iScience, Volume 26

Supplemental information

The scaffolding function of LSD1/KDM1A reinforces

a negative feedback loop to repress stem cell gene

expression during primitive hematopoiesis

Mattie J. Casey, Alexandra M. Call, Annika V. Thorpe, Cicely A. Jette, Michael E. Engel, and Rodney A. Stewart

probe: etv2

5. 15 hpf

Figure S1. Hematopoietic transcription factors are dysregulated in *Isd1* mutants, related to Figure 1. (A) Wild-type and mutant kdm1a(23095) splice variations between exons 18-21 are shown in the schematic. (B-G) WISH of embryos derived from an incross of kdm1a(23095) heterozygotes (B-D) or kdm1a(36433) heterozygotes (E-G) using probes to detect gata1 (B,E), fli1a (C,F), and etv2 (D,G). Representative images are shown with the number of animals with similar staining patterns for the indicated genotype shown in the upper right corner of each image. The lower left corner indicates the approximate stage of the animal at the time of fixation. Embryos were imaged, blindly scored by expression and then genotyped by HRMA. Carons indicate ICM expression; closed arrowheads indicate posterior blood island/caudal hematopoietic tissue; double carons indicate posterior lateral mesoderm. Scale bar, 200 µm.

kdm1a(36433)

Figure S2. Cell death is not increased in *Isd1* mutants, related to Figure 1. (A) Immunofluorescence of activated Caspase-3 in 24-hpf kdm1a(23095) and kdm1a(36433) mutants. As a positive control for the assay, plrg1(hi3174aTg) mutants were used. Representative images are shown with the number of animals with similar staining patterns for the indicated genotype shown in the upper right corner of each image. (B-C) Immunofluorescence of phospho-histone H3 in 24-hpf kdm1a(23095) (B) and kdm1a(36433) (C) mutants. Staining variability is shown for both siblings and mutants. Quantification of the number of phospho-histone-H3-positive cells in the tail is shown on the right. Each point represents an individual animal. The number of phospho-histone-H3-positive cells in the tail were measured using the Analyze Particles tool on ImageJ without size exclusion. Data is not statistically significant. The brightness of raw images of both siblings and mutants were adjusted to the same level using Photoshop (Adobe 2017). ns, not significant. Scale bar, 200 µm.

sibling

sibling

probe: *gfi1ab*

A

14hpf

В

kdm1a(36433)

n=6/6

n=5/6

kdm1a(23095)

n=14/14

Figure S3. GFI-family genes are dysregulated throughout development, related to Figure 2. (A-B) WISH of *gfi1ab* of 14-hpf embryos from an incross of *kdm1a(36433)* (A) or *kdm1a(23095)* (B) heterozygotes. Lateral (left) and dorsal (right) views are shown. (C-D) WISH of embryos derived from an incross of *kdm1a(23095)* heterozygotes using probes to detect *gfi1ab* (C) or *gfi1b* (D) at 3 dpf. Representative images are shown with the number of animals with similar staining patterns for the indicated genotype shown in the upper right corner of each image. The lower left corner indicates the approximate stage of the animal at the time of fixation. Embryos were imaged, blindly scored by expression levels and then genotyped by HRMA. Narrow triangles indicate inner-hair-cell expression. Scale bar, 200 μ m.

Figure S4. Triple-*gfi***-mutant zebrafish phenocopy** *Isd1* mutants, related to Figure 2. (A) Schematic of the structure of zebrafish *Gfi1b, Gfi1aa,* and *Gfi1ab* proteins and corresponding genetic mutations relevant to this study. The mRNA sequence of *gfi1b* Δ 17 is shown on the right. (B) WISH to detect *gata1* in embryos derived from an incross of either *gfi1b* Δ ^{17/ Δ 17}; *gfi1aa*^{16850/16850}; *gfi1ab*^{40706/+} triple mutants or wild-type zebrafish. A representative image of a *gfi1b* Δ ^{17/ Δ 17}; *gfi1aa*^{16850/16850}; *gfi1ab*^{40706/+} triple mutants for that genotype indicated in the upper right corner. The lower left corner indicates the approximate stage of the animal at the time of fixation. Embryos were imaged and genotyped by HRMA. Wild-type embryos were included within each well to control for staining. Carons, ICM expression. (C) Brightfield image of 4-dpf embryos from a *gfi1b* Δ ^{17/ Δ 17}; *gfi1aa*^{16850/16850}; *gfi1ab*^{40706/+} triple-mutant incross. Embryos with small heads and edema were genotyped via HRMA, and the number of animals with the phenotype shown and corresponding enotype is indicated. Scale bar, 200 µm.

