . Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

1

email:

2 Supplementary material

Algorithm 1 Algorithm to combine two independent BFs f1 and f2

1: f [r] = 0, r ∈ [1, 2k1+k2]

2: r ← 1

3: for i← 1 to 2k1 do

4: for j ← 1 to 2k2 do

5: f [r] = f1[i]⊙ f2[j]

6: r ← r + 1

7: end for

8: end for

In Line 1 of the above algorithm, we initialize a vector f with 2k1+k2 elements to store the output values in each row of the

truth table for f = f1 ⊙ f2. In Line 5 of the algorithm, the output value for the ith row of f1 is combined with that of the jth

row of f2 to give the output value for the rth row of f . For example, if BFs f1 and f2 with 1 input and 2 inputs, respectively,

have output vectors (1, 0) and (1, 1, 1, 0), respectively, then the output vector for the combined BF f = f1 ∧ f2 with 3 inputs is

(1, 1, 1, 0, 0, 0, 0, 0).

Property 2.1. Let f1 and f2 have bias P1 and P2. Then f1 ∧ f2 (hereafter denoted as fAND) has bias equal to P1P2.

Proof : For every occurrence of 0 in the output vector of f1, the output vector of fAND will also be 0. For every occurrence of 1

in the output vector of f1, there will be P2 occurrences of 1 in the output vector of fAND. Thus, for P1 occurrences of 1 in the

output vector of f1, there will be P1P2 occurrences of 1 in the output vector of fAND.

Property 2.2. Let us denote f1 ∨ f2 by fOR, then fOR has bias equal to 2k1P2 + 2k2P1 − P1P2.

Proof : For every occurrence of 0 in the output vector of f1, there will be P2 occurrences of 1 in the output vector of fOR. Thus,

the contribution to the 1’s in the output vector of fOR from 0’s in the output vector of f1 is (2k1 − P1)P2. For every occurrence

of 1 in the output vector of f1, there will be 2k2 occurrences of 1’s in the output vector of fOR. Thus, the contribution to the 1’s

in the output vector of fOR from 1’s in the output vector of f1 is 2k2P1. In total, the number of 1’s in the output vector of fOR is

equal to (2k1 − P1)P2 + 2k2P1 = 2k1P2 + 2k2P1 − P1P2.

Property 2.3. Given the bias parities (even or odd) of f1 and f2, the two previous results show that both fAND and fOR have

odd parity (i.e., their bias is odd), if and only if P1 and P2 are both odd.

3. Properties of biologically meaningful types of Boolean functions

Here, we present proofs for various properties of EFs, UFs, NCFs and RoFs.

Effective functions

Property 3.1. The bias P of a BF with m ineffective inputs is a multiple of 2m.

Proof : Consider the truth table of a BF f and assume the input variable xi is ineffective. Then each line with xi = 0 can be

uniquely paired with the corresponding line having xi = 1 where all other variables are unchanged. Since the output is the same

in both of these lines, one has either no 1s or two 1s in the output. Summing over all of the truth table (lines coming in pairs) will

thus lead to an even number of 1s. The result for m ineffective inputs is then obtained by recurrence.

Corollary: It immediately follows that a BF with an odd bias P is effective.

Property 3.2. EFs with k inputs have Boolean complexity ≥ k.

Proof : For a BF f to be effective, the k different input variables must appear at least once in the minimal expression or formula

for the BF. This implies that the number of literals in the minimal expression or Boolean complexity is ≥ k.

Unate functions

Property 3.3. A UF can be represented by an expression in disjunctive normal form (DNF) in which all occurrences of any

specific input variable (more precisely, literal) are either negated (i.e., negative input) or non-negated (i.e., positive input) [2, 3].

Property 3.4. If u1 and u2 are UFs with k1 and k2 independent input variables, respectively, then the combined BF u = u1⊙u2

is also unate.

Proof : Consider two unate functions u1 and u2. For convenience, let us denote their DNF expressions by the same symbols u1

and u2. Since each input variable in u1 and u2 is either a positive (xi) or a negative (xi) literal (see Property 3.3), the combined

expression u = u1 ⊙ u2 composed of (k1 + k2) distinct input variables (due to independence) will also have each variable occur

as only its positive or negative literal. This implies that the combined function u is a UF. As an example, consider the UFs

u1 = (x1 +x2) and u2 = (x3x4 +x5). The combined BF u = u1⊙u2 under the AND operation is simply u = (x1 +x2)(x3x4 +x5).

Since each literal appears in u only in its positive or its negative form in the expression for u, the combined BF is UF.

3

Property 3.5. If an input i of a UF u acts as both an activator and an inhibitor, then input i is ineffective.

Proof : An input i acts as both an activator and an inhibitor if and only if the input i satisfies the equality condition in Eqs. 3 and

4 in the main text, respectively, for all input vectors x. However, this is precisely equivalent to the condition for an input i to be

ineffective.

Canalyzing and Nested Canalyzing functions

Canalyzing functions must have at least one canalyzing input. CFs have been grouped based on the number of canalyzing inputs [4].

The distinct number of inputs that satisfy the canalyzing property is referred to as the function’s canalyzing depth. A k-input CF

has a canalyzing depth ranging from 1 to k. Note that a k-input NCF has a canalyzing depth of k. A commonly used definition of

the NCFs is provided below. A BF f with k inputs is nested canalyzing with respect to a permutation σ on its inputs {1, 2, . . . , k}
if:

f(x) =

b1 if xσ(1) = a1,

b2 if xσ(1) ̸= a1, xσ(2) = a2,

b3 if xσ(1) ̸= a1, xσ(2) ̸= a2, xσ(3) = a3,

.

.

.

bk if xσ(1) ̸= a1, xσ(2) ̸= a2, . . . , xσ(k) = ak,

bk if xσ(1) ̸= a1, xσ(2) ̸= a2, . . . , xσ(k) = ak.

(1)

In the above equation, a1, a2, . . . , ak are the canalyzing input values and b1, b2, . . . , bk are the canalyzed output values for inputs

σ(1), σ(2), . . . , σ(k) in the permutation σ of the k inputs. Here, ak and bk are the complements of the Boolean values ak and bk,

respectively. The Boolean expression for the NCFs is given by the equation:

f(x) = Xσ(1) ⊙ (Xσ(2) ⊙ (Xσ(3) ⊙ . . . (Xσ(k−1) ⊙Xσ(k)))) (2)

where σ is a permutation on the inputs {1, 2, . . . , k}, Xσ(i) ∈ {xσ(i), xσ(i)} and ⊙ ∈ {∧,∨}. Here ∧ and ∨ are the AND

and OR operators respectively. We remark that Szallasi and Liang [5] had called these functions “hierarchically canalyzing” and

subsequently Kauffman [6] called them “nested canalyzing”.

Property 3.6. NCFs have odd bias.

Proof : Consider the base case of a NCF with 1 input with the representative expression NCF (1) = x1. Clearly, the Boolean

expressions f = x1 and f = x1 refer to the BFs with output vector (0, 1) or (1, 0), both of which have odd bias. Next, let us

hypothesize that all NCFs with k inputs, i.e., NCF (k), have odd bias P . We can then proceed by induction. A NCF with k + 1

inputs is given by NCF (k + 1) = xk+1 ⊙ NCF (k) by definition (Eq. 2). Since the two independent BFs xk+1 and NCF (k) have

odd bias, using Property 2.3, the combined BF NCF (k+1) will also have an odd bias. Note that a different proof for this property

of NCFs was provided by Nikolajewa et al. [7].

Property 3.7. NCFs are EFs.

Proof : Since BFs with odd bias are EFs, using Properties 3.1 and 3.6, NCFs are also EFs.

Property 3.8. NCFs are UFs [3].

Proof : Following Aracena [3], since each variable or literal in the expression for a NCF (Eq. 2) appears exactly once, it follows

that each variable is fixed to either its positive or negative form in the function’s canonical NCF form. Thus, NCFs are UFs using

Property 3.3.

Property 3.9. NCFs with k inputs have Boolean complexity equal to k.

Proof : In Eq. 2, each variable or literal in the expression for an NCF appears exactly once, thus the Boolean complexity of a NCF

is equal to k. Thus, NCFs have the minimum Boolean complexity among EFs with given number of inputs.

Read-once functions

RoFs are also known as fanout-free functions in the computer science literature [8]. Mathematically, a k-input BF f is a RoF if,

after stripping of all parentheses, there exists a permutation σ on {1, 2, . . . , k} such that

f(x) = Xσ(1) ⊙Xσ(2) ⊙Xσ(3) . . .⊙Xσ(k) (3)

where Xσ(i) ∈ {xσ(i), xσ(i)} and ⊙ ∈ {∧,∨}. There are no restrictions on the placement of the parentheses between the variables

in the above equation. Here ∧ and ∨ are the AND and OR operators respectively.

Property 3.10. Generation of representative RoFs.

The following is a recursive scheme to generate all RoFs with k inputs, i.e., RoF (k), starting from RoFs with 1 input (RoF (1)).

To do so, one can use the fact that the parentheses in the logical expression of a function in RoF (k) define two sub-parts separated

4 Supplementary material

by an AND or an OR operator. Such a decomposition splits the k variables into two sets, and thus, any function in RoF (k) can

be decomposed into at least one of the following types:

RoF (k − 1)⊙ RoF (1)

RoF (k − 2)⊙ RoF (2)

RoF (k − 3)⊙ RoF (3)

.

.

.

