Chemistry–A European Journal

Supporting Information

Geländer Molecules with Orthogonal Joints: Synthesis of Macrocyclic Dimers

Adriano D'Addio, Juraj Malinčik, Olaf Fuhr, Dieter Fenske, Daniel Häussinger, and Marcel Mayor*

CONTENTS

HPLC Chromatograms of Macrocycles 1 and 2	3
Enantiopure Transformation from 2 to 1	4
Circular Dichroism Measurements:	5
NMR and HR-MS Spectra	6
2-bromo-9-(4-nitrophenyl)-9H-carbazole 3 :	6
¹ H NMR (500 MHz, CDCl ₃):	6
¹³ C NMR (126 MHz, CDCl3):	7
HRMS (ESIToF):	7
9-(4-nitrophenyl)-2-((triisopropylsilyl)ethynyl)-carbazole 4:	11
¹ H NMR (500 MHz, CDCl ₃):	11
¹³ C NMR (126 MHz, CDCl ₃):	11
HRMS (ESI-ToF):	12
4-(2-((triisopropylsilyl)ethynyl)-carbazol-9-yl)aniline 5:	16
¹ H NMR (500 MHz, CD ₂ Cl ₂):	16
HRMS (ESI-ToF):	17
Monomer 6 :	19
¹ H NMR (500 MHz, THF-d8):	19
¹³ C NMR (126 MHz, THF-d8):	19
HRMS (ESI-ToF):	20
Dimer 7:	24
¹ H NMR (500 MHz, THF-d8):	24
¹³ C NMR (126 MHz, THF-d8):	24
HRMS (MALDI-ToF):	25
Butadiyne macrocycle 2 :	27
¹ H NMR (500 MHz, THF-d8): as used for further synthesis	27
¹ H NMR (500 MHz, THF-d8): after GPC	27

¹³ C NMR (126 MHz, THF-d8):	28
HRMS (MALDI-ToF):	28
Full assignment at 218 K:	31
VT- ¹ H NMR (600 MHz, THF-d8):	
HSQC: at 219 K	
HMBC: at 219 K	
COSY: at 219 K	
ROESY: at 219 K	35
Thiophene macrocycle 1 :	35
¹ H NMR (500 MHz, CDCl ₃):	35
¹³ C NMR (126 MHz, CDCl ₃):	
HRMS (ESI-ToF):	
Complete Assignment at 218 K:	40
VT- ¹ H NMR (600 MHz, THF-d8):	41
COSY: at 218 K	42
ROESY: at 218 K	42
HSQC: at 218 K	43
HMBC: at 218 K	43
Calculations and Structure Analysis	44
Geometry Optimization and Conformer Analysis	44
TD-DFT:	46
X-Ray Structure and Optimized Geometries	47
Cartesians	51
Macrocycle 2	51
Macrocycle 1	53
References	58

HPLC CHROMATOGRAMS OF MACROCYCLES 1 AND 2

Figure S1. A solution (*P*)-2 and 1,4-Bis(5-phenyloxazol-2-yl)-benzene (**POPOP**) were separated on an analytical chiral HPLC before (top) heat treatment and after (bottom) 20 h at 120 °C.

POPOP was chosen as adequate internal standard due to a similar absorption spectrum to macrocycle **2**. The ratio of the area **POPOP** to the area (*P*)-**2** before heat treatment (0.1380) and after 20 h at 120 °C (0.1350) differ by 2%. No formation of (*M*)-**2** was observed.

ENANTIOPURE TRANSFORMATION FROM 2 TO 1

Figure S2. Synthesis of (*P*)-1 and (*M*)-1 from enantiomeric pure starting material using analytical chiral HPLC. * marks the injection peak (more visible at lower concentrations).

Scheme S1. Conditions: S8, NaHS, DMF, 25 $^\circ\text{C},$ 10 min

In Figure S1 chromatorgrams are shown of racemic mixtures of 1 and 2 as well as enantiopure samples of the same compounds. Enantiopure samples of (*P*)-2 and (*M*)-2 were submitted to the reaction conditions to (*P*)-1 and (*M*)-1. Aliquots of the reaction mixtures were diluted in CH_2Cl_2 , filtered and submitted to the analytical chiral HPLC. For the reaction of (*P*)-2 to (*P*)-1 traces of (*P*)-2 were still observed after 5 minutes under reyction conditions. After 9 minutes no starting material was detected anymore. The same experiment was conducted for the reaction of (*M*)-2 to (*M*)-1 but no starting material was observed after 5 minutes.

CIRCULAR DICHROISM MEASUREMENTS:

Figure S3. Raw data from CD measurments of (*P*)-2. Every hour a spectrum was measured for 12h. Concentration is 10⁻⁶ M in acetonitrile and at 25 °C.

Figure S4. Raw data from CD measurments of (*M*)-1. Every hour a spectrum was measured for 12 h. Concentration is 10⁻⁶ M in acetonitrile and at 25 °C.

In Figure S2 and Figure S3 spectra of time course experiments are shown. The same sample was measured every hour over a period of 12 h and no change in the CD signal was observed.

Figure S5: CD spectrum of (*P*)-1 (green) and (*P*)-2 (blue) over layered. Concentration is 10⁻⁶ M in acetonitrile and at 25 °C.

Overlaying the CD spectrum of (P)-1 and (P)-2 (Figure S4) visualizes the similarity of the chiroptical activity of both compounds, the cotton bands are found with similar wavelength.

NMR AND HR-MS SPECTRA

2-bromo-9-(4-nitrophenyl)-9H-carbazole 3:

¹H NMR (500 MHz, CDCl₃):

100 f1 (ppm)

90

80 70

60 50

120 110

ò

10

20

40 30

FT-IR (neat)

180 170

160 150

140 130

190

200

HRMS (ESIToF):

8

Meas	s. m	1/z #	F	Formula		Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e Cont	z	
388	.98	90 1		C 18 H 11	Br N 2 Na O 2	100.00	388.9896	0.6	1.5	8.9	13.5	even	1+	
s list														
#		m	/z	Ι%	<u> </u>									
1	2	07.020	00	3.1	2845									
2	2	11.945	58	3.8	3556									
3	2	27.034	1	3.8	3510									
4	2	27.533	88	5.4	5048									
5	2	35.026	66	5.7	5288									
6	2	36.026	52	3.0	2827									
7	2	40.036	59	3.1	2883									
8	2	40.536	66	3.1	2900									
9	2	41.037	0	4.1	3854									
10	2	41.536	64	7.2	6686									
11	2	41.9/1	6	3.4	3153									
12	2	42.53/	0	4.9	4532									
13	2	45.972	22	20.0	7424									
14	2	43.967	20	8.0	7431									
10	2	47.047	20	3.2	2994									
17	2	47.047	20	5.2	2900									
18	2	40.040	22	3.7	3418									
10	2	52 972	2	3.1	3197									
20	2	61 982	26	10.7	9937									
21	2	63 978	20	4.5	4192									
22	2	64 122	99	4.9	4546									
23	2	79.228	38	6.7	6256									
24	2	84.998	37	8.2	7665									
25	2	85.137	78	15.8	14664									
26	2	86.141	1	3.8	3552									
27	2	86.994	12	3.0	2814									
28	3	01.140)7	4.5	4144									
29	3	07.259	95	5.2	4852									
30	3	17.024	6	16.0	14899									
31	3	19.020)5	7.1	6572									
32	3	48.086	51	3.7	3444									
33	3	48.586	68	4.7	4360									
34	3	49.086	52	8.2	7598									
35	3	49.588	31	3.5	3295									
36	3	50.086	53	4.4	4118									
3/	3	53.260	00	27.4	20037									
20	2	04.200 65.000	59	0.2	9727									
40	3	67 005	22 30	9.4 7.0	6559									
40	2	67 997	76 76	9.0 9.0	8412									
42	3	69 003	38	7 1	6572									
43	3	81,296	58	50.6	47056									
44	3	82.300)1	12.7	11814									
45	3	86.980	00	3.3	3077									
46	3	88.989	90	98.7	91833									
47	3	89.991	9	19.0	17649									
48	3	90.987	71	100.0	93066									
49	3	91.990)1	19.1	17746									
50	3	95.984	8	4.1	3858									
51	3	97.964	17	3.6	3361									
52	3	98.963	52	8.9	8273									
53	3	99.464	14	4.4	4101									
54	3	99.961	9	8.9	02/4									
55	4	00.463	10	4.2	3944									
56	4	00.961	1	5.4	5068									
D/ E0	4	04.963	1	ວ.ວ ∈ 4	5080 5052									
30 50	4	00.901	1 Z	0.4	3033									
59	4	01.90/	4	4.0	3030									
61	4	13 265	.0 .4	5.5 / /	4135									
	-	.0.200	· *	т.т	1100									