Figure S5. Hematopoietic progenitor markers are upregulated at the expense of differentiation markers, related to Figure 3. (A) Heatmap of *kdm1a(23095)* mutants compared to wild-type siblings for the differential expression of stem/endothelial-cell-specific genes and myeloid- and erythroid-cell-specific genes ("Differentiation markers").

Figure S6. FLAG-tagged rescue constructs are translated to protein *in vivo,* **related to Figure 4 and Figure 6.** (A-B) Immunoblotting with an anti-Flag antibody of protein lysate from wild-type zebrafish injected with the indicated 3XFLAG-tagged mRNA constructs.

Figure S7. Wild-type *Isd1* rescues hematopoietic transcription factor gene expression in *kdm1a(36433)* mutants, related to Figure 4. Single-cell zebrafish embryos derived from an incross of *kdm1a(36433)* heterozygotes were injected with either *zlsd1* (A-C) or *hLSD1* mRNA (D-F). WISH was then performed at 24 hpf with the indicated probes. Representative images are shown with the number of animals with similar staining patterns for the indicated genotype shown in the upper right corner. The lower right corner indicates the mRNA injection conditions. Uninjected mutant embryos are shown in the middle column for comparison. Embryos were imaged, blindly scored by expression and then genotyped by HRMA. Carons indicate ICM expression; closed arrowheads indicate posterior blood island/caudal hematopoietic tissue; narrow triangles indicate inner-hair-cell expression. Scale bar, 200 μ m.

Figure S8. Truncated *Isd1* is unable to rescue gene expression in *Isd1* mutants, related to Figure 4. Single-cell zebrafish embryos from an incross of *kdm1a(23095)* heterozygotes (A-C) or *kdm1a(36433)* heterozygotes (D-F) were injected with *zlsd1-* Δ Q632 mRNA. WISH was then performed at 24 hpf with the indicated probes. Representative images are shown with the number of animals with similar staining patterns for the indicated genotype shown in the upper right corner. The lower right corner indicates the mRNA injection conditions. Uninjected mutant embryos are shown in the middle column for comparison. Embryos were imaged, blindly scored by expression and then genotyped by HRMA. Carons indicate ICM expression; closed arrowheads indicate posterior blood island/caudal hematopoietic tissue; narrow triangles indicate inner-hair-cell expression. Scale bar, 200 µm.

Figure S9. Lsd1 lacking the AOLC domain is unable to rescue gene expression in *Isd1* mutants, related to Figure 4. (A-D) Single-cell zebrafish embryos from an incross of *kdm1a(23095)* (A-B) or *kdm1a(36433)* (C-D) heterozygotes were injected with *zlsd1*- $\Delta AOLC$ (A, C) or *hLSD1-\Delta AOLC* (B, D) mRNA. WISH was then performed at 24 hpf with the indicated probes. Representative images are shown with the number of animals with similar staining patterns for the indicated genotype shown in the upper right corner. The lower right corner indicates the mRNA injection conditions. Embryos were imaged, blindly scored by expression and then genotyped by HRMA. Carons indicate ICM expression. Scale bar, 200 µm.

Figure S10. Demethylase-deficient *Isd1* rescues gene expression in *kdm1a(36433)* mutants, related to Figure 5. Single-cell zebrafish embryos from an incross between *kdm1a(36433)* heterozygotes were injected with mRNAs encoding *zlsd1-K661A*. WISH was then performed at 24 hpf for *gata1* (A) and *gfi1ab* (B) expression. Representative images are shown with the number of animals with similar staining patterns for the indicated genotype shown in the upper right corner. The lower right corner indicates the mRNA injection conditions. Uninjected mutant embryos are shown in the middle column for comparison. Embryos were imaged, blindly scored by expression and then genotyped by HRMA. Carons indicate ICM expression; closed arrowheads indicate posterior blood island/caudal hematopoietic tissue; narrow triangles indicate inner-hair-cell expression. Scale bar, 200 μ m.