RoF (k − (k/2))⊙ RoF (k − (k/2))

[for k even]

or

RoF (k − ((k − 1)/2))⊙ RoF (k − ((k + 1)/2))

[for k odd]

where ⊙ corresponds to the AND (∧) or OR (∨) operator. Such a decomposition allows one to enumerate all elements of RoF (k)

recursively.

The above algorithm does not only return the representative RoFs, sometimes it will return permutations thereof. To retain

only the representative RoFs, we iteratively walk through the produced list and keep an element only if it is not equivalent to a

previous element under permutation of the variables.

Property 3.11. RoFs have odd bias.

Proof : Consider the base case of a RoF with 1 input. Clearly, the BFs in RoF (1) have output vector (0, 1) or (1, 0), both of which

have odd bias. Next, let us hypothesize that BFs in RoF (j) ∀ j ∈ {1, k} have odd bias. We now refer to Property 2.3 in Section

2 whereby the combination of two BFs with odd bias results in a BF with odd bias. Next by induction, the RoF with k + 1 inputs

is given by RoF (k + 1) = RoF ((k + 1)− j)⊙RoF (j) for some j ∈ [1, (k + 1)/2] for odd k, or j ∈ [1, k/2] for even k (see Property

3.10). Since the two functions RoF ((k + 1)− j) and RoF (j) have odd bias, using Property 2.3, the function RoF (k + 1) will also

have odd bias.

Property 3.12. RoFs are EFs.

Proof : From Property 3.11, RoFs have odd bias. From Property 3.1, BFs with odd bias are EFs. Thus, RoFs are EFs.

Property 3.13. RoFs are UFs.

Proof : Since each variable or literal in the expression for a RoF (Eq. 3) appears exactly once, it follows that each variable is fixed

to either its positive or negative form in the RoF logical expression. Thus, RoFs are UFs according to Property 3.3.

Property 3.14. RoFs with k inputs have the minimum Boolean complexity k among all the EFs.

Proof : Since RoFs are constructed such that each variable or literal in the expression for a RoF (Eq. 3) appears exactly once,

the Boolean complexity of a RoF is equal to k. Further, using property 3.2, k is the minimum value in EF, hence RoFs have

the minimum Boolean complexity among all EFs. In sum, RoFs correspond exactly to the set of EFs with minimum Boolean

complexity.

Property 3.15. For any k, NCFs are a subset of RoFs.

Proof : Comparing the expression for NCFs (Eq. 2) with the expression for RoFs (Eq. 3), it is evident that NCFs form a subset of

RoFs. Simply stated, all NCFs are RoFs but all RoFs need not be NCFs. Henceforth, we refer to the subset of the RoFs which are

not NCFs as the ‘non-NCF RoFs’. To the best of our knowledge, RoFs (excluding NCFs) have not been considered in the biological

literature.

Property 3.16. RoFs with bias P equal to 1, 3 and 5 are NCFs.

Proof : First consider the case where the bias P is 1. The DNF of a BF with k inputs and bias P equal to 1 has just one term, the

conjunction of k literals, and thus, the function is a NCF (see Eq. 2).

Next, we show that it is impossible to have a RoF with k > 2 (respectively, k > 3) and bias P = 3 (respectively P = 5) by

combining RoFs with the OR operator. Let POR be the bias of RoFOR(k) = RoF (k1) ∨ RoF (k2), where k = k1 + k2. Further,

let P1 and P2 be the biases of RoF (k1) and RoF (k2), respectively. From Property 2.2, we have POR = 2k1P2 + 2k2P1 − P1P2,

which is a positive monotonic function of P1 and P2 (for a fixed k1 and k2). The minimum value of POR is thus obtained at

P1 = 1, P2 = 1. Thus, min(POR) = 2k1 + 2k2 − 1. If k is greater than 2 (or 3), it can be easily confirmed that min(POR) > 3

(respectively, min(POR) > 5). Thus, the bias of RoFOR for k > 2 (respectively, k > 3) cannot be 3 (respectively, 5).

Thus, it follows that a RoF with k > 2 (respectively, k > 3) and bias 3 (respectively, 5) can be generated only by combining

RoFs with the AND operator. Let PAND be the bias of RoFAND(k) = RoF (k1)∧RoF (k2), where k = k1 + k2. From Property 2.1,

PAND = P1P2. Since 3 (respectively, 5) is prime, a RoFAND(k) with bias 3 (respectively, 5) can be generated only by combining

two RoFs, RoF (k1) and RoF (k2), with biases 1 and 3 (respectively, 1 and 5). Let RoF (k2) have bias 3 (respectively, 5). By

5

decomposition, RoF (k2) would in turn have to be generated by combining two RoFs, RoF (k2,1) and RoF (k2,2), with biases 1 and

3 (respectively, 1 and 5), and so on. Proceeding in this manner, we will be left with a nested RoF, with exactly one term having

bias 3 (respectively, 5), and all other RoFs in the nested expression having bias 1. In other words, for bias 3 nested RoF would be of

the form: x1∧x2∧x3∧ . . .∧xk−2∧(xk−1∨xk), and for bias 5 would be of the form: x1∧x2∧x3∧ . . .∧xk−3∧(xk−2∨(xk−1∧xk)),

both of which are NCFs (see Eq. 2).

Note that for k = 1, there are no BFs with bias P equal to 3. To complete the proof, consider the cases k = 2 and k = 3. For

k = 2, RoFs with bias P = 1 are NCFs, hence its complement (with bias P = 3), is also a NCF. For k = 3, RoFs with bias P = 5

are NCFs since it is the complement of bias P = 3 which we showed to be NCFs for all values of k.

In Fig. 3(d), at k=4, we find that when a NCF and a non-NCF RoF belong to the same k[P] set, then the NCF has a lower

average sensitivity compared to the non-NCF RoF. Further, we have shown that NCFs have the minimum average sensitivity in

any k[P] set with odd bias P . We were curious as to whether two representative non-NCF RoFs within a k[P] set could have

the same average sensitivity, and we find this is indeed true via exhaustive computational enumeration of RoFs with k ≤ 10. We

observe that such a case of two representative non-NCF RoFs first occur when k = 7 at the bias P = 25. In Section 4, we describe

our program to check if a user-specified BF is a RoF.

For the sake of compactness, we represent RoFs which are equivalent up to isomorphisms (i.e., permutations of indices and

complementation of input variables) via a single representative BF or expression. Furthermore, we classify RoFs into k[P] sets

based on the number of inputs k and bias P [9]. In other words, we capture the complete set of RoFs in different k[P] sets via

representative RoFs wherein each representative RoF captures all RoFs that are equivalent up to isomorphisms. For example,

among BFs with k = 4 inputs, there are 10 representative RoFs up to isomorphisms which are:

RoF Expression k[P] set

f1 x1x2x3x4 4[1]

f2 x1x2(x3 + x4) 4[3]

f3 x1(x2 + x3x4) 4[5]

f4 x1(x2 + x3 + x4) 4[7]

f5 x1x2 + x3x4 4[7]

f6 x1 + x2x3x4 4[9]

f7 (x1 + x2)(x3 + x4) 4[9]

f8 x1 + x2(x3 + x4) 4[11]

f9 x1 + x2 + x3x4 4[13]

f10 x1 + x2 + x3 + x4 4[15]

Among the above-mentioned 10 RoFs with k = 4, f1, f2, f3, f4, f6, f8, f9 and f10 are also NCFs.

4. RoF checker

To check whether a BF is a RoF, we make use of the various properties of RoFs. To begin with, we generate a representative

RoF for each equivalence class, going up to k = 10 inputs using the Property 3.10. We store the truth table, bias and the average

sensitivity of each representative RoF in computer memory so that it can be used as a lookup table. Next, we implement the

procedure shown in the flowchart (see Fig. S5). This program takes as input a BF via its truth table representation; the bias of

the BF is determined. The program then proceeds by performing successive tests, from quite simple to more complex, as follows.

If the bias is even then the BF is not a RoF (see Property 3.11). Since NCFs are a subset of RoFs, we check whether the BF is

a NCF as that is relatively simple computationally (just successively determine the canalyzing input variables). If the function is

not a NCF, we check whether the input BF is a UF since RoFs are unate. If the BF is unate, we calculate average sensitivity. Then

we use the lookup table to extract all of the representative RoFs having that bias and average sensitivity. Recall that all elements

in an equivalence class have the same bias and average sensitivity. In case no representative RoF matches, then the BF is not a

RoF. Assuming that there is at least one representative RoF extracted, the program then loops over that list. For each such RoF

we generate all RoFs belonging to that same equivalence class (just loop over all isomorphisms), and for each such function the

program directly checks whether its truth table is the same as that of the input BF. If an equality is found, the input BF is a RoF

and we are done. If all the representative RoFs are tested without any success, then the input BF is not a RoF. The catalog of

RoFs along with the python code to check for RoFs is available via the GitHub repository: https://github.com/asamallab/MCBF.

5. Biological dataset compiling Boolean functions from reconstructed discrete models of living systems

To assess the abundance of different types of biologically meaningful BFs in reconstructed discrete models of living systems, we

first compiled a large dataset of 88 models that have been published to date. These 88 models were either downloaded from

databases such as Cell Collective [10] (https://cellcollective.org/), GINSIM [11] (http://ginsim.org/) or BioModels [12] (http:

//www.ebi.ac.uk/biomodels/), or directly obtained from the corresponding published article. Notably, most of these 88 models were

downloaded from the Cell collective database [10]. Further, this compilation of 88 models spans the overwhelming majority of

Boolean models of biological systems reconstructed and published to date. The majority of these models pertains to mammalian

systems and a much smaller fraction pertains to plant systems. The mammalian models include networks for signaling pathways

[13, 14, 15], differentiation [16, 17] and various cancers [18, 19, 20]. Among the plant models, this compilation includes cases from

https://github.com/asamallab/MCBF
https://cellcollective.org/
http://ginsim.org/
http://www.ebi.ac.uk/biomodels/
http://www.ebi.ac.uk/biomodels/

6 Supplementary material

flower organ specification [17], root stem cells [21], and guard cell signalling [22]. Overall, the 88 discrete models in this compilation

capture a very diverse collection of biological processes throughout multiple kingdoms of life.