High Resolution Mass Spectrometry Report

Bruker Compass DataAnalysis 4.0

Acquisition Date 15.09.2020 14:42:13

Page 2 of 3

			High	Resolution M	ass	Spectrometry	Report
#	m/z	١%	I				
63	466.5334	3.4	3181				
64	474.0662	3.5	3219				
65	541.1198	3.3	3045				
66	557.5251	3.3	3030				
67	569.9799	6.4	5931				
68	570.4814	3.7	3469				
69	570.9790	7.5	7008				
70	571.4803	4.2	3934				
71	571.9794	3.2	2974				
72	577.9674	4.6	4284				
73	578.4675	3.8	3568				
74	578.9674	4.6	4244				
75	579.4673	3.5	3269				
76	579.9791	3.1	2871				
77	581.9628	5.6	5249				
78	582.4639	3.2	3005				
79	582.9619	8.7	8097				
80	583.4647	5.1	4730				
81	583.9620	7.5	7013				
82	584.4628	4.9	4563				
83	584.9614	4.2	3922				
84	640.0590	3.6	3323				
85	641.0583	6.4	5931				
86	643.0578	3.3	3047				
87	711.5725	4.8	4453				
88	721.5756	4.1	3798				
89	739.6045	4.8	4474				
90	752.9804	7.4	6865				
91	753.4809	5.2	4878				
92	753.9792	11.8	11019				
93	754.4799	8.4	7857				
94	754.9826	14.4	13441				
95	755.4800	6.4	5965				
96	755.9841	5.5	5090				
97	756.9854	14.6	13585				
98	757.9891	6.2	5736				
99	758.9851	7.2	6671				
100	759.9876	3.4	3118				

Acquisition Parameter

General	Fore Vacuum Scan Begin	2.60e+ 75 m/z	-000 mBar :	High Vacuum Scan End	1.33e-007 mBar 1700 m/z	Source Ion Po	e Type blarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	0.4 Ba 180 °C	r C	Set Capillary Set End Plate Offset	3600 ∨ -500 ∨	Set Dr	y Gas	4.0 l/min
Quadrupole	♥ Set Ion Energy (MS or	ıly)	4.0 eV				00.037	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	350.0 Vpp	1	00.0 Vpp	
Ion Cooler	Set Ion Cooler Transfe	r Time	75.0 µs	Set Ion Cooler Pre Pul	se Storage Time	10.0 µs		

Bruker Compass DataAnalysis 4.0

Acquisition Date 15.09.2020 14:42:13

Page 3 of 3

9-(4-nitrophenyl)-2-((triisopropylsilyl)ethynyl)-carbazole 4:

¹H NMR (500 MHz, CDCl₃):

FT-IR (neat)

Meas	.m/z #	Formula		Score	m/z	err [mDa]	err [ppm]	mSigma	rab	e Cont	Z
491.	2117 1	C 29 H 32	N 2 Na O 2 SI	100.00	491.2125	0.9	1.8	7.2	15.5	even	1+
s list											
#	m/2	: 1%	<u> </u>								
1	173.0783	5 11.8	36134								
2	205.0596	5 27.1	83070								
3	215.1247	15.0	45875								
4	217.1041	32.8	100425								
5	218.2108	5 20.5	62873								
5	226.9510	22.4	00/00								
/	231.0832	2 9.0	27409								
0	239.0002	2 12.3	67377								
10	201.130	20.4	02372								
11	270.3700	, J.4 , J/3	7/3/9								
12	275 1005	5 24.5 5 10.7	32710								
13	279 0924	5 74.1	73913								
14	301 0746	3 466	142805								
15	301 1403	40.0	148293								
16	302 0778	89	27260								
17	302 1434	89	27270								
18	305.1563	20.1	61520								
19	313.2340	9.2	28053								
20	314.2579	9.9	30367								
21	317.1713	13.6	41569								
22	319.1356	5 11.4	34931								
23	333.1683	3 10.1	31095								
24	341.2652	2 10.4	31811								
25	348.9891	9.0	27551								
26	349.1824	20.1	61548								
27	363.1616	5 11.2	34326								
28	365.1046	5 15.8	48530								
29	379.1929) 12.6	38549								
30	393.2086	5 16.9	51695								
31	413.2652	2 17.2	52676								
32	423.2192	2 21.5	65899								
33	437.2348	12.8	39310								
34	441.2967	16.2	49567								
35	447.3435	5 12.7	38992								
36	455.1883	3 36.7	112486								
37	467.1010) 14.2	43378								
38	467.2457	28.0	85954								
39	469.3274	10.9	33365								
40	491.211/	40.2	123117								
41	492.214 511 0740	14./	40201								
42 12	521 295/	ວ∠.4 ຊ_7	26572								
43	536 1644	r 0./	40613								
44	541 1201	, 10.0 68.0	211087								
46	542 1202	, 00.5 7 33.5	102632								
40	543 1183	23.5	72753								
48	544 1179	8 87	26647								
49	555 2978	29.2	89569								
50	599 3237	23.2	71247								
51	610 1831	12.8	39204								
52	615.1389	59.3	181645								
53	616.1395	33.0	101169								
54	617.1371	23.1	70802								
55	618.1366	5 10.1	30869								
56	643.3498	13.6	41803								
57	671.2871	11.6	35668								
58	685.4336	9.2	28242								
59	689.1574	54.2	165970								
60	690.1580	34.2	104730								
61	691.1559	26.7	81744								
62	602 155/	113	34738								

High Resolution Mass Spectrometry Report

Bruker Compass DataAnalysis 4.0

Acquisition Date 22.09.2020 10:51:00

Page 2 of 3

			High	Resolution	Mass Spectrometry Report
#	m/z	١%	1		
63	722.5244	9.8	30025		
64	763.1758	41.5	127173		
65	764.1763	29.6	90790		
66	765.1742	23.9	73326		
67	766.1739	12.0	36928		
68	800.2661	15.2	46722		
69	801.2673	11.7	35874		
70	802.2657	9.8	30116		
71	837.1938	34.2	104816		
72	838.1946	25.1	77079		
73	839.1924	21.9	67130		
74	840.1912	11.5	35277		
75	874.2844	12.9	39575		
76	875.2853	10.6	32557		
77	876.2830	9.0	27728		
78	911.2117	25.8	78987		
79	912.2127	22.7	69583		
80	913.2106	20.1	61540		
81	914.2097	12.0	36735		
82	959.4331	100.0	306485		
83	960.4358	71.2	218234		
84	961.4364	31.4	96294		
85	962.4370	10.6	32366		
86	985.2299	21.4	65625		
87	986.2305	19.7	60431		
88	987.2289	18.6	57031		
89	988.2282	11.4	34930		
90	1059.2477	17.2	52603		
91	1060.2486	17.9	54794		
92	1061.2469	17.3	52871		
93	1062.2464	10.7	32835		
94	1133.2653	12.7	38861		
95	1134.2661	13.7	42047		
96	1135.2648	13.9	42468		
97	1136.2639	9.4	28796		
98	1207.2828	9.3	28541		
99	1208.2836	10.7	32875		
100	1209.2825	10.5	32301		

Acquisition Parameter

General	Fore Vacuum Scan Begin	2.39e+ 75 m/z	000 mBar	High Vacuum Scan End	1.37e-007 mBar 2000 m/z	Source Type Ion Polarity	ESI Positi∨e
Source	Set Nebulizer Set Dry Heater	2.0 Bar 200 °C		Set Capillary Set End Plate Offset	4500 ∨ -500 ∨	Set Dry Gas	8.0 l/min
Quadrupole	Set Ion Energy (MS on	ly)	4.0 eV			100.037	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	600.0 Vpp	100.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Puls	e Storage Time 1	0.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 22.09.2020 10:51:00

Page 3 of 3

4-(2-((triisopropylsilyl)ethynyl)-carbazol-9-yl)aniline 5:

¹H NMR (500 MHz, CD₂Cl₂):

17

High Resolution Mass Spectrometry Report

Measured m/z vs. theoretical m/z

Meas.m/z # Formula Score m/z err[mDa] err[ppm] mSigma rdb e⁻⁻Conf z

Mass list

#	m/z	Ι%	1
1	439.2564	100.0	2000
2	440.2534	0.7	15
3	440.2596	36.8	737
4	441.2533	3.6	72
5	441.2631	6.5	130
6	442.2566	1.1	22
7	442.2665	0.7	15
8	443.2600	0.2	4