Figure S11. Substrate-binding-mutant *Isd1* does not rescue gene expression, related to Figure 5. (A-B) Single-cell zebrafish embryos from an incross between kdm1a(23095) heterozygotes were injected with zlsd1-A539E mRNA. WISH was performed for *gata1* (A) and *gfi1ab* (B). Representative images are shown with the number of animals with similar staining patterns for the indicated genotype shown in the upper right corner. Embryos were imaged, blindly scored by expression and then genotyped by HRMA. Carons indicate ICM expression; closed arrowheads indicate posterior blood island/caudal hematopoietic tissue; narrow triangles indicate inner-hair-cell expression. Scale bar, 200 μ m.

4Å of SNAG	4Å of H3	4Å of FAD	4Å of SNAG;	4Å of SNAG
			no overlap	proline
			with FAD	
T335	V333	1284	T335	A539*
L386	T335	G285	L386	N540*
N535*	1356	S286	N535*	D555*
L536	Q358	G287	L536	A809
F538*	L386	V288	F538*	
A539*	N535*	S289	A539*	
N540*	L536	L307	N540*	
W552	A539*	E308	W552	
D553**	N540*	A309	D553**	
D555*	W552	R310	D555*	
D556*	D553**	G314	D556*	
H564	D555*	G315	H564	
L677	D556*	R316	L677	
L693	H564	V317	L693	
Y761*	W695	L329		
A809	Y761*	G330		
T810	A809	A331		
	T810	M332*		
		V333*		
		T588		
		A589		
		V590		
		T624		
		L625		
		P626		
		V637		
		L659*		
		K661*		
		W751		
		W756		
		S760*		
		Y761*		
		G800		
		E801		
		A809		
		T810		
		V811		
		A814		

Table S1: LSD1 residues within 4Å of SNAIL, Histone H3, or FAD

Table S1. LSD1 residues within 4Å of SNAIL, histone H3, or FAD, related to Figure 6. Residues that are within 4Å of the first 6 amino acids of the SNAIL1 SNAG domain (Baron et al., 2011), the histone-H3 tail (Forneris et al., 2007) or the location of FAD are listed. Residues that are specifically within 4Å of the SNAG domain but not within 4Å of FAD are also listed, as well as residues that are within 4Å of the second proline residue of the SNAG domain. *Residues that have been previously shown to impact LSD1 catalytic activity to any extent. **Asp553 was shown to impact catalytic activity when mutated to Lys but not when mutated to Ala (Chen et al., 2006).

Table S2: List of primers

Primers		
Primer Name	Sequence	Description
sa23095_HRMA_fwd	cgatgatgtcatcgttggtcgttgt	For HRMA
		genotyping
sa23095_HRMA_rev	aatgaagcaagcgcctccga	For HRMA
		genotyping
sa36433_HRMA_fwd	gccgtgttgtgtaccctacctt	For HRMA
		genotyping
sa36433_HRMA_rev2	gtcttccattctggcagaggag	For HRMA
		genotyping
sa23095_fwd2	tctgacctttgcatcttcaca	For PCR and
		sequencing
sa23095_rev2	tttaaggccggtgactgaac	For PCR and
		sequencing
sa36433_fwd	gtctcaggttgcgaggtgat	For PCR and
		sequencing
sa36433_rev2	tttgacctaaccagcccaag	For PCR and
		sequencing
kdm1a_cr3_fwd	agctgaagcagggctaggtt	For PCR and
		sequencing
kdm1a_exon21_	gcgtggcatagtgtacatgg	For PCR and
qpcr_rev		sequencing
sa16850_HRMA_rev1	cctgtatgaatgaacgtgtgctt	For HRMA
		genotyping
sa16850_HRMA_fwd2	actcggacaccagaccgtatc	For HRMA
		genotyping
sa40706_HRMA_fwd1	gtttggatgtgacctttgtgga	For HRMA
		genotyping
sa40706_HRMA_rev1	gacgcatgtttcctcacttcag	For HRMA
		genotyping
zGfi1B-REV-E2	tcgtttggtcgatgcacattat	For HRMA
		genotyping
gfi1b_HRMAfwd_MC2	cgaaagcatctcagtaaacaaatctc	For HRMA
		genotyping
zgfi1aa_sa16850_fwd2	ttgcaggaaagggtcttcag	For PCR and
<u> </u>		sequencing
zgfi1aa_sa16850_rev1	cctattgaaggcaagcctaatg	For PCR and
		sequencing
zgti1ab_sa40706_twd2	tgtcgcagttgagaggaaaa	For PCR and
		sequencing
zgiiiab_sa40706_rev1	acatgaaagctgccagacct	For PCR and
zgillb_eztwa_seq		For PCR and
		sequencing