This study is focused only on properties of BFs assigned to different nodes in reconstructed models of biological networks. Some

of those networks included nodes taking more than two discrete states; in our compilation, we included only BFs assigned to nodes

with binary states which further also had inputs only from other nodes with binary states. While compiling the BFs from these

88 models, we have also gathered the information on the signs of interactions between regulators (input nodes) and target gene

(output node). Such information is typically obtained from associated experimental literature.

Across the 88 models in this compilation, the number of nodes in a model varies between 4 and 128. From these 88 models,

we have compiled 2687 BFs pertaining to 2687 nodes that have number of inputs k ≥ 1 (Fig. 2(b)). The BFs assigned to each

node in these 88 models are the result of many authors manually identifying appropriate input-output relations during network

reconstruction. In other words, the 2687 BFs in the reference biological dataset were chosen during model reconstruction process

such as to capture the known regulatory information. This reference dataset of 2687 BFs is available via the GitHub repository:

https://github.com/asamallab/MCBF.

6. Statistical Tests

Enrichments and relative enrichments

Consider a given type of BF (say unate with k inputs) which we refer to as T . Denote by f0 the fraction of functions that are of

type T in the random ensemble and by f1 the corresponding fraction in our reference biological dataset. The enrichment ratio E

is simply f1/f0. If E > 1, then T is enriched while if E < 1 T is depleted. If E = 1, there is neither enrichment nor depletion.

In our study we are also interested in relative enrichments to probe for possible causes of enrichments. For that we consider

a type T and one of its sub-types, say Ts. For instance in our comparison of the two measures of complexity we examined

the case where T=RoF and Ts=NCF. In direct analogy with what was done for enrichments, we define the relative enrichment

ER = (fs,1/f1)/(fs,0/f0) where the subscript s refers to type Ts. If biological enrichment is driven solely by the property of being

in T , then the relative enrichment is expected to be close to 1. As a consequence, if ER is large, then there must be other factors

than “belonging to T” driving this relative enrichment.

Associated p-values

We developed a first statistical test to determine whether an observed enrichment E was statistically significant. The underlying

statistical distribution of the random variable E is obtained by formalizing an underlying hypothesis referred to as H0. Here H0

corresponds to hypothesizing that the functions in the reference biological dataset are drawn from the random ensemble where all

22k

BFs with k inputs are equiprobable. The (right-sided) p-value is then just the probability that such a drawing leads to a value

of E as large as the one actually observed. This probability is computed as follows. The fraction f0 is first determined (see Table

S2). Then we consider drawing M BFs from the random ensemble and count the number m of these functions that belong to type

T (M is the number of BFs in the reference biological dataset). The probability of having a given value m is given by the binomial

distribution:
(M
m

)
fm
0 (1− f0)

M−m. The desired p-value is then just the sum of all such probabilities under the condition that m is

larger or equal to Mf1. This sum is computed numerically.

The second type of test we perform concerns the statistical significance of a relative enrichment ER deviating from 1. Again

we formalize this by introducing an H0 hypothesis. Using the notation of the previous subsection, H0 corresponds to assuming

that although there is a selection for T (as evident from a large value of E), the elements that are drawn within T have a uniform

probability, that is members of Ts are not more probable than the other elements of T . Consider then drawing a sample of size M

under H0. If it leads to MT elements in T as in the reference biological dataset, the distribution of the number of elements in Ts is

known. Specifically, the probability to have m elements in Ts is
(MT

m

)
fm
0 (1− f0)

MT −m where now f0 is the ratio of sizes of Ts and

T (see Table S2). The desired p-value is then just the sum of all such probabilities under the condition that m is larger or equal

to the number of Ts elements in the reference biological dataset. Again, this sum is computed numerically.

The number of functions belonging to a particular type of BF was obtained from both computation and theory. The number of

CFs for k = 6, 7, 8 and NCFs for k = 7, 8 were obtained from [23] and [24]. In certain cases (EFs and UFs having 6, 7 or 8 inputs),

it was computationally unfeasible to obtain the exact number of functions in these types and there was no data in the literature

as well, hence we used sampling to estimate the probability of a BF to belong to these types, for the specified number of inputs.

7. A“good set” having an even vertices has Boolean complexity strictly less than k

Claim: If an even number of vertices P having the output value 1 in the hypercube representation of a BF (in a k[P] set) forms a

“good set”, then its Boolean complexity is strictly less than k.

Proof : The arrangement of P 1s and 2k − P 0s on the k-cube in the case where P is even is almost the same as in a NCF, with

the exception that the vertices of the last 1-cube (composed of 2 vertex disjoint sets of 0-cubes) will have the same output values

bk. By direct computation, we have P =
∑k

i=1 bi2
k−i which is always even.

Now consider the construction of the DNF of a Boolean function (with bias P) defined by such a good set. Suppose that in the

recursive construction of the good set one begins by assigning 1s to the vertices of a j-cube (j < k). The first clause of the DNF

is then just the AND (product) of all the k − j literals involved to fill the vertices of that j-cube. If the next step of the recursive

construction of the good set consists in assigning 1s to a i-cube (i < j), the second clause of the DNF will be the product of all

k − i previous literals. We can thus iteratively construct the DNF for the BF represented by the given good set.

https://github.com/asamallab/MCBF

7

Since the vertices get filled by 0s or 1s hierarchically from a j-cube to j−1-cube, after filling the 1-cube, we are left with another

1-cube to be filled. When output values of the vertices of this last 1-cube are to be fixed, both vertices have to be set to the same

output value since P is even. Thus they will either contribute a clause with k − 1 variables to the DNF expression (if the output

values are set to 1) or they will not contribute any clause (if the output values are set to 0). Importantly, the variable which is

missing in this clause is not present in any of the other clauses, therefore making that BF ineffective in that input. In constructing

such a function, there will be at most k − 1 variables in the Boolean expression. This implies that the resulting function has a

Boolean complexity strictly less than k. See Fig. S7 for a visual proof of the above argument.

8. Average sensitivity of the network

The average sensitivity of the network is calculated by taking the mean of the average sensitivity over all nodes of the network.

To determine the consequences of using different types of BFs in a network, we keep its structure (list of inputs to each node) but

assign to each node a random function belonging to a particular type of BF (for example EF or CF), and compute the average

sensitivity of the resulting Boolean model. For each biological network and a particular type of BF, we repeat the above procedure

1000 times and store the sampled data points. We performed this for all 88 models in our reference biological dataset using a

broad range of BFs such as: EF, EUF, CF, ECF, NCF, RoF, non-NCF RoF. Finally, we plot the distribution for the obtained data

points as a violin plot (see Fig. 5 in main text). Note that for the biological case there are only 88 data points corresponding to

88 networks or models, whereas in all other cases there are 88000 data points, as we sample 1000 data points for each type of BF

per network. The computer programs to check the type of a BF and generate it is available at: https://github.com/asamallab/MCBF.

Outlined below is the procedure used to generate random k-input BFs in each of the types mentioned above.

Effective functions (EF)

Choose a random integer between 0 and 22k

and convert the integer to its binary vector representation and check if the resulting

BF is effective. If not, repeat the procedure till an EF is obtained.

Effective and unate functions (EUF)

Up to k = 6 inputs, all the UFs which are effective can be generated, hence a random choice from this list returns an EUF. If k > 6,

a random partition of k is generated such that each element of the partition is a number less than or equal to 6. In other words,

k = k1 + k2 + k3 + ... such that ki ≤ 6. A random EUF with k1 variables is generated and combined with a random EUF with

k2 variables by either an AND or OR logic function. This is repeated till all elements of the partition are covered. For example, if

k = 10, then an acceptable partition is (2, 5, 3) and the EUF which is generated is (EUF (2)⊙EUF (5))⊙EUF (3) where ⊙ is AND

or OR (which is also chosen randomly for each occurrence). Since generating the UFs with greater than 6 inputs is computationally

expensive, we resort to the heuristic algorithm provided above. The functions obtained using this heuristic may not give a uniform

distribution over all EUFs.

Canalyzing functions (CF)

We implement the algorithm provided in the software BoolNet [25] to generate random CFs. Generate a random integer between

0 and 22k

and convert it to a binary vector. This is a random BF. If the function is not canalzying, choose one of the k inputs

randomly and also choose a random canalyzing input value (0 or 1). Set the outputs corresponding those 2k−2 entries of the binary

vector to 0 or 1 (also chosen randomly). Thus the generated function is guaranteed to be canalyzing in at least one input.

Effective and Canalyzing functions (ECF)

Generate a CF based on the procedure given above and check if the resulting BF is effective. If not, repeat the procedure till an

EF is obtained.

Nested canalyzing functions (NCF)

We leverage the fact that for each bias, there is exactly one NCF upto isomorphisms. Hence, given k, randomly choose an odd bias

between 1 and 2k−1, say P . For bias P , the NCF is generated by setting the first P bits of the output binary vector to 1 and the

remaining 2k − P bits to 0. Note that since the average sensitivity is invariant under change of signs in the inputs, one can simply

calculate the average sensitivity of any of the isomorphic forms of a NCF with bias P .