Acquisition Parameter

General	Fore Vacuum Scan Begin	2.48e+ 75 m/z	000 mBar	High Vacuum Scan End	1.39e-007 mBar 700 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	2.0 Bar 200 °C		Set Capillary Set End Plate Offset	4500 ∨ -500 ∨	Set Dry Gas	8.0 l/min
Quadrupole	Set Ion Energy (MS on	y)	4.0 eV			55.0.37	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	350.0 Vpp	55.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	55.0 µs	Set Ion Cooler Pre Puls	e Storage Time 7.	0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 22.09.2020 10:14:04

Page 2 of 2

Monomer 6:

¹H NMR (500 MHz, THF-d8):

Linh .41 Ν. C Ι. Report

					High	Resol	ution	Mass	Spect	romet	ry Re	port	t	
Meas	sured	m/z v	/s. th	neoretica	l m/z									
	Meas	m/z	#	Formula			Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	z
	669.1	1530	1	C 37 H 35	Br N 2 N	a O2 Si	100.00	669.1543	1.3	2.0	5.9	21.5	even	1+
	1315.3	3173	1	C 74 H 70	Br 2 N 4	Na O 4 Si 2	100.00	1315.3195	2.2	1.7	41.1	42.5	even	
Mas	s list													
	#		m/z	z 1%	L									
	1	279	.0929) 16.2	15319									
	2	279	.2293	3 8.1 3 11.9	7676									
	4	315	.0748 .1922	2 7.8	7395									
	5	317	.0513	3 21.9	20725									
	6	319	.2237	8.3	7857									
	8	321	.2394	8.1 157	7644									
	9	343	.0632	2 10.7	10100									
	10	344	.0626	5 12.0	11360									
	11	347	.2914	l 9.4	8866 8313									
	12	353	.0678	3 0.0 3 11.2	10616									
	14	353	2657	37.4	35340									
	15	354	.2689	7.9	7434									
	16 17	357	.1463	5 9.7 1 23.2	9156 21882									
	18	364	.0777	7 11.3	10681									
	19	364	.5758	3 24.0	22675									
	20	365	.0769) 11.1	10436									
	21	381	2970) <u>9.0</u>) 28.8	27153									
	23	382	.3000) 7.4	6972									
	24	393	2969	9.3	8761									
	25 26	413	2653	3 25.4	23946									
	20 27	421	.3201 .2391	7.3	6887									
	28	441	.2969	7.9	7464									
	29	447	.3437	24.5	23114									
	30	448	3473	5 (.4) 76	7020									
	32	463	.3175	5 7.2	6761									
	33	465	.3687	7.1	6737									
	34	469	.3277	7 8.6	8159									
	36	529	0306	5 7.4 5 24.0	22707									
	37	532	.0339	8.0	7557									
	38	533	.0285	23.7	22399									
	39	534	0318	5 /./ 5 8.8	7313									
	41	549	.0024	8.9	8358									
	42	557	5246	5 7.4	7032									
	43 44	562	2381. 1011	10.3	9692 7735									
	45	619	.+941	6.8 6.8	6419									
	46	631	.0855	5 31.8	30021									
	47	632	.0888	3 13.0	12319									
	40 49	634	0882	0 30.4 0 11.9	20075									
	50	647	.1708	3 22.6	21298									
	51	648	.1733	3 10.6	9965									
	52 53	649	.1694	24.5	23122									
	53 54	663	. 17 18 .0576	5 20.3	19161									
	55	663	.4521	8.9	8391									
	56	664	.0607	8.8	8312									
	57 58	666	21CU. 2080	9 21.1 9 87	19943 8255									
	59	667	.1444	11.4	10761									
	60	667	.1784	7.2	6786									
	61	667	.6451	9.7	9178									

Bruker Compass DataAnalysis 4.0

Acquisition Date 27.10.2020 12:55:22

Page 2 of 3

			High	Resolution Mass Spectrometry Report
#	m/z	۱%	I	
62	668.1443	9.4	8907	
63	668.6447	6.9	6561	
64	669.1530	90.6	85535	
65	670.1558	41.9	39523	
66	671.1518	100.0	94424	
67	672.1542	42.3	39940	
68	673.1549	12.1	11397	
69	685.1270	24.9	23499	
70	685.4339	19.2	18117	
71	686.1296	12.1	11463	
72	686.4371	9.1	8615	
73	687.1255	27.4	25831	
74	687.1616	14.5	13687	
75	688.1278	12.2	11528	
76	688.1634	7.3	6934	
77	689.1614	16.0	15087	
78	690.1636	7.6	7137	
79	699.5936	8.2	7699	
80	700.6250	9.6	9091	
81	705.5812	74.8	70583	
82	706.5843	36.1	34084	
83	707.5848	11.3	10712	
84	721.1472	14.9	14049	
85	721.5721	31.3	29515	
86	722.5751	15.5	14677	
87	737.5516	8.3	7851	
88	764.5723	14.0	13190	
89	765.5753	8.1	7634	
90	1179.1926	6.8	6376	
91	1315.3173	15.5	14654	
92	1316.3195	13.4	12634	
93	1317.3169	30.4	28681	
94	1318.3196	25.3	23935	
95	1319.3167	24.4	22999	
96	1320.3180	15.6	14746	
97	1321.3189	7.5	7036	
98	1333.2905	8.6	8124	
99	1334.2948	7.4	6970	
100	1335.2945	8.0	7573	

Acquisition Parameter

General	Fore Vacuum Scan Begin	2.48e+ 75 m/z	000 mBar	High Vacuum Scan End	1.21e-007 mBar 1700 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	0.4 Bar 180 °C		Set Capillary Set End Plate Offset	3600 ∨ -500 ∨	Set Dry Gas	4.0 l/min
Quadrupole	Set Ion Energy (MS on	y)	4.0 eV			100.017	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	350.0 Vpp	100.0 Vpp	
Ion Cooler	Set Ion Cooler Transfer	Time	75.0 µs	Set Ion Cooler Pre Pulse	e Storage Time 10	0.0 μs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 27.10.2020 12:55:22

Page 3 of 3

Dimer 7:

HRMS (MALDI-ToF):

BSOL001580 Adriano D'Addio/ - DA-337-M3-P4 - DCM - DCTB+Ag 1:10:1

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Bruker Daltonics solariX ETH - MS-Service LOC - D-CHAB Page 1 of 2

BSOL001580 Adriano D'Addio/ - DA-337-M3-P4 - DCM - DCTB+Ag 1:10:1

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Evaluation Spectra / Validation Formula:

#	Ion Formula	Adduct	m/z	z	Meas. m/z	mSigma	N-Rule	err [mDa]	err [ppm]
1	C74H70N4O4Si2	M	1134.4930	1+	1134. 4 941	88.5	ok	-1.1	-1.0

Calibration In	nfo:			Mass	s List:				
Internal calibra	ition			#	m/z	Res.	S/N	1%	FWHM
Date:	17.12.20	021 15:10:59			357 0515	558651	1121.4	28	0.0006
Polarity:	Positive			2	359.0512	559389	1344.2	3.3	0.0006
Calibration spec	ctrum: +MS: So	an		3	408 9481	450815	5664.6	14.5	0.0009
Reference mass	s list: MALDI:	DCTB Matrix +	· Na-PFHA	4	449 9749	419844	1459.2	3.9	0.0011
	Cluster	pos)		5	576 9423	332643	772.2	2.3	0.0017
Calibration mod	e: Quadrat	iC		6	578 9419	332803	1535.7	4.5	0.0017
Standard deviat	ion: 0.604 pp	om		7	580 9416	323088	668.9	2.0	0.0018
				8	607 1990	320205	4608.1	14.0	0.0019
Reference m/z	Resulting m/z	Intensity	Error [ppm]	ä	608 2025	314428	1549.8	47	0.0019
250.1464				10	609 1967	473404	589.8	1.8	0.0013
251.1543				11	609 1988	319543	4205.6	12.7	0.0019
273.1362				12	610 2021	314910	1442 7	4.4	0.0019
332.2009				13	685 4364	284836	719.0	23	0.0010
408.9 4 81	408.9481	143402448	-0.013	14	794 9071	244104	24668 5	88.1	0.0024
500.2934				15	795 9109	244104	2880.8	10.3	0.0000
501.3013				16	820 0802	231134	567.4	2.1	0.0036
523.2832				17	878 8002	215999	480.0	1.8	0.0030
750.4404				18	1001 4303	179518	837.0	3.6	0.0041
751.4483				10	1002 4425	184266	683.1	2.6	0.0001
773.4302				20	1134 4941	169930	431.6	2.5	0.00039
794.9069	794.9071	871369152	0.205	20	1180 8654	165277	14309.4	68.0	0.0007
1000.5874				21	1181 8602	165073	2631.8	12.7	0.0071
1001.5953				22	1102 1622	163421	520.6	2.6	0.0072
1023.5772				23	1241 2072	160257	19570.0	2.0	0.0073
1180.8657	1180.8654	681921536	-0.291	24	1241.3972	161101	16529.0	94.0	0.0077
1566.8246	1566.8242	281248256	-0.247	20	1242.4004	160642	10526.9	100.0	0.0077
1952.7834	1952.7828	74977648	-0.344	20	1243.3904	160043	16/20.0	100.0	0.0077
2338.7423	2338.7442	20150266	0.827	29	1244.4005	195527	010.4	47	0.0075
2724.7011				20	1245.3547	165467	5947.7	20.6	0.0007
3110.6599				20	1245.4030	170992	570.7	29.0	0.0075
3496.6188				30	1240.3972	140667	1045 7	2.9	0.0009
3882.5776				22	1240.4074	143307	492.0	3.3	0.0003
4268.5365				32	1370.3003	147042	403.9	2.4	0.0093
4654.4953				34	1462 2877	132522	362.0	1.5	0.0090
5040.4541				25	1403.2077	132322	302.0	1.0	0.0110
5426.4130				30	1566 9242	123042	5470.5	28.4	0.0176
5812.3718				30	1567 0202	110570	1424.2	20.4	0.0120
6198.3307				37	1052 7929	02751	1924.2	7.4	0.0131
6584.2895				30	1952.7620	92751	1334.2	7.0	0.0211
6970.2483				39	1900.7000	90090	473.5	2.7	0.0215
7356.2072				40	2330.7442	70445	318.1	2.0	0.0290
7742.1660				#	m/z	Res.	S/N	1%	FWHM
8128.1249				1	1134.4930	169930		100.0	0.0067
8514.0837				2	1135.4959	170080		92.6	0.0067
8900.0425				3	1136.4975	170230		49.7	0.0067
9286.0014				4	1137.4990	170380		19.2	0.0067
9671.9602				5	1138.5003	170530		5.8	0.0067
				6	1139.5018	170680		1.4	0.0067
				7	1140.5033	170830		0.3	0.0067