zGfi1b-REV-E2-a	gcgcgggagtttttgtggagcttgtt	For PCR and
		sequencing
gfi1aa_ish_fwd	attggtgaccctgaagctga	To clone from
		cDNA
gfi1aa_ish_rev	agtgtctcacgtgcaagcaa	To clone from
		cDNA
gfi1ab_ish_fwd	gggacatatgaggcagagga	To clone from
		cDNA
gfi1ab_ish_rev2	aatctcgtggacgcatgttt	I o clone from
gfi1b_ish_fwd1	atgccacggtcgtttctggt	I o clone from
widh ich ward		
gfi1b_lsn_rev1	aacaaccatctgtcgccttc	
flite job fudt		CDNA
	Cycaaaalyyacyyaactal	
fli1a ish rov1	ageteeagtatagagttata	To clone from
zkdm1a_k661a	atagaetttagaaateteaacgeggtggtggtgtgtgtttgata	For SDM of
sdm_fwd	algggolliggaaaloloaaogoggiggigligligligliglig	zl SD1 to
	9	K661A
zkdm1a k661a		For SDM of
sdm rev	cccat	zLSD1 to
		K661A
zlsd1 36433sdm fwd	gggagtgatgaaatagcagccgccggcc	For SDM of
		zLSD1 to
		Q632Stop
zlsd1_36433sdm_rev	ggccggcggctgctatttcatcactccc	For SDM of
		zLSD1 to
		Q632Stop
zlsd1_d535k_fwd	tcactcaaacactgggatcagaaggatgattttgagtttac	For SDM of
	gggc	zLSD1 to
		D555K
zlsd1_d535k_rev	gcccgtaaactcaaaatcatccttctgatcccagtgtttgag	For SDM of
	tga	zLSD1 to
		D555K
21501_a539e_1wd		
zled1 25300 rov		For SDM of
	ู yavayoyyiyiyyoalloloadoloodyylliyod 	zl SD1 to
		4539F
zDeltaTower_fwd		To delete
		zLSD1 Tower
		domain

zDeltaTower_rev	ggtctcttgagctgtatgaccacttccagtgcttg	To delete
		zLSD1 Tower
		domain
Gfi1b_ish_mc2fwd	gccactcaaacaatcaaagga	For RT-PCR
		of gfi1b
Gfi1b_ish_rev1	aacaaccatctgtcgccttc	For RT-PCR
		of gfi1b
Gfi1b_rev_e3b	gcgcgagtgatgggattgggcagt	For
		sequencing
		RT-PCR
		product
Gfi1b_e2_s2	ggatcctaatacgactcactataggaatcacggaatcat	For generating
	gcca gttttagagctagaa	sgRNA

WISH probe	Reference
gata1	Detrich et al., 1995
fli1a	This paper
etv2	Sumanas et al., 2005
gfi1b	This paper
gfi1aa	This paper
gfi1ab	This paper
snail1a	Thisse et al., 1993
snail1b (sna2)	Thisse et al., 1995
snai2 (slug)	Thisse et al., 2001

Table S3: List of RNA probes

Table S4. List of differentially expressed genes, related to Figure 3. Genes werefiltered to include those that were protein-coding and with padj<0.05.</td>