Read-once functions (RoF)

Since all the representative RoFs can be generated for k ≤ 10, a RoF can be chosen randomly from such a list of representative

RoFs. In case k > 10, we partition k into two parts such that k = k1 +k2, where k1 ≤ 10 and k2 ≤ 10. A randomly chosen k1 input

RoF is then combined with a randomly chosen k2 input RoF by either an AND or OR operator which is also chosen randomly.

non-NCF Read-once functions (non-NCF RoF)

For k ≥ 4, generate a random RoF and check if it is a NCF. If so, repeat the procedure till a non-NCF RoF is generated. In case

a node has less than 4 inputs, random NCFs are assigned to them as there are no non-NCF RoF for k < 4.

https://github.com/asamallab/MCBF

8 Supplementary material

Estimating the overlap between the distributions of average sensitivities for various types of BFs and the

biological case

To estimate the extent of overlap between the distribution of network average sensitivities corresponding to a particular type of

BF and the biological case, we compute the fraction of data points (of the distribution of the BF we are interested in) which are

outliers when considering the biological distribution. The outlying regions are defined via the 5% of data points which fall on any

one side of the biological distribution (one-sided test) or 2.5% of data points on either side (two-sided test) of the distribution.

Note that if at the 2.5% (or 5%) threshold we get an average sensitivity value for which there are multiple data points, then it may

be that only some of these data points may fall in that 2.5%. If so, then that value of average sensitivity is assigned a probability

equal to the number of occurrences in the outlier divided by the total number of data points having that average sensitivity (in

the biological distribution). Thus when counting the number of data points (in the distribution of some type of BF) falling in the

outliers of the biological distribution, only a fraction (equal to the probability) of those data points having the threshold value of

average sensitivity are counted as outliers. It is clear that the larger the fraction of data points that are outlier to the biological

distribution, the more distant that distribution is from the biological case. From the data in Table S10 for the two-sided test, we

can arrange various BFs based on their increasing proximity to the biological distribution in the following manner: EF < ECF <

EUF < CF < non-NCF RoF < RoF < NCF.

9. Results from the repeat analyses after discarding the ineffective inputs to BFs in the reference biological
dataset

In our reference biological dataset of 2687 BFs from 88 models, there are 63 ineffective BFs (see Table S6). Such ineffective BFs in

the reference dataset are likely reconstruction errors in the model, and a possible way to mitigate any influence of these ineffective

functions on the results from our analyses is by considering the truncated BF without the ineffective inputs. That is, for all of the

63 ineffective BFs in the reference dataset, we discard the ineffective inputs and consider the corresponding truncated effective BF.

For instance, if a k-input BF has j ineffective inputs (where k > j), then the effective number of inputs in the BF is keff = k− j,

which is also equal to the number of inputs in the truncated EF.

To confirm that the conclusions of this study are not affected by these ineffective BFs, we repeated our analyses (including

relative abundance of biologically meaningful BFs and associated statistical tests, and distributions of network average sensitivities

for the 88 models) by considering a modified reference biological dataset of 2687 BFs wherein each of the 63 ineffective BFs are

replaced by their corresponding truncated EFs (see Fig. S8(a), Table S11). These results are reported in Figs. S8 and S9, and

Tables S11, S12, S13, S14, S15, S16 and S17. From these additional figures and tables in the supplementary material, it is evident

that all the conclusions we reach using the 2687 BFs (including the ineffective functions) in the reference biological dataset, remain

unchanged when ineffective functions are replaced by their corresponding truncated EFs with keff effective inputs in the modified

dataset.

9

SUPPLEMENTARY FIGURES

(a)

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

(b) (c)Ordered
binary
vector

Boolean Expression

Boolean Hypercube

x
1
x

2 x
3x4

+ + + + ++

+

f (x) =

f (x) =
Factorized form

Full Disjunctive Normal Form (DNF) f (x)

0

1

0 0

0 0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0 0 0

1

0 0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

x
4

x
3 x

2
x

1

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Truth Table

(d)

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

x
1

x
2

x
3

x
4

x
1

x
2

x
3

x
4 x

1
x

2
x

3
x

4
x

1
x

2
x

3
x

4
x

1
x

2
x

3
x

4 x
1

x
2

x
3

x
4

x1x2x3x4

Vertex labeling
convention

1 1 1

x
1

x
2

x
3

x
4

0

Fig. S1. Illustration of four different representations of Boolean functions (BFs) using an example. (a) Truth table. (b) Ordered binary

vector, which is the output column of the truth table, but now taken as a k-dimensional vector. (c) Boolean expression. Multiple types of Boolean

expressions are possible. We have shown for illustration the BF in the truth table in its Full Disjunctive Normal Form (DNF) and it’s minimum equivalent

expression. In the Full DNF, each row of the truth table whose output value is 1 is represented as a product of k literals, each one corresponding to

one input bit. If an input bit is 0, it is represented by a negated literal, otherwise, by a positive one. (d) Colored Boolean Hypercube. Each vertex

corresponds to one row of the truth table. The position of the vertex is defined by the inputs and the color of the vertex by the output corresponding

to that input. The color blue is used for the output value “0” and the color red for the output value “1”. The edges between any two blue (0s) vertices

constitute E00 while the edges between any two red (1s) vertices constitute E11. The edges between a blue (0) vertex and a red (1) vertex constitute

E01.

10 Supplementary material

Number of Inputs (k)
1 2 3 4 5

N
um

be
r o

f F
un

ct
io

ns

101

103

105

107

109

1011

EF
UF

CF
NCF

RoF All BF

Fig. S2. The number of Boolean functions (BFs) for each biologically meaningful type, at a given number of inputs k ≤ 5. Here, EF corresponds to

effective functions, UF to unate functions (all sign combinations), CF to canalyzing functions, NCF to nested canalyzing functions, RoF to read-once

functions, and “All BF” to all 22k

possible functions with k inputs.

+

+
+xσ(1)

xσ(2)

xσ(3)

f

xσ(1)

xσ(2)

xσ(3)

f

- -

+
+xσ(1)

xσ(2)

xσ(3)

f

+

--

-

xσ(1)

xσ(2)

xσ(3)

f -

Fig. S3. Schematic figure depicting the four possible sign combinations for the k = 3 inputs to a node (gene) f . Each input or regulatory interaction to

the node f can be an activator or inhibitor which are shown as ‘+’ or ‘-’, respectively. The 3 inputs to the node f are labeled by variables xσ(1), xσ(2)

or xσ(3), without repetition of any label. σ is the permutation of the set {1, 2, 3}, and σ(i) represents the ith element of a given permutation.

11

1 3 5 7

N
um

be
r o

f F
un

ct
io

ns

0

50

10
0

15
0

20
0

16

96

19
2

11
2

k = 4

1 3 5 7 9 11 13 15
0

50
0

10
00

15
00

20
00

25
00

32

32
0

96
0

80
0

11
20

22
40

96
0 11

20

k = 5

64

96
0

38
40

41
60

67
20

15
36

0

57
60

13
12

0

13
44

0

12
48

0

29
76

0

13
44

0

21
12

0

16
32

0

76
80

11
90

4

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

Bias
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

k = 6

12
8 26
88

13
44

0
17

92
0

31
36

0
80

64
0

26
88

0
94

08
0

94
08

0
94

08
0

22
84

80
98

56
0

22
84

80
14

78
40

80
64

0
16

39
68 19

35
36

15
05

28
25

53
60 29

56
80

21
50

40
41

66
40

26
88

00
26

88
00

19
71

20 22
84

80
29

56
80

25
53

60
13

88
80

14
78

40
13

44
0

27
41

76

N
um

be
r o

f F
un

ct
io

ns

0 1 7 13 19 25 31 37 43 49 55 61

k = 7

3×
10

5
3.5

×1
05

4x
10

5
4.5

x1
05

2.5
×1

05

2×
10

5

1.5
×1

05

1×
10

5

5×
10

4

(a) (b)

(c) (d)

25
6

71
68

43
00

8
68

09
6

12
54

40
35

84
00

10
75

20 51
96

80
50

17
60

53
76

00
13

26
08

0
57

34
40

16
48

64
0

96
76

80
57

34
40

13
13

53
6

17
63

32
8

15
48

28
8 22

57
92

0
23

79
77

6
19

35
36

0
33

33
12

0
29

74
72

0
27

95
52

0
17

65
12

0
30

10
56

0
31

53
92

0 37
63

20
0

18
63

68
0

19
35

36
0

21
50

40
47

55
96

8
43

86
81

6
65

22
88

23
65

44
0

22
22

08
0

41
93

28
0

60
21

12
0

44
44

16
0

35
84

00
0

50
44

48
0

43
00

80
0

41
93

28
0 47
30

88
0 53

76
00

0
36

98
68

8
48

88
57

6
43

43
80

8
28

38
52

8
24

08
44

8
43

00
80

0 50
71

36
0

36
55

68
0

38
34

88
0

37
63

20
0

27
95

52
0 34

40
64

0
37

63
20

0
10

03
52

0
42

82
88

0
21

50
40

0
11

18
20

8
33

35
16

8

86
37

44
0

N
um

be
r o

f F
un

ct
io

ns

0

9×
10

6

8×
10

6

7×
10

6

6×
10

6

5×
10

6

4×
10

6

3×
10

6

2×
10

6

1×
10

6

Bias

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129

k = 8

Bias

(e)

non-NCF RoF NCF

Fig. S4. Frequency distribution of read-once functions (RoFs) across different bias P for functions with (a) k = 4, (b) k = 5, (c) k = 6, (d) k = 7, and

(e) k = 8 inputs. For each bar, we display the number of RoFs with that bias value. The figure also gives the frequency distribution of nested canalyzing

functions (NCFs), which are a subset of RoFs. Due to the complementarity property of Boolean functions, the distribution is symmetric about the bias

value 2k−1 for a given k, and therefore, we display only the first half of the distribution, from 0 to 2k−1 in each case.