Bruker Daltonics solariX

ETH - MS-Service LOC - D-CHAB

Page 2 of 2

Butadiyne macrocycle 2:

¹H NMR (500 MHz, THF-d8): as used for further synthesis

FT-IR (neat)

HRMS (MALDI-ToF):

BSOL001237 Adriano D'Addio/ - DA-252 - DCM - DCTB+Ag 1:10:1

EIGENH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Acquisition Parameter

Acquisition Farante	5101				
Method:	MALDI_MS_POS_30	0-2600_2M_16AvScar	IS	Acquisition Date:	27.01.2021 07:56:13
File Name:	D:\ETH\Data\BSOL0	_H5_000001.d	Operator:	Michael Meier	
Source	Dual (MALDI/ESI)	Polarity	Positive	Nebulizer Gas	1.3 bar
Broadband Low Mass	303.1 m/z	n/a	n/a	Drying Gas Flow Rate	3.7 L/min
Broadband High Mass	2600.0 m/z	Laser Power	35.0 lp	Capillary	3000.0 V
No. of Cell Fills	1	n/a	n/a	Drying Gas	200.0 °C
Apodization	Full-Sine	Time of Flight to	0.001 sec	Temperature	
		Detector		•	

Bruker Daltonics solariX

ETH - MS-Service LOC - D-CHAB

Page 1 of 2

BSOL001237 Adriano D'Addio/ - DA-252 - DCM - DCTB+Ag 1:10:1

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Evaluation Spectra / Validation Formula:

#	lon Formula	Adduct	m/z	z	Meas. m/z	mSigma	N-Rule	err [mDa]	err [ppm]
1	C56H28N4O4	М	820.2105	1+	820.2106	59.8	ok	-0.1	-0.1

Calibration In	fo:			Mass	s List:				
Date:	27.01.202	1 07:57:51		#	m/7	Poe	S/N	1.02	
Polarity:	Positive			1	357 0513	554830	6604.8	10.8	0.0006
Calibration spect	trum: +MS: Sca	n		2	359 0510	566548	8532.8	13.8	0.0006
Reference mass	list: MALDI: D	CTB+Ag Matrix	+ HP-Mix (pos)	2	359.0518	567191	3669.1	5.0	0.0006
Calibration mode	e: Quadratic			4	576 9421	351471	4728.3	9.0	0.0016
				5	576 9439	407711	2148.6	45	0.0010
Reference m/z	Resulting m/z	Intensity	Error [ppm]	6	578 9417	322079	8632.2	18.1	0.0018
106.9045				7	578 9433	348406	4146.0	87	0.0017
118.0863				8	579 9453	332571	1777.2	3.8	0.0017
250.146 4				g	580 9416	295407	3729.7	79	0.0020
251.1543				10	580 9433	351769	1700.0	36	0.0017
273.1362				11	607 1950	300260	2655.5	5.8	0.0020
322.0481	322.0482	214019	0.368	12	607.1964	383989	3540.9	7.7	0.0016
332.2009	332.2009	15808783	-0.006	13	607 1984	319817	46103.1	100.0	0.0019
357.0515	357.0513	164832720	-0.649	14	608 2023	288424	19038 3	41.3	0.0021
500.2934				15	609.1940	412863	1890.9	4.1	0.0015
501.3013				16	609,1951	353732	2489.3	5.4	0.0017
523.2832	523.2837	1404337	0.918	17	609,1963	417428	2379.1	5.2	0.0015
607.1985	607.1984	1522726784	-0.197	18	609,1983	339598	44876.8	97.3	0.0018
622.0290	622.0286	79968880	-0.608	19	609.2051	406026	2383.0	5.2	0.0015
750.4404				20	610 2020	284792	18860.7	40.9	0.0021
751.4483				21	611 2055	254361	1489.2	3.3	0.0024
773.4302				22	622.0286	193950	2358.8	5.3	0.0032
857.3455				23	820.2106	240736	2344.9	6.3	0.0034
922.0098	922.0098	319618944	-0.023	24	820.2139	224757	2236.6	6.1	0.0036
1000.5874				25	827.0888	192202	2513.7	6.8	0.0043
1001.5953				26	827.0920	330211	1946.5	5.3	0.0025
1023.5772				27	829.0882	236534	4645.2	12.6	0.0035
1107.4925	1107.4933	2420207	0.683	28	829.0919	258057	3665.6	9.9	0.0032
1221.9906	1221.9908	248277472	0.171	29	830.0925	188239	1517.2	4.1	0.0044
1521.9715	1521.9707	98525208	-0.541	30	831.0887	239377	1792.7	4.9	0.0035
1821.9523	1821.9521	27006852	-0.095	31	831.0930	287835	1354.8	3.7	0.0029
2121.9332	2121.9328	14298138	-0.186	32	857.3457	228233	1438.6	4.0	0.0038
2421.9140				33	857,3489	210308	2507.0	6.9	0.0041
2721.8948				34	859,3463	256942	1570.6	4.4	0.0033
Standard deviati	on: 0.554			35	859.3503	291941	1588.7	4.4	0.0029
				36	922,0098	183914	7394.5	21.0	0.0050
				37	922.0149	253375	2830.7	8.0	0.0036
				38	1149.0077	142496	1403.1	4.3	0.0081
				39	1221,9908	118904	5185.8	16.3	0.0103
				40	1521.9707	97333	1955.8	6.5	0.0156
				#	m/z	Res.	S/N	1% F	WHM

#	m/z	Res.	S/N	۱%	FWHM
1	820.2105	240736		100.0	0.0034
2	821.2075	241028		1.5	0.0034
3	821.2139	241030		61.0	0.0034
4	822.2109	241323		0.9	0.0034
5	822.2171	241325		19.1	0.0034
6	823.2142	241617		0.3	0.0034
7	823.2203	241619		4.1	0.0034
8	824.2234	241914		0.7	0.0034

Bruker Daltonics solariX

ETH - MS-Service LOC - D-CHAB

Page 2 of 2

Full assignment at 218 K:

Nr	¹ H _[ppm]	¹³ C [ppm]	Nr	¹ H _[ppm]	¹³ C [ppm]
1	<u>v</u> ···	75.29	15	<u>.</u>	136.82
2	-	85.66	16	7.79	128.82
3	-	119.45	17	7.83	130.14
4	7.71	117.48	18	-	132.55
5	_	141.40	19	7.65	129.23
6	-	125.05	20	7.76	128.13
7	8.23	121.57	21	_	167.12
8	7.36	122.52	22	_	130.80
9	_	123.80	23	_	132.74
10		142.26	24	_	167.30
11	7.52	110.82	25	-	135.83
12	7.47	128.05	26	7.92	136.70
13	7.31	121.53	27	8.09	135.63
14	8.24	121.92	28	8.17	124.53

VT-¹H NMR (600 MHz, THF-d8):

DA-259.20.fid DA-259 in THF, 333 K, BBI, 1H	AA AA	u lu	λM	h	-13
DA-259.19.fid DA-259 in THF, 323 K, BBI, 1H	۸۸ MM ۸	h Im	 	^ 	-12
DA-259.18.fid DA-259 in THF, 313 K, BBI, 1H	 ^^ M	i I m	 ///	A.	
DA-259.1.fid DA-259 in THF, 298 K, BBI, 1H	AA MA AAA		M۸	M.	-10 Mata
DA-259.2.fid DA-259 in THF, 293 K, BBI, 1H			 M 1		
DA-259.3.fid DA-259 in THF, 283 K, BBI, 1H			 		-8 Million -8
DA-259.4.fid DA-259 in THF, 263 K, BBI, 1H	MLM JA	M			
DA-259.5.fid DA-259 in THF, 243 K, BBI, 1H	M M M.	 M ~ ~~~		MM	-6 M M
DA-259.6.fid DA-259 in THF, 233 K, BBI, 1H		M mmm	1 m	Mm 1	-5
DA-259.7.fid DA-259 in THF, 223 K, BBI, 1H	M. M. M	M Mm	l m	Mm M	-4
DA-259.8.fid DA-259 in THF, 219 K, BBI, 1H	MM	M. M.	In	M M	-3
DA-259.9.fid DA-259 in THF, 208 K, BBI, 1H		n In I		MM	
8.6 8.5 8.4	8.3 8.2 8.1 8.0	7.9 7.8 f1 (ppm)	7.7 7.6	7.5 7.4	7.3 7.2

VT-NMR shows coalescence at 265 K for the exchanging protons H-17 and H-19, and at 253 K for protons H-16 and H-20 coalesce. The shift difference $|v_A v_B|$ between the exchanging was determined as 109.6 and 22.9 Hz, respectively. The Eyring equation can be rewritten followingly to determine the rotational barrier.^[1]

$$\Delta G = RT_c \cdot ln \frac{RT_c \sqrt{2}}{\pi N_A h |\nu_A - \nu_B|}$$

_

With the above mentioned T_c and shift differences we obtain activation barriers of 52.4 kJ/mol for H-17/19 and 53.2 kJ/mol, or an an averaged rotational barrier of 52.8 kJ/mol. The uncertainty of the activation barrier is estimated to be ± 1 kJ/mol.

¹³C NMR (150 MHz, THF-d8): at 219 K

DA-259.15.fid DA-259 in THF, 219 K, BBI, 13C{1H}

HSQC: at 219 K

HMBC: at 219 K

COSY: at 219 K

8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 f2 (ppm)

ROESY: at 219 K

Thiophene macrocycle 1:

¹H NMR (500 MHz, CDCl₃):

¹³C NMR (126 MHz, CDCl₃):

37

High Resolution Mass Spectrometry Report

	Meas.	. m/z	#	Formula		Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	z
	877.1 893.1	1879 1617	1 1	C 56 H 30 C 56 H 30	N 4 Na O 4 S K N 4 O 4 S	100.00 100.00	877.1880 893.1619	0.1 0.2	0.1 0.2	10.3 57.0	43.5 43.5	even even	1+
ass	list		-										
	#		m/z	z 1%	I								
	1	217.1	1043	3 12.3	5867								
	2	239.0	0898	6.6	3148								
	3	261.1	1309	9 7.4	3527								
	4	273.1	1674	4 37.4	17771								
	5	297.2	2403	3 7.2	3404								
	6	301.1	1411	22.7	10776								
	7	301.1	1621	I 7.9	3767								
	8	305.1	1574	5.6	2667								
	9	313.2	2349	9 7.6	3590								
	10	315.1	1778	3 11.9	5641								
	11	331.2	2093	3 27.3	12976								
	12	341.4	2004	+ 11.2	2338								
	13	240.	1020	5 10.1	4019								
	14	350 0	287	0 0.7	4590								
	16	3531	2664	1 32.8	15596								
	17	354 1	2696	64 S	3040								
	18	365	1059	9 10.3	4910								
	19	373.2	2197	6.5	3075								
	20	381.2	2973	3 26.2	12432								
	21	382.3	3008	6.3	3010								
	22	385.2	2921	l 10.9	5198								
	23	389.2	2512	2 8.1	3843								
	24	393.2	2975	5 11.6	5507								
	25	409.1	1310) 8.1	3830								
	26	413.2	2659	9 15.2	7217								
	27	421.2	2321	l 5.6	2674								
	28	429.3	3181	7.4	3536								
	29	443.3	3344	7.3	3477								
	30	447.	3443	3 16.7	7952								
	31	467.	1021	45.1	21429								
	3∠ 22	400.	1020	0 17.0	0439 6062								
	34	409.	3286	5 12.0 S 8.8	4158								
	35	403.	3444	5 69	3263								
	36	483 ()75P	5 71	3393								
	37	487.3	3606	5 8.1	3829								
	38	517.3	3709	6.5	3082								
	39	531.3	3869	8.4	3993								
	40	541.1	1209	73.3	34835								
	41	542.1	1214	36.1	17144								
	42	543.1	1196	5 25.7	12221								
	43	544.1	1197	7 10.0	4728								
	44	557.0	0951	21.6	10261								
	45	558.0	J952	2 11.0	5205								
	46	559.0	1937	9.1	4337								
	4/	561.	3964 4 1 1 0	+ 5.9	2/92								
	40	615	+120 1300) /.4) 55.3	26273								
	49 50	616 -	1404	, JJ.J 5 32.4	15403								
	51	617	1382	2 25 0	11890								
	52	618	1380) 9.6	4551								
	53	619 4	4389	6.0	2866								
	54	631.1	1136	5 20.5	9744								
	55	632.1	1142	2 13.3	6336								
	56	633.1	1121	11.1	5259								
	57	663.4	4658	3 5.5	2620								
	58	689.1	1583	35.0	16631								
	59	690.1	1591	23.2	11034								
	60	691.1	1572	2 17.8	8452								

Bruker Compass DataAnalysis 4.0

Acquisition Date 29.04.2021 14:57:11

Page 2 of 3

			High	Resolution	Mass	Spectrometry	Report
#	m/z	۱%	I				
62	705.1324	12.8	6059				
63	706.1327	7.6	3613				
64	707.1306	7.5	3551				
65	763.1769	19.8	9423				
66	764.1783	14.3	6777				
67	765.1756	11.4	5403				
68	766.1761	6.0	2841				
69	779.1505	6.6	3159				
70	780.1503	6.2	2962				
71	837.1958	11.5	5461				
72	838.1967	10.1	4781				
73	839.1940	8.7	4147				
74	845.2156	15.7	7445				
75	846.2195	10.1	4786				
76	854.1967	7.1	3351				
77	855.2028	7.0	3341				
78	877.1879	100.0	47510				
79	878.1912	61.5	29195				
80	879.1925	24.0	11419				
81	880.1925	6.8	3219				
82	891.2032	19.6	9295				
83	892.2068	11.6	5516				
84	893.1617	18.0	8543				
85	893.2055	5.6	2651				
86	894.1656	11.6	5532				
87	895.1963	6.7	3189				
88	911.2143	8.2	3895				
89	912.2154	7.4	3518				
90	913.2127	6.4	3026				
91	918.2144	8.4	3992				
92	969.2354	15.4	7316				
93	970.2383	10.2	4866				
94	985.2337	6.8	3242				
95	986.2345	5.7	2718				
96	987.2323	6.1	2902				
97	1059.2540	6.2	2952				
98	1699.4165	6.5	3107				
99	1700.4181	8.7	4149				
100	1701.4197	5.8	2749				

Acquisition Parameter

General	Fore Vacuum Scan Begin	2.39e+ 75 m/z	000 mBar	High Vacuum Scan End	1.05e-007 mBar 1700 m/z	Source Type Ion Polarity	ESI Positive
Source	Set Nebulizer Set Dry Heater	0.4 Bar 180 °C		Set Capillary Set End Plate Offset	3600 ∨ -500 ∨	Set Dry Gas	4.0 l/min
Quadrupole	Set Ion Energy (MS on	ly)	4.0 eV			100.011	
Coll. Cell	Collision Energy		8.0 eV	Set Collision Cell RF	500.0 Vpp	100.0 Vpp	
lon Cooler	Set Ion Cooler Transfer	Time	100.0 µs	Set Ion Cooler Pre Pulse	e Storage Time 18	3.0 µs	

Bruker Compass DataAnalysis 4.0

Acquisition Date 29.04.2021 14:57:11

Page 3 of 3

Complete Assignment at 218 K:

Nr	¹ H [ppm]	¹³ C [ppm]	Nr	¹ H _[ppm]	¹³ C [ppm]
1	7.69	125.3	15	<u>.</u>	137.2
2	-	144.3	16	7.81	128.17
3	-	133.1	17	7.85	130.3
4	7.61	107.0	18	-	132.1
5	_	141.8	19	7.65	129.5
6	_	123.6	20	7.82	128.20
7	8.25	121.8	21	_	167.4
8	7. <u>8</u> 5	118.1	22	_	131.1
9	_	124.1	23	_	132.7
10		142.0	24	_	167.2
11	7.50	110.8	25		135.3
12	7.40	127.1	26	8.01	136.2
13	7.29	121.4	27	8.11	135.7
14	8.20	121.3	28	8.16	124.2

VT-¹H NMR (600 MHz, THF-d8):

VT-NMR shows coalescence of protons H-17 and H-19 at 263 K. Unfortunately the protons H-16 and H-20 experience different temperature shifts, resulting in accidental isochrony, thus, preventing further analysis. The chemical shift difference for H-17 and H-19 was determined as 120.8 Hz.