12 Supplementary material

Start

Input truth
table

If BF
has odd

bias

If BF
is NCF

Calculate the average
sensitivity of the BF

If value is
present in the

catalog
Print “not a RoF”

Select RoFs with the same bias and
average sensitivity and generate

their list of isomorphisms

False

True

False

True

False

True

FalseTrue If BF is
present
in list

Stop

Print “non-NCF RoF”

If BF
is UF

True

False

Print “NCF”

Fig. S5. Flowchat describing our program to check whether a Boolean function (BF) with k ≤ 10 inputs entered by an user, is a read-once function

(RoF). The program can also distinguish between a nested canalyzing function (NCF) and a ‘non-NCF RoF’.

13

x
4 (...) x

3
x

4 ((...))

C1

3

C2
3 C2

2

C1
2

NCF:

GS: Since 22 < 5 < 23 , color in red the 22 vertices of C2.
2

5 - 21 (=1) vertex remains.

NCF:(a) (b)

x
3

x
4 ((x

2
(x

1
)))) NCF: NCF:(c)(d)

k = 4, P = 5 (decimal) = 0101 (binary)

x
3x

4 (((...))) x
2

0 1 0 1

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

: 1/GS vertex : Undefined/GS vertex : GS sequence: NCF sequenceGS: Good setNCF: Nested Canalyzing Function : 0/GS vertex

GS: Color in red a vertex of C2 (in this case vertex 0010)

0 1 0 1

0 1 0 1

0 1 0 1

C1
C2

00

2

Fig. S6. ‘Good set’ (GS) for P vertices where P is odd on a k-dimensional hypercube is equivalent to a Nested Canalyzing Function

(NCF) in that k[P] set. In parts (b) and (d) shaded in grey, we show the recursive construction of a GS for P = 5 vertices in a 4-dimensional

hypercube by coloring it’s vertices red, and in parts (a), (b), (c) and (d), we show the equivalence of that GS of 5 vertices to a NCF with bias 5. The

vertices of the hypercube are labeled in the order x4, x3, x2, x1 wherein xi is 0 or 1. Here, Cj
1 and Cj

2 denote the two vertex disjoint j-dimensional

hypercubes of the (j + 1)-dimensional hypercube. The ‘active’ bit in each part (a), (b), (c) and (d) is the colored bit in the binary representation of 5

in that part. (a) The vertices with x4 = 1 are canalyzed to the output value 0. The active bit in this step is 0 and as a result the ∧ operator follows

the literal x4. (b) Since P = 5 lies between 22 and 23, 22 vertices of either C2
1 or C2

2 (here, C2
2) form part of the GS. This leaves 5 − 4 = 1 vertex to

be colored red to complete the GS. This choice of 4 vertices in C2
2 for the GS leads to the canalyzation of vertices labeled x4 = 0 and x3 = 1 to the

output value 1. The active bit in this step is 1 and as a result the ∨ operator follows the literal x3. (c) The vertices with x4 = 0, x3 = 0 and x2 = 0 are

canalyzed to the output value 0. The active bit in this step is 0 and as a result the ∧ operator follows the literal x2. (d) For the last step, any vertex

in C2
1 can be colored to complete the 5 vertices in GS, and we color the vertex 0010. The vertex with x4 = 0, x3 = 0, x2 = 1 and x1 = 0 is canalyzed

to the output value 1, and the one remaining vertex is set to output value 0.

14 Supplementary material

x
4 (...)

C1

3

C2
3

(a)

x
3

x
4 ((x

2))Ineffective BF:(d)

0 1 1 0

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

0 1 1 0

Ineffective BF: x
3

x
4 ((...))

C2
2

C1
2

(b)

(c) x
3

x
4 (((...))) x

2

0 1 1 0

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

0 1 1 0

Ineffective BF:

GS: Since 22 < 6 < 23 , color in red the 22 vertices of C2 .
2

6 - 22 (=2) vertices remain.

GS: Since 20 < 2 < 21, color in red the vertices of C1.
1

Ineffective BF:

: 1/GS vertex : Undefined/GS vertex : GS sequence: Ineffective BF sequenceGS: Good setBF: Boolean Function : 0/GS vertex

C1
1

C2
1

This completes a good set of 6 vertices.

k = 4, P = 6 (decimal) = 0110 (binary)

Fig. S7. ‘Good set’ (GS) for P vertices where P is even on a k-dimensional hypercube is equivalent to an ineffective Boolean Function

(BF) in that k[P] set. In parts (b) and (c) shaded in grey, we show the recursive construction of a GS for P = 6 vertices in a 4-dimensional hypercube

by coloring it’s vertices red, and in parts (a), (b), (c) and (d), we show the equivalence of that GS with 6 vertices to an ineffective BF with bias 6.

The vertices of the hypercube are labeled in the order x4, x3, x2, x1 wherein xi is 0 or 1. Here, Cj
1 and Cj

2 denote the two vertex disjoint j-dimensional

hypercubes of the (j + 1)-dimensional hypercube. The ‘active’ bit in each part (a), (b), (c) and (d) is the colored bit in the binary representation of 6

in that part. (a) The vertices with x4 = 1 are set to the output value 0. The active bit in this step is 0 and as a result the ∧ operator follows the literal

x4. (b) Since P = 6 lies between 22 and 23, 22 vertices of either C2
1 or C2

2 (here, C2
2) form part of the GS. This leaves 6 − 4 = 2 vertices to be colored

to complete the GS. This choice of 4 vertices in C2
2 for the GS leads to setting the output value of vertices labeled x4 = 0 and x3 = 1 to 1. The active

bit in this step is 1 and as a result the ∨ operator follows the literal x3. (c) Since the remaining 2 vertices lies between 21 and 22, 21 vertices of either

C1
1 or C1

2 (here, C1
1) form part of the GS. This completes the GS of 6 vertices. This choice of 2 vertices in C1

1 for the GS leads to setting the output

value of vertices labeled x4 = 0, x3 = 0, and x2 = 1 to 1. The active bit in this step is 1 and as a result the ∨ operator follows the literal x2. (d) Since

the two remaining undefined vertices take the same value 0, the variable x1 does not appear in the expression of the BF. Thus, the BF corresponding

to GS with 6 vertices is ineffective.

15

1 2 3 4 5 6 7 8

Fr
ac

tio
n

of
 F

un
ct

io
ns

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0
RoF

1 2 3 4 5 6 7 8

Fr
ac

tio
n

of
 F

un
ct

io
ns

0.0

0.2

0.4

0.6

0.8

1.0

NCF

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0
non-NCF RoF

1 2 3 4 5 6 7 8
0.00

0.04

0.08

0.12

0.16

0.20

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0
EF UF

CF

Fr
ac

tio
n

of
 F

un
ct

io
ns

Number of effective inputs (keff)

Number of effective inputs (keff)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
um

be
r o

f f
un

ct
io

ns

0

200

400

600

800

1000

Odd bias
Even bias

953
0

689
0

388
14

256
3

143
12

90
9

44
5

37
8

9 10 11 12 13 14
0

5

10

15

20

25

16
3

10
2

1
0 2

1

1
0

0
0

: Exact computations of the fraction of any type among all BFs

: Estimate by sampling of the fraction of any type among all BFs

Histogram : Fraction of any type among all BFs in the reference
 biological data

: p-value < 0.0001*** ns : not significant

(a) (b)

*** ***

Number of effective inputs (keff)

Fig. S8. (a) The in-degree distribution for nodes in the modified reference biological dataset after discarding the ineffective inputs in ineffective

functions. Here, keff is the number of effective inputs after stripping a BF of its ineffective inputs. (b) The plots show the abundance and statistical

significance of the biologically meaningful BFs for keff ≤ 8 in the modified dataset. The dot symbols which appear to coincide with the x-axis are

very small non-zero numbers (except for non-NCF RoFs with k = 1, 2, 3). We do not show the p-values of the EF case since checking its statistical

significance is not meaningful as all BFs are forced to be effective in the modified dataset. The raw data associated with these plots along with results

from the statistical test for over-representation are included in Tables S11, S12 and S13.

16 Supplementary material

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

EF EUF CF ECF NCF RoF non−NCF RoF Biological

Type of BF

Av
er

ag
e

Se
ns

iti
vi

ty

Fig. S9. Distribution of the network average sensitivity when using the list of (effective) inputs from biological models but enforcing different types of

BFs to the nodes, namely effective functions (EF), effective and unate functions (EUF), canalyzing functions (CF), effective and canalyzing functions

(ECF), nested canalyzing functions (NCF), read-once functions (RoF) and non-NCF RoFs. For this computation, we start with the modified reference

biological dataset wherein all ineffective inputs to nodes are discarded in each of the 88 networks or models. The right-most case is the distribution

when using the actual BFs in the biological models. This plot has been generated by keeping the maximum width of each of the ‘violins’ fixed.