The Eyring equation can be rewritten followingly to determine the rotational barrier^[1]

$$\Delta G = RT_c \cdot ln \frac{RT_c \sqrt{2}}{\pi N_A h |\nu_A - \nu_B|}$$

With $T_c = 263 \text{ K} \Delta G$ the rotational barrier is determined as 51.8 kJ/mol. The uncertainty of the activation barrier is estimated to be $\pm 1 \text{ kJ/mol}$.

COSY: at 218 K

HSQC: at 218 K

Calculations and Structure Analysis

Geometry Optimization and Conformer Analysis

Optimization, frequency analysis and TD-DFT calculations were preformed using Gaussian 09 $(E.01)^2$, automated conformational analysis was carried out using CREST³ and the obtained structures submitted again to DFT optimization. For geometry optimization coordinates of (*P*)-**2** was extracted from the crystalstructure of (*rac*)-**2**. The initial guess for (*P*)-**1** was modeled from the optimized structure of (*P*)-**2**.

Figure S6. Optimized Geometry of (P)-2 calculated with B3LYP/6311G* level of theory.

Figure S7. Optimized geometry of (P)-1 calculated with B3LYP/6311G* level of theory.

For both macrocycles automated conformation analysis was carried out within a 6 kcal/mol energy-window using CREST and yielded five conformers. Optimization on the same level as the initial guess reduced the ensemble to three conformers for (P)-**1**.

Figure S8. Optimized conformers of (*P*)-2 at the level of B3LYP/6311G(d,p), left all conformers overlapped, red conformer 1, yellow conformer 2, magenta conformer 3. Conformer 4 and 2 as well as conformer 5 and 1 from CREST converged to the same structure respectively.

Table S1. Boltzmann distribution of (P)-2								
Conformer	SP E [Hartree]	ZPC [Hartree]	corr E [Hartree]	Thermal corrections [Hartree]	G [Hartree]	$p_i = e^{\frac{G_i - G_1}{kT}}$	$\frac{p_i}{p_{tot}}$	$\frac{p_i}{p_{tot}} \\ * 100$
1	-2670.770101	0.683216	-2670.086885	0.601458	-2670.168643	1	0.967327278	96.73
2	-2670.767768	0.683657	-2670.084111	0.602331	-2670.165437	0.033523056	0.032427767	3.24
3	-2670.764627	0.684234	-2670.080393	0.603803	-2670.160824	0.000253229	0.000244955	0.02

The conformers of (P)-2 vary in the orientation of the benzene bridge with a large population (96.73%) of the first conformer.

Figure S9. Optimized conformers of (*P*)-1 at the level of B3LYP/6311G(d,p), left topview, right frontview, top overlayd geometries, red conformer 1, magenta conformer 2, yellow conformer 3, and orange conformer 5. Conformer 4 from CREST converged to the same geometry than conformer 2.

Table S2. Boltzmann distribution of (P)-1								
Conformer	SP E [Hartree]	ZPC [Hartree]	Corr E [Hartree]	Thermal corrections [Hartree]	G [Hartree]	$p_i = e^{\frac{G_i - G_1}{kT}}$	$\frac{p_i}{p_{tot}}$	$\frac{p_i}{p_{tot}} \\ * 100$
1	-3070.262991	0.710579	-3069.552412	0.62904	-3069.633951	0.000987	0.000479259	0.047926
2	-3070.266079	0.710131	-3069.555948	0.628256	-3069.637823	0.059581	0.028944461	2.894446
3	-3070.267977	0.709726	-3069.558251	0.627493	-3069.640484	0.997884	0.484774165	48.47742
5	-3070.267978	0.709726	-3069.558252	0.627492	-3069.640486	1	0.485802116	48.58021

The conformers of (*P*)-1 vary in the orientation of the benzene bridge and in the orientation of the thiophene with a large population of 48.58% and 48.48% of the conformer 5 and 2, respectively. Rotation around the backbone (C_2 symmetry operation) shows that conformers 5 and 3 are very similar with only minute differences.

TD-DFT:

Vertical singlet transitions where calculated, for all the conformers of (*P*)-1 found, at the TD-B3LYP/ 6311G(d,p) level of theory, the Polarizable Continuum Model was used to take the effects of acetonitrile into account. SpecDis 1.71 was used to extract the transitions and fit the calculated data.^{4,5} Only conformers with significant population (above 5% were taken into account). The minute difference between conformers 3 and 5 did not yield in different computed transitions.

Figure S9. Computed transitions as bar plot at TD-B3LYP/6-311G(d,p) level of theory. In yellow conformer 3 is depicted and in orangege conformer 5 of (*P*)-1.

X-Ray Structure and Optimized Geometries

Crystals of (rac)-2 were obtained by slow vapor diffusion of n-hexane into a solution of CHCl₃.

Figure S10. Unit cell of the crystal of rac-2 obtained from slow diffusion of hexane to a solution of *rac-2* in chloroform. Visualized in the ORTEP representation with 50% probability. Hydrogens are omitted for clarity.

Figure S11. Herringbone-type packing of the crystal of rac-2 obtained from slow diffusion of hexane to a solution of *rac*-2 in chloroform. Close contacts which indicate weak π - π interaction are illustrated.

Mercury 2021.3.0 was used to measure the angles in the modeled structures of (*P*)-1 and (*P*)-2 as well as (*P*)-2 extracted from the solid state structure above. Four centroids (dummy atoms) were calculated as pivots for measuring the angle between the rung and axis (α), the rung and bannister (β), and as anchors for measuring the dihedral angle ϕ_a . The pivot to measure α was calculated as center point of benzene ring in the phthalimide subunit. For β the pivot was determined

as the middle point of the axis from C2 to C7 in a carbazole subunit. For ϕ_a the centroids of the 7 membered scaffold of the individual phthalimides found in the axis were calculated. The dihedral angle was measured from these centroids over the CC bond connecting the phtahlimides units. Two different dihedral angles ϕ_i are found between rung and axis, the angles are measured from either C1 or C3 over N2 in the phthalimide subunit to the directly bond carbon and the closest C-*ortho*. As each dihedral angle exist twice we report the outer ϕ_1 and inner ϕ_2 as average in the main text. The same is found between rung and banister, with the dihedral angles span by either C8a or C9a over N9 to the bonded quaternary C of the rung and the closest C-*ortho*. As each dihedral angle exist twice we report the outer ϕ_3 and inner ϕ_4 as average in the main text.

Figure S12. ORTEP representation of (*P*)-2 with the discussed angles, (*M*)-2 and solvents are omitted for clarity. Centroids are visualized as red spheres.

Figure S13. Optimized geometrry of (*P*)-2 visualized in Mercury with the discussed angles. Centroids are visualized as red spheres.

Figure S14. Optimized geometrry of (P)-1 visualized in Mercury with the discussed angles. Centroids are visualized as red spheres.

Figure S15. Optimized geomertry of (*P*)-2 calculated with different functionals and basis-sets all staggered over each other. Red: B3LYP/cc-pVDZ. Green: M06-2X/6311G**. Blue: B3LYP/631G**. Yellow: wB97xd/6311G**.

Figure S16. Optimized geomertry of (*P*)-1 calculated with different functionals and basis-sets all staggered over each other. Red: B3LYP/cc-pVDZ. Green: M06-2X/6311G**. Blue: B3LYP/631G**. Yellow: wB97xd/6311G**

Cartesians

Energies are reported in kcal/mol.

Macrocycle 2

92			
da-27	6-P-6311.out	Energy:	-1676279.7370661
0	1.48606	3.01066	-0.80796
0	3.56890	3.19658	3.29514
0	-1.48678	3.01085	0.80811
0	-3.56889	3.19625	-3.29536
Ν	2.72146	2.78220	1.15662
Ν	5.56358	-1.92368	-0.10581
Ν	-5.56346	-1.92404	0.10546
N	-2.72174	2.78212	-1.15670
C	1.77795	3.39751	0.29543
C	1.27407	4.59511	1.03399
C	0.35825	5.57582	0.65264
С Ц	0.14001	0.02100	1.30701
	-0.00031	6 67114	2 70030
н	0.50230	7 49426	3 47540
Ċ	1 70810	5 67581	3 16876
н	2 22662	5 69483	4 12045
C	1 92617	4 65364	2 26096
Č	2.84941	3.49157	2.37474
С	3.45230	1.60036	0.83804
С	4.05412	1.46291	-0.41497
Н	3.95302	2.24702	-1.15340
С	4.75286	0.30165	-0.72559
Н	5.19609	0.17889	-1.70732
С	4.87530	-0.71987	0.21794
С	4.28895	-0.56933	1.47618
Н	4.39216	-1.35908	2.21152
C	3.57036	0.57954	1.78370
Н	3.11683	0.68967	2.75949
C	0.92702	-2.06089	-0.37091
с ц	7.93077	-1.09229	0.13583
C	0.22665	-0.03379	-0.13363
н	10 02601	-0 76934	-0.65962
C	9 52194	-2 84521	-0.94585
Ĥ	10.54401	-3.13112	-1.17061
С	8.52031	-3.80729	-0.94211
Н	8.75504	-4.84453	-1.15970
С	7.20681	-3.42342	-0.65204
С	4.96458	-3.17873	-0.21989
С	5.95371	-4.13731	-0.55512
С	5.57132	-5.47255	-0.73206
Н	6.30897	-6.22685	-0.98659
C	4.24002	-5.83010	-0.58948
н С	3.93280	-0.85999	-0.72875
Ĉ	3.20093	-4.00073	-0.27270
ц	2 87270	-2 777/0	0.15223
C	1 88156	-5 18757	-0 15965
C C	0.67548	-5 30798	-0 05564
č	-0.67510	-5.30805	0.05536
Č	-1.88120	-5.18770	0.15929
C	-4.96436	-3.17907	0.21948
С	-3.62639	-3.51845	0.08222
Н	-2.87263	-2.77781	-0.15299
С	-3.25660	-4.86097	0.27237
С	-4.23958	-5.83035	0.58938
Н	-3.93234	-6.86020	0.72886
С	-5.57087	-5.47284	0.73216
Н	-6.30843	-6.22/13	0.98700
C	-5.95336	-4.13/65	0.0000
C	-0.92681	-2.06129	0.3/110
C	-1.20040	-3.42381	0.00240