17

SUPPLEMENTARY TABLES

Table S1. The number of Boolean functions (BFs) belonging to the different types, at a given number of inputs k ≤ 5. Here, EF corresponds

to effective functions, UF to unate functions (all sign combinations), CF to canalyzing functions, EUF to effective and unate functions,

ECF to effective and canalyzing functions, UCF to unate and canalyzing functions, EUCF to effective, unate and canalyzing functions. In

addition, the table lists the total number of BFs for each k.

k
Types of BFs

All EF UF CF EUF ECF UCF EUCF

1 4 2 4 4 2 2 4 2

2 16 10 14 14 8 8 14 8

3 256 218 104 120 72 88 96 64

4 65536 64594 2170 3514 1824 3104 1178 864

5 4294967296 4294642034 230540 1292276 220608 1275784 36796 31744

Table S2. The fraction of Boolean functions (BFs) belonging to the different types, at a given number of inputs k ≤ 5. Here, EF corresponds

to effective functions, UF to unate functions (all sign combinations), CF to canalyzing functions, EUF to effective and unate functions, ECF

to effective and canalyzing functions, UCF to unate and canalyzing functions, EUCF to effective, unate and canalyzing functions.

k
Types of BFs

EF UF CF EUF ECF UCF EUCF

1 0.500 1.000 1.000 0.500 0.500 1.000 0.500

2 0.625 0.875 0.875 0.500 0.500 0.875 0.500

3 0.852 0.406 0.469 0.281 0.344 0.375 0.250

4 0.986 0.033 0.054 0.028 0.047 0.018 0.013

5 1.000 5.37× 10−5 3.01× 10−4 5.14× 10−5 2.97× 10−4 8.57× 10−6 7.39× 10−6

18 Supplementary material

T
a
b
le

S
3
.
P
a
ri
ty

d
is
tr
ib
u
ti
o
n

o
f
b
io
lo
g
ic
a
ll
y

m
e
a
n
in
g
fu
l
ty

p
e
s
o
f
B
o
o
le
a
n

fu
n
c
ti
o
n
s
(B

F
s)

fo
r
a

g
iv
e
n

n
u
m
b
e
r
o
f
in
p
u
ts

k
.
T
h
e
fr
a
c
ti
o
n

o
f
e
v
e
n

p
a
ri
ty

fu
n
c
ti
o
n
s
o
f
a

p
a
rt
ic
u
la
r
ty

p
e
o
f
B
F

is

c
a
lc
u
la
te
d
w
it
h
re
sp

e
c
t
to

th
e
to

ta
l
n
u
m
b
e
r
o
f
fu
n
c
ti
o
n
s
o
f
th

a
t
B
F

ty
p
e
.
H
e
re
,
E
F

c
o
rr
e
sp

o
n
d
s
to

e
ff
e
c
ti
v
e
fu
n
c
ti
o
n
s,

U
F

to
u
n
a
te

fu
n
c
ti
o
n
s
(a

ll
si
g
n
c
o
m
b
in
a
ti
o
n
s)
,
C
F

to
c
a
n
a
ly
z
in
g
fu
n
c
ti
o
n
s,

E
U
F

to
e
ff
e
c
ti
v
e
a
n
d

u
n
a
te

fu
n
c
ti
o
n
s,

E
C
F

to
e
ff
e
c
ti
v
e
a
n
d

c
a
n
a
ly
z
in
g
fu
n
c
ti
o
n
s,

U
C
F

to
u
n
a
te

a
n
d

c
a
n
a
ly
z
in
g
fu
n
c
ti
o
n
s,

E
U
C
F

to
e
ff
e
c
ti
v
e
,
u
n
a
te

a
n
d

c
a
n
a
ly
z
in
g
fu
n
c
ti
o
n
s.

N
o
te

th
a
t
e
n
tr
ie
s

la
b
e
le
d

‘-
’
a
re

th
o
se

w
h
ic
h

c
o
u
ld

n
o
t
b
e
c
o
m
p
u
te
d

d
u
e
to

in
a
d
e
q
u
a
te

c
o
m
p
u
ta

ti
o
n
a
l
re
so

u
rc
e
s.

k
N

u
m

b
e
r
o
f
e
v
e
n

p
a
r
it
y

fu
n
c
t
io

n
s

F
r
a
c
t
io

n
o
f
e
v
e
n

p
a
r
it
y

fu
n
c
t
io

n
s

A
ll

E
F

U
F

C
F

E
U
F

E
C
F

U
C
F

E
U
C
F

A
ll

E
F

U
F

C
F

E
U
F

E
C
F

U
C
F

E
U
C
F

1
2

0
2

2
0

0
2

0
0
.5

0
0
.5

0
.5

0
0

0
.5

0

2
8

2
6

6
0

0
6

0
0
.5

0
.2

0
.4
2
9

0
.4
2
9

0
0

0
.4
2
9

0

3
1
2
8

9
0

4
0

5
6

8
2
4

3
2

0
0
.5

0
.4
1
3

0
.3
8
5

0
.4
6
7

0
.1
1
1

0
.2
7
3

0
.3
3
3

0

4
3
2
7
6
8

3
1
8
2
6

9
2
2

1
7
5
4

5
7
6

1
3
4
4

4
4
2

1
2
8

0
.5

0
.4
9
3

0
.4
2
5

0
.4
9
9

0
.3
1
6

0
.4
3
3

0
.3
7
5

0
.1
4
8

5
2
1
4
7
4
8
3
6
4
8

−
1
1
0
3
4
8

6
4
6
1
3
2

1
0
0
4
1
6

6
2
9
6
4
0

1
5
9
3
2

1
0
8
8
0

0
.5

−
0
.4
7
9

0
.5

0
.4
5
5

0
.4
9
4

0
.4
3
3

0
.3
4
3

19

Table S4. The number of effective and unate functions (EUFs) at a given number of inputs k ≤ 5 for different combinations of activators

and inhibitors. The table also gives the fraction of EUFs that have even bias for different sign combinations. These numbers have been

obtained via exhaustive computational enumeration of EUFs.

k
Activators Inhibitors EUFs

Total Even bias Fraction with Even

bias

1 1 0 1 0 0

0 1 1 0 0

2 2 0 2 0 0

1 1 4 0 0

0 2 2 0 0

3 3 0 9 1 0.111

2 1 27 3 0.111

1 2 27 3 0.111

0 3 9 1 0.111

4 4 0 114 36 0.316

3 1 456 144 0.316

2 2 684 216 0.316

1 3 456 144 0.316

0 4 114 36 0.316

5 5 0 6894 3138 0.455

4 1 34470 15690 0.455

3 2 68940 31380 0.455

2 3 68940 31380 0.455

1 4 34470 15690 0.455

0 5 6894 3138 0.455

Table S5. The number of Nested Canalyzing functions (NCFs) and Read-once functions (RoFs), and their fraction among all Boolean

functions (BFs) for a given number of inputs k. In addition, the table lists the fraction of NCFs among RoFs for a given number of inputs

k.

k
Number of Fraction of Fraction of NCFs among

RoFsNCFs RoFs NCFs RoFs

1 2 2 0.500 0.500 1.000

2 8 8 0.500 0.500 1.000

3 64 64 0.250 0.250 1.000

4 736 832 0.011 0.013 0.885

5 10624 15104 2.47× 10−6 3.52× 10−6 0.703

6 183936 352256 9.97× 10−15 1.91× 10−14 0.522

7 3715072 10037248 1.09× 10−32 2.95× 10−32 0.370

8 85755372 337936384 7.41× 10−70 2.92× 10−69 0.254

9 2226939904 13126565888 1.66× 10−145 9.79× 10−145 0.170

10 64255903744 577818263552 3.57× 10−298 3.21× 10−297 0.111

20 Supplementary material

Table S6. Number of different types of biologically meaningful Boolean functions (BFs) in the reference biological dataset. Here, k is the

number of inputs, ‘All’ is the total number of BFs for a given number of inputs, EF corresponds to effective functions, UF to unate functions

(all sign combinations), CF to canalyzing functions, EUF to effective and unate functions, ECF to effective and canalyzing functions, UCF

to unate and canalyzing functions, EUCF to effective, unate and canalyzing functions, NCF to Nested Canalyzing functions and RoF to

Read-once functions.

k
Types of BFs

All EF UF CF EUF ECF UCF EUCF NCF RoF

1 934 934 934 934 934 934 934 934 934 934

2 687 671 687 687 671 671 687 671 671 671

3 412 392 411 398 391 378 398 378 378 378

4 258 251 257 239 250 232 239 232 230 244

5 156 149 153 136 146 129 135 128 120 133

6 107 98 107 93 98 85 93 85 67 83

7 51 48 50 49 47 46 48 45 34 41

8 45 45 43 40 43 40 38 38 27 34

9 19 19 18 17 18 17 17 17 7 16

10 13 12 13 11 12 10 11 10 3 6

11 1 1 1 1 1 1 1 1 0 0

12 3 3 3 3 3 3 3 3 2 2

13 0 0 0 0 0 0 0 0 0 0

14 1 1 1 1 1 1 1 1 1 1

Table S7. Fraction of different types of biologically meaningful Boolean functions (BFs) in the reference biological dataset. Here, k is the

number of inputs, EF corresponds to effective functions, UF to unate functions (all sign combinations), CF to canalyzing functions, EUF to

effective and unate functions, ECF to effective and canalyzing functions, UCF to unate and canalyzing functions, EUCF to effective, unate

and canalyzing functions, NCF to Nested Canalyzing functions and RoF to Read-once functions.

k
Types of BFs

EF UF CF EUF ECF UCF EUCF NCF RoF

1 1 1 1 1 1 1 1 1 1

2 0.977 1 1 0.977 0.977 1 0.977 0.977 0.977

3 0.951 0.998 0.966 0.949 0.917 0.966 0.917 0.917 0.917

4 0.973 0.996 0.926 0.969 0.899 0.926 0.899 0.891 0.946

5 0.955 0.981 0.872 0.936 0.827 0.865 0.821 0.769 0.853

6 0.916 1 0.869 0.916 0.794 0.869 0.794 0.626 0.776

7 0.941 0.980 0.961 0.922 0.902 0.941 0.882 0.667 0.804

8 1 0.956 0.889 0.956 0.889 0.844 0.844 0.6 0.756

9 1 0.947 0.895 0.947 0.895 0.895 0.895 0.368 0.842

10 0.923 1 0.846 0.923 0.769 0.846 0.769 0.231 0.462

11 1 1 1 1 1 1 1 0 0

12 1 1 1 1 1 1 1 0.667 0.667

13 - - - - - - - - -

14 1 1 1 1 1 1 1 1 1

21

Table S8. p-value tests for statistical enrichments of the different types of Boolean functions (BFs) in the reference biological dataset. A

low p-value indicates that the corresponding type of BF is enriched in the reference biological dataset when compared to the ensemble of all

BFs. For k > 2 when the p-value shown is 0, it was smaller than what we could measure, and when the p-value shown is 1, its deviation

from 1 was smaller than we could measure. Here, EF corresponds to effective functions, UF to unate functions (all sign combinations), CF

to canalyzing functions, NCF to Nested Canalyzing functions and RoF to Read-once functions.

k Odd bias EF UF CF NCF RoF

2 3.742× 10−177 6.75× 10−114 0 0 3.74× 10−177 3.74× 10−177

3 6.253× 10−76 2.44× 10−11 6.65× 10−162 1.83× 10−111 3.09× 10−184 3.09× 10−184

4 2.714× 10−62 0.919 0 8.86× 10−279 0 0

5 2.718× 10−25 1 0 0 0 0

6 1.753× 10−13 1 0 0 0 0

7 6.058× 10−08 1 0 0 0 0

8 1.561× 10−06 1 0 0 0 0

Table S9. The relative enrichment ratios ER for the RoFs and NCFs in the ensemble of odd bias BFs, EFs and UFs. These ratios indicate

the extent of the over-representation of such functions in the reference biological dataset. ER > 1 suggests that there is indeed an enrichment

of RoFs and NCFs within the EFs, UFs and CFs in the reference biological dataset when compared to that expected in the ensemble of all

EFs, UFs and CFs.

k
ER for RoF in: ER for NCF in:

Odd bias EF UF Odd bias EF UF

1 1 1 2 1 1 2

2 1.0 1.25 1.75 1.0 1.25 1.75

3 2.0 3.284 1.567 2.0 3.284 1.567

4 38.770 75.483 2.536 41.279 80.367 2.700

5 1.37× 105 2.54× 105 13.633 1.76× 105 3.25× 105 17.47

Table S10. The percentage of data points that fall outside the 95% confidence interval of the biological case in the distribution of network

average sensitivities when using the list of inputs from biological models but enforcing different types of BFs to the nodes, namely effective

functions (EF), effective and unate functions (EUF), canalyzing functions (CF), effective and canalyzing functions (ECF), nested canalyzing

functions (NCF), read-once functions (RoF) and non-NCF RoFs, The distribution of network avererage sensitivities is shown in Fig. 5 and

data for both one-sided tests and two-sided tests are provided here.

Type of BF One-sided (upper 5%) One-sided (lower 5%) Two-sided (2.5% on either side)

EF 92.61 0.0 87.27

EUF 39.35 0.0 30.69

CF 20.38 16.61 26.75

ECF 43.13 0.0 35.05

NCF 0.75 0.0 0.04

RoF 5.92 0.0 2.29

non-NCF RoF 32.4 0.0 22.4

22 Supplementary material

Table S11. Number of different types of biologically meaningful BFs in the modified reference biological dataset. Here, keff is the number

of effective inputs after stripping a BF of its ineffective inputs. ‘All’ is the total number of BFs for a given number of effective inputs, EF

corresponds to effective functions, UF to unate functions (all sign combinations), CF to canalyzing functions, EUF to effective and unate

functions, ECF to effective and canalyzing functions, UCF to unate and canalyzing functions, EUCF to effective, unate and canalyzing

functions, NCF to Nested Canalyzing functions and RoF to Read-once functions.

keff

Types of BFs

All EF UF CF EUF ECF UCF EUCF NCF RoF

1 953 953 953 953 953 953 953 953 953 953

2 689 689 689 689 689 689 689 689 689 689

3 402 402 401 388 401 388 388 388 388 388

4 259 259 258 240 258 240 240 240 238 252

5 155 155 152 134 152 134 133 133 125 138

6 99 99 99 86 99 86 86 86 67 84

7 49 49 48 47 48 47 46 46 35 42

8 45 45 43 40 43 40 38 38 27 34

9 19 19 18 17 18 17 17 17 7 16

10 12 12 12 10 12 10 10 10 3 6

11 1 1 1 1 1 1 1 1 0 0

12 3 3 3 3 3 3 3 3 2 2

14 1 1 1 1 1 1 1 1 1 1

Table S12. Fraction of different types of biologically meaningful BFs in the modified reference biological dataset. Here, keff is the number

of effective inputs after stripping a BF of its ineffective inputs. EF corresponds to effective functions, UF to unate functions (all sign

combinations), CF to canalyzing functions, EUF to effective and unate functions, ECF to effective and canalyzing functions, UCF to unate

and canalyzing functions, EUCF to effective, unate and canalyzing functions, NCF to Nested Canalyzing functions and RoF to Read-once

functions.

keff

Types of BFs

EF UF CF EUF ECF UCF EUCF NCF RoF

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

3 1 0.998 0.965 0.998 0.965 0.965 0.965 0.965 0.965

4 1 0.996 0.927 0.996 0.927 0.927 0.927 0.919 0.973

5 1 0.981 0.865 0.981 0.865 0.858 0.858 0.806 0.890

6 1 1 0.869 1 0.869 0.869 0.869 0.677 0.848

7 1 0.980 0.959 0.980 0.959 0.939 0.939 0.714 0.857

8 1 0.956 0.889 0.956 0.889 0.844 0.844 0.600 0.756

9 1 0.947 0.895 0.947 0.895 0.895 0.895 0.368 0.842

10 1 1 0.833 1 0.833 0.833 0.833 0.25 0.5

11 1 1 1 1 1 1 1 0 0

12 1 1 1 1 1 1 1 0.667 0.667

14 1 1 1 1 1 1 1 1 1

Table S13. p-value tests for statistical enrichments of the different types of BFs in the modified reference biological dataset. Here, keff is

the number of effective inputs after stripping a BF of its ineffective inputs. A low p-value indicates that the corresponding type of BF is

enriched in the modified reference biological dataset when compared to the ensemble of all BFs. For keff > 2 when the p-value shown is 0,

it was smaller than what we could measure, and when the p-value shown is 1, its deviation from 1 was smaller than we could measure. Here,

EF corresponds to effective functions, UF to unate functions (all sign combinations), CF to canalyzing functions, NCF to Nested Canalyzing

functions and RoF to Read-once functions.

keff Odd bias UF CF NCF RoF

2 0 0 0 0 0

3 9.46× 10−98 5.43× 10−158 2.59× 10−108 1.43× 10−212 1.43× 10−212

4 3.63× 10−74 0 5.10× 10−280 0 0

5 5.12× 10−31 0 0 0 0

6 2.95× 10−19 0 0 0 0

7 4.11× 10−10 0 0 0 0

8 1.56× 10−6 0 0 0 0

23

Table S14. Fractions of functions that are RoFs, non-NCF RoFs or NCFs, in the space of all 22
keff

BFs (f0) or in the modified reference

biological dataset (f1). E(= f1/f0) is the enrichment ratio; it indicates the extent of the over-representation of such functions in the modified

reference dataset. Over-representation is highest for NCFs but clearly non-NCF RoFs are also highly over-represented. Computations are

reported for functions with keff ≤ 8 inputs.

keff
RoF non-NCF RoF NCF

f0 f1 E f0 f1 E f0 f1 E

1 0.5 1.0 2.0 0 0 - 0.5 1.0 2.0

2 0.5 1.0 2.0 0.0 0.0 - 0.5 1.0 2.0

3 0.25 1.0 4.0 0.0 0.0 - 0.25 1.0 4.0

4 0.0127 0.965 76.012 0.001 0.0 0.0 0.011 0.965 85.927

5 3.517× 10−06 0.973 2.77× 105 1.04× 10−06 0.054 5.18× 104 2.47× 10−06 0.919 3.71× 105

6 1.909× 10−14 0.89 4.66× 1013 9.12× 10−15 0.084 9.21× 1012 9.97× 10−15 0.806 8.08× 1013

7 2.950× 10−32 0.848 2.87× 1031 1.86× 10−32 0.172 9.26× 1030 1.092× 10−32 0.677 6.20× 1031

8 2.918× 10−69 0.857 2.94× 1068 2.18× 10−69 0.143 6.57× 1067 7.404× 10−70 0.714 9.64× 1068

Table S15. The relative enrichment ratios ER for the RoFs and NCFs in the ensemble of odd bias BFs, EFs and UFs in the modified

dataset. Here, keff is the number of inputs after stripping a BF of its ineffective inputs. These enrichment ratios indicate the extent of the

over-representation of such functions in the modified reference biological dataset. ER > 1 suggests that there is indeed an enrichment of

RoFs and NCFs within the EFs, UFs and CFs in the modified reference biological dataset when compared to that expected in the ensemble

of all EFs, UFs and CFs.

keff
ER for RoF in: ER for NCF in:

Odd bias EF UF Odd bias EF UF

1 1.0 1.0 2 1.0 1.0 2

2 1.0 1.25 1.75 1.0 1.25 1.75

3 2.0 3.40625 1.625 2.0 3.40625 1.625

4 39.385 74.920 2.517 44.522 84.692 2.845

5 1.40× 105 2.77× 105 14.851 1.88× 105 3.71× 105 19.94

Table S16. The relative enrichment ratio ER of the NCFs in the CFs and RoFs in the modified dataset. fs,0/f0 denotes the fractions of

functions that are NCFs in the space of all CFs or RoFs and fs,1/f1, the equivalent fraction in the modified reference biological dataset.

Here, keff is the number of inputs after stripping a BF of its ineffective inputs. ER = (fs,1/f1)/(fs,0/f0) denotes the enrichment ratio and

it indicates the extent of the over-representation of such functions in the modified reference dataset. Computations are reported for BFs with

keff ≤ 8 inputs. The low p-values indicate that there is an enrichment of NCFs within the CFs and RoFs in the modified reference dataset

when compared to that expected in the ensemble of all CFs and RoFs.

keff
NCF in CF NCF in RoF

fs,0/f0 fs,1/f1 ER p-value fs,0/f0 fs,1/f1 ER p-value

2 0.571 1.0 1.75 0 1.0 1.0 1.0 0

3 0.533 1.0 1.875 0 1.0 1.0 1.0 0

4 0.209 1.0 4.774 1.04×10−160 0.885 1.0 1.130 3.87× 10−4

5 0.008 0.991 120.588 3.73×10−251 0.703 0.944 1.343 2.02× 10−9

6 1.78× 10−6 0.932 5.22× 105 0 0.522 0.906 1.734 4.06× 10−8

7 7.19× 10−15 0.779 1.08× 1014 0 0.370 0.798 2.157 1.04× 10−10

8 7.87× 10−33 0.744 9.45× 1031 0 0.254 0.833 3.283 5.26× 10−12

Table S17. The percentage of data points that fall outside the 95% confidence interval of the modified biological case in the distribution of

network average sensitivities when using the list of inputs from biological models but enforcing different types of BFs to the nodes, namely

effective functions (EF), effective and unate functions (EUF), canalyzing functions (CF), effective and canalyzing functions (ECF), nested

canalyzing functions (NCF), read-once functions (RoF) and non-NCF RoFs, The distribution of network avererage sensitivities is shown in

Fig. S9 and data for both one-sided tests and two-sided tests are provided here. From the data for the two-sided test, we can arrange various

BFs based on their increasing proximity to the biological distribution in the following manner: EF < ECF < EUF < CF < non-NCF RoF

< RoF < NCF.

Type of BF One-sided (upper 5%) One-sided (lower 5%) Two-sided (2.5% on either side)

EF 91.85 0.0 86.26

EUF 38.68 0.0 29.84

CF 19.7 17.31 26.72

ECF 42.5 0.0 34.51

NCF 0.75 0.01 0.05

RoF 5.53 0.0 2.06

non-NCF RoF 31.88 0.0 22.05

24 Supplementary material

References

1. S. A. Kauffman. The origins of order: self-organization and selection in evolution. Oxford University Press, New York, 1993.

2. M. Anthony. Discrete Mathematics of Neural Networks. Society for Industrial and Applied Mathematics, Philadelphia, 2001.

3. J. Aracena. Maximum Number of Fixed Points in Regulatory Boolean Networks. Bulletin of Mathematical Biology, 70(5):

1398, 2008.

4. C. Kadelka, J. Kuipers, and R. Laubenbacher. The influence of canalization on the robustness of Boolean networks. Physica

D: Nonlinear Phenomena, 353:39–47, 2017.

5. Z. Szallasi and S. Liang. Modeling the normal and neoplastic cell cycle with ‘realistic Boolean genetic networks’: Their

application for understanding carcinogenesis and assessing therapeutic strategies. In Pacific Symposium on Biocomputing,

volume 3, pages 66–76. Citeseer, 1998.

6. S. A. Kauffman, C. Peterson, B. Samuelsson, and C. Troein. Random Boolean network models and the yeast transcriptional

network. Proceedings of the National Academy of Sciences, 100(25):14796–14799, 2003.

7. S. Nikolajewa, M. Friedel, and T. Wilhelm. Boolean networks with biologically relevant rules show ordered behavior.

BioSystems, 90(1):40–47, 2007.

8. J. P. Hayes. The Fanout Structure of Switching Functions. Journal of the Association for Computing Machinery, 22(4):

551–571, 1975.

9. J. Feldman. Minimization of Boolean complexity in human concept learning. Nature, 407(6804):630–633, 2000.

10. T. Helikar, B. Kowal, S. McClenathan, M. Bruckner, T. Rowley, A. Madrahimov, B. Wicks, M. Shrestha, K. Limbu, and J. A.

Rogers. The Cell Collective: Toward an open and collaborative approach to systems biology. BMC Systems Biology, 6(1):

1–14, 2012.

11. A. G. Gonzalez, A. Naldi, L. Sanchez, D. Thieffry, and C. Chaouiya. GINsim: A software suite for the qualitative modelling,

simulation and analysis of regulatory networks. BioSystems, 84(2):91–100, 2006.

12. C. Li, M. Donizelli, N. Rodriguez, H. Dharuri, L. Endler, V. Chelliah, L. Li, E. He, A. Henry, M. I. Stefan, J. L. Snoep,

M. Hucka, N. L. Novère, and C. Laibe. BioModels Database: An enhanced, curated and annotated resource for published

quantitative kinetic models. BMC Systems Biology, 4(1):1–14, 2010.

13. E. Guberman, H. Sherief, and E. R. Regan. Boolean model of anchorage dependence and contact inhibition points to coordinated

inhibition but semi-independent induction of proliferation and migration. Computational and Structural Biotechnology

Journal, 18:2145–2165, 2020.

14. A. Singh, J. M. Nascimento, S. Kowar, H. Busch, and M. Boerries. Boolean approach to signalling pathway modelling in

HGF-induced keratinocyte migration. Bioinformatics, 28(18):i495–i501, 2012.

15. K. S. Song, J. K. Seong, K. C. Chung, W. J. Lee, C. H. Kim, K. N. Cho, D. D. Kang, J. S. Koo, and J. H. Yoon. Induction

of MUC8 gene expression by interleukin-1β is mediated by a sequential ERK MAPK/RSK1/CREB cascade pathway in human

airway epithelial cells. Journal of Biological Chemistry, 278(37):34890–34896, 2003.

16. F. Herrmann, A. Groß, D. Zhou, H. A. Kestler, and M. Kühl. A Boolean Model of the Cardiac Gene Regulatory Network

Determining First and Second Heart Field Identity. PLOS ONE, 7(10):e46798, 2012.

17. A. Méndez and L. Mendoza. A Network Model to Describe the Terminal Differentiation of B Cells. PLOS Computational

Biology, 12(1):e1004696, 2016.

18. E. Remy, S. Rebouissou, C. Chaouiya, A. Zinovyev, F. Radvanyi, and L. Calzone. A Modeling Approach to Explain Mutually

Exclusive and Co-Occurring Genetic Alterations in Bladder Tumorigenesis. Cancer Research, 75(19):4042–4052, 2015.

19. S. Von der Heyde, C. Bender, F. Henjes, J. Sonntag, U. Korf, and T. Beissbarth. Boolean ErbB network reconstructions and

perturbation simulations reveal individual drug response in different breast cancer cell lines. BMC Systems Biology, 8(1):1–22,

2014.

20. A. Saadatpour, R. S. Wang, A. Liao, X. Liu, T. P. Loughran, I. Albert, and R. Albert. Dynamical and Structural Analysis of

a T Cell Survival Network Identifies Novel Candidate Therapeutic Targets for Large Granular Lymphocyte Leukemia. PLOS

Computational Biology, 7(11):e1002267, 2011.

21. E. Azpeitia, M. Beńıtez, I. Vega, C. Villarreal, and E. R. Alvarez-Buylla. Single-cell and coupled grn models of cell patterning

in the Arabidopsis thaliana root stem cell niche. BMC Systems Biology, 4(1):1–19, 2010.

22. X. Gan and R. Albert. Analysis of a dynamic model of guard cell signaling reveals the stability of signal propagation. BMC

Systems Biology, 10(1):1–14, 2016.

23. W. Just, I. Shmulevich, and J. Konvalina. The number and probability of canalizing functions. Physica D: Nonlinear

Phenomena, 197(3):211–221, 2004.

24. Sasao and Kinoshita. On the number of fanout-free functions and unate cascade functions. IEEE Transactions on Computers,

C-28(1):66–72, 1979.

25. C. Müssel, M. Hopfensitz, and H. A. Kestler. BoolNet – an R package for generation, reconstruction and analysis of Boolean

networks. Bioinformatics, 26(10):1378–1380, 2010.

	Representation of Boolean functions
	Combining two independent Boolean functions
	Properties of biologically meaningful types of Boolean functions
	RoF checker
	Biological dataset compiling Boolean functions from reconstructed discrete models of living systems
	Statistical Tests
	A``good set'' having an even vertices has Boolean complexity strictly less than k
	Average sensitivity of the network
	Results from the repeat analyses after discarding the ineffective inputs to BFs in the reference biological dataset