С	-8.51983	-3.80774	0.94287
Н	-8.75446	-4.84500	1.16051
н	-9.52152	-2.84572	0.94088
C	-9.22640	-1.50386	0.65839
Н	-10.02579	-0.76989	0.66072
С	-7.93063	-1.09275	0.36553
H C	-7.71098	-0.05627	0.13604
c	-4.75409	0.30189	0.72489
Ĥ	-5.19816	0.17948	1.70630
С	-4.05544	1.46321	0.41432
Н	-3.95532	2.24776	1.15242
C C	-3.56931	0.57887	-0.03019 -1 78343
Ĥ	-3.11489	0.68867	-2.75884
С	-4.28782	-0.57008	-1.47599
Н	-4.39016	-1.36019	-2.21108
C	-1.77859	3.39765	-0.29531 -1.03304
č	-0.35870	5.57585	-0.65261
С	-0.14841	6.62164	-1.56699
Н	0.55991	7.40281	-1.31133
С	-0.80265	6.67111	-2.79941
п С	-0.59755	7.49423	-3.47541
н	-2.22683	5.69467	-4.12055
С	-1.92653	4.65362	-2.26097
С	-2.84950	3.49134	-2.37491
92			
da276	-P-prop1.out	Energy:	-1676310.9479878
0	1 10700	2 01120	
•	-1.40709	3.01139	0.80895
0	-3.56719	3.19465	0.80895
000	-3.56719 1.48710 3.56719	3.19465 3.01139 3.19465	0.80895 -3.29580 -0.80896 3.29580
0 0 0 N	-3.56719 1.48710 3.56719 -2.72155	3.01139 3.19465 3.01139 3.19465 2.78129	0.80895 -3.29580 -0.80896 3.29580 -1.15623
0 0 0 N N	-1.48709 -3.56719 1.48710 3.56719 -2.72155 -5.56406	3.19465 3.01139 3.19465 2.78129 -1.92283	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774
0 0 0 N N N	-1.48709 -3.56719 1.48710 3.56719 -2.72155 -5.56406 5.56406	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774
0000 z z z c	-1.46709 -3.56719 1.48710 3.56719 -2.72155 -5.56406 5.56406 2.72155	3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 2.20715	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 0.20504
000 z z z z c c	-1.467/09 -3.56719 1.48710 3.56719 -2.72155 -5.56406 5.56406 2.72155 -1.77852 -1.27374	3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4 59397	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411
0002222000	-1.46709 -3.56719 1.48710 3.56719 -2.72155 -5.56406 5.56406 2.72155 -1.77852 -1.27374 -0.35800	3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295
000022220000	-1.48709 -3.56719 1.48710 3.56719 -2.72155 -5.56406 2.72155 -1.77852 -1.27374 -0.35800 -0.14620	3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801
0000zzzz0001	-1.48709 -3.56719 1.48710 3.56719 -2.72155 -5.56406 5.56406 2.72155 -1.77852 -1.27374 -0.35800 -0.14620 0.56124 0.56124	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952 7.40008	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801 -1.31202
101007ZZZ0000	-1.48709 -3.56719 1.48710 3.56719 -2.72155 -5.56406 2.72155 -1.77852 -1.27374 -0.35800 -0.14620 0.56124 -0.79968 -0.59381	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952 7.40008 6.66811 7.48988	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801 -1.31202 -2.80071 -3.47658
0000zzzz00010±0±0	-1.48709 -3.56719 1.48710 3.56719 -2.72155 -5.56406 2.72155 -1.77852 -1.27374 -0.35800 -0.14620 0.56124 -0.79968 -0.59381 -1.70565	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952 7.40008 6.66811 7.48988 5.67310	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801 -1.31202 -2.80071 -3.47658 -3.17023
тототототии и остонон 10000 и и и и и и и и и и и и и и и и и	-1.48709 -3.56719 1.48710 3.56719 -2.72155 -5.56406 5.56406 2.72155 -1.77852 -1.27374 -0.35800 -0.14620 0.56124 -0.79968 -0.59381 -1.70565 -2.22328	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952 7.40008 6.66811 7.48988 5.67310 5.69103	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801 -1.31202 -2.80071 -3.47658 -3.17023 -4.12134
000722220001010100	-1.48709 -3.56719 1.48710 3.56719 -2.72155 -5.56406 5.56406 2.72155 -1.77852 -1.27374 -0.35800 -0.14620 0.56124 -0.79968 -0.59381 -1.70565 -2.22328 -1.92483 -0.92483	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952 7.40008 6.66811 7.48988 5.67310 5.69103 4.65208	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801 -1.31202 -2.80071 -3.47658 -3.17023 -4.12134 -2.26154
00010101000012220000	-1.48709 -3.56719 1.48710 3.56719 -2.72155 -5.56406 5.56406 2.72155 -1.77852 -1.27374 -0.35800 -0.14620 0.56124 -0.79968 -0.59381 -1.70565 -2.22328 -1.92483 -2.84826 3.45306	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952 7.40008 6.66811 7.48988 5.67310 5.69103 4.65208 3.48994 1.50083	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801 -1.31202 -2.80071 -3.47658 -3.17023 -4.12134 -2.26154 -2.37503 0.83718
0000777000010107770000	-1.48709 -3.56719 1.48710 3.56719 -2.72155 -5.56406 5.56406 2.72155 -1.77852 -1.27374 -0.35800 -0.14620 0.56124 -0.79968 -0.59381 -1.70565 -2.22328 -1.92483 -2.84826 -3.45306 -4.04364	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952 7.40008 6.66811 7.48988 5.67310 5.69103 4.65208 3.48994 1.59983 1.45821	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801 -1.31202 -2.80071 -3.47658 -3.17023 -4.12134 -2.26154 -2.37503 -0.83718 0.42065
тоооототототологии и оооо	-1.48709 -3.56719 1.48710 3.56719 -2.72155 -5.56406 5.56406 2.72155 -1.77852 -1.27374 -0.35800 -0.14620 0.56124 -0.79968 -0.59381 -1.70565 -2.22328 -1.92483 -2.84826 -3.45306 -4.04364 -3.93200	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952 7.40008 6.66811 7.48988 5.67310 5.69103 4.65208 3.48994 1.59983 1.45821 2.23786	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801 -1.31202 -2.80071 -3.47658 -3.17023 -4.12134 -2.26154 -2.37503 -0.83718 0.42065 1.16092
оторотононороли z z z оооо	$\begin{array}{c} -1.467.09\\ -3.56719\\ 1.48710\\ 3.56719\\ -2.72155\\ -5.56406\\ 5.56406\\ 2.72155\\ -1.77852\\ -1.27374\\ -0.35800\\ -0.14620\\ 0.56124\\ -0.79968\\ -0.59381\\ -1.70565\\ -2.22328\\ -1.92483\\ -2.84826\\ -3.45306\\ -4.04364\\ -3.93200\\ -4.74229\end{array}$	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952 7.40008 6.66811 7.48988 5.67310 5.69103 4.65208 3.48994 1.59983 1.45821 2.23786 0.29716	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801 -1.31202 -2.80071 -3.47658 -3.17023 -4.12134 -2.26154 -2.37503 -0.83718 0.42065 1.16092 0.73163
) 1 0000 1 00000 1 00000 1 00000 1 000000 1 000000 1 000000000000000000000000000000000000	-1.467.09 -3.56719 1.48710 3.56719 -2.72155 -5.56406 2.72155 -1.77852 -1.27374 -0.35800 -0.14620 0.56124 -0.79968 -0.59381 -1.70565 -2.22328 -1.92483 -2.84826 -3.45306 -4.04364 -3.93200 -4.74229 -5.17747 4.97564	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952 7.40008 6.66811 7.48988 5.67310 5.69103 4.65208 3.48994 1.59983 1.45821 2.23786 0.29716 0.17025	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801 -1.31202 -2.80071 -3.47658 -3.17023 -4.12134 -2.26154 -2.37503 -0.83718 0.42065 1.16092 0.73163 1.71540 0.21640
0007777000101010777770000	-1.48709 -3.56719 1.48710 3.56719 -2.72155 -5.56406 5.56406 2.72155 -1.77852 -1.27374 -0.35800 -0.14620 0.56124 -0.79968 -0.59381 -1.70565 -2.22328 -1.92483 -2.84826 -3.45306 -4.04364 -3.93200 -4.74229 -5.17747 -4.87591 -4.30137	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952 7.40008 6.66811 7.48988 5.67310 5.69103 4.65208 3.48994 1.59983 1.45821 2.23786 0.29716 0.17025 -0.71852 -0.56349	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801 -1.31202 -2.80071 -3.47658 -3.17023 -4.12134 -2.26154 -2.37503 -0.83718 0.42065 1.16092 0.73163 1.71540 -0.21640 -1.47934
1000zzzz00010101010001	-1.487.09 -3.56719 1.48710 3.56719 -2.72155 -5.56406 5.56406 2.72155 -1.77852 -1.27374 -0.35800 -0.14620 0.56124 -0.79968 -0.59381 -1.70565 -2.22328 -1.92483 -2.84826 -3.45306 -4.04364 -3.93200 -4.74229 -5.17747 -4.87591 -4.30137 -4.41330	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952 7.40008 6.66811 7.48988 5.67310 5.69103 4.65208 3.48994 1.59983 1.45821 2.23786 0.29716 0.17025 -0.71852 -0.56349 -1.34911	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801 -1.31202 -2.80071 -3.47658 -3.17023 -4.12134 -2.26154 -2.37503 -0.83718 0.42065 1.16092 0.73163 1.71540 -0.21640 -1.47934 -2.21649
отоототолоотототолоотилооос	-1.48709 -3.56719 1.48710 3.56719 -2.72155 -5.56406 5.56406 2.72155 -1.77852 -1.27374 -0.35800 -0.14620 0.56124 -0.79968 -0.59381 -1.70565 -2.22328 -1.92483 -2.84826 -3.45306 -4.04364 -3.93200 -4.74229 -5.17747 -4.87591 -4.30137 -4.41330 -3.58228	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952 7.40008 6.66811 7.48988 5.67310 5.69103 4.65208 3.48994 1.59983 1.45821 2.23786 0.29716 0.17025 -0.71852 -0.56349 -1.34911 0.58472	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801 -1.31202 -2.80071 -3.47658 -3.17023 -4.12134 -2.26154 -2.37503 -0.83718 0.42065 1.16092 0.73163 1.71540 -0.21640 -1.47934 -2.21649 -1.78744
) T O T O U T O U O O U U U U U O O O O O	-1.48709 -3.56719 1.48710 3.56719 -2.72155 -5.56406 5.56406 2.72155 -1.77852 -1.27374 -0.35800 -0.14620 0.56124 -0.79968 -0.59381 -1.70565 -2.22328 -1.92483 -2.84826 -3.45306 -4.04364 -3.93200 -4.74229 -5.17747 -4.87591 -4.30137 -4.41330 -3.58228 -3.13841 -3.13841	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952 7.40008 6.66811 7.48988 5.67310 5.69103 4.65208 3.48994 1.59983 1.45821 2.23786 0.29716 0.17025 -0.71852 -0.56349 -1.34911 0.58472 0.70053 2.96672	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801 -1.31202 -2.80071 -3.47658 -3.17023 -4.12134 -2.26154 -2.37503 -0.83718 0.42065 1.16092 0.73163 1.71540 -0.21640 -1.47934 -2.21649 -1.78744 -2.76601
000777000010101000010101000010100000	-1.48709 -3.56719 1.48710 3.56719 -2.72155 -5.56406 5.56406 2.72155 -1.77852 -1.27374 -0.35800 -0.14620 0.56124 -0.79968 -0.59381 -1.70565 -2.22328 -1.92483 -2.84826 -3.45306 -4.04364 -3.93200 -4.74229 -5.17747 -4.87591 -4.30137 -4.41330 -3.58228 -3.13841 -6.92751 -7.93142	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952 7.40008 6.66811 7.48988 5.67310 5.69103 4.65208 3.48994 1.59983 1.45821 2.23786 0.29716 0.17025 -0.71852 -0.56349 -1.34911 0.58472 0.70053 -2.06073 -2.06073 -2.06073	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801 -1.31202 -2.80071 -3.47658 -3.17023 -4.12134 -2.26154 -2.37503 -0.83718 0.42065 1.16092 0.73163 1.71540 -0.21640 -1.47934 -2.21649 -1.78744 -2.76601 0.37156 0.36547
1000777700010101000010107777000	$\begin{array}{c} -1.467.09\\ -3.56719\\ 1.48710\\ 3.56719\\ -2.72155\\ -5.56406\\ 5.56406\\ 2.72155\\ -1.77852\\ -1.27374\\ -0.35800\\ -0.14620\\ 0.56124\\ -0.79968\\ -0.59381\\ -1.70565\\ -2.22328\\ -1.92483\\ -2.84826\\ -3.45306\\ -4.04364\\ -3.93200\\ -4.74229\\ -5.17747\\ -4.87591\\ -4.30137\\ -4.41330\\ -3.58228\\ -3.13841\\ -6.92751\\ -7.93142\\ -7.71101\end{array}$	3.01139 3.19465 3.01139 3.19465 2.78129 -1.92283 -1.92284 2.78129 3.39715 4.59397 5.57471 6.61952 7.40008 6.66811 7.48988 5.67310 5.69103 4.65208 3.48994 1.59983 1.45821 2.23786 0.29716 0.17025 -0.71852 -0.56349 -1.34911 0.58472 0.70053 -2.06073 -1.09243 -0.05686	0.80895 -3.29580 -0.80896 3.29580 -1.15623 0.10774 -0.10774 1.15623 -0.29504 -1.03411 -0.65295 -1.56801 -1.31202 -2.80071 -3.47658 -3.17023 -4.12134 -2.26154 -2.37503 -0.83718 0.42065 1.16092 0.73163 1.71540 -0.21640 -1.47934 -2.21649 -1.78744 -2.76601 0.37156 0.36547 0.13769

н	-10 02624	-0 77191	0 65927		С	0 28401	6 67395	1 49969
Ċ	-9 52187	-2 84660	0.94452		й	-0 40300	7 46755	1 23127
ц	10 54200	2 122/2	1 16010		C	-0.40000	6 72056	0 70700
	-10.34299	-3.13243	0.04114		U U	0.94090	7 57105	2.12120
C 	-8.52001	-3.80842	0.94114		н	0.76682	7.57125	3.38703
н	-8.75328	-4.84494	1.15798		С	1.82958	5.72059	3.11283
С	-7.20676	-3.42349	0.65209		н	2.35342	5.74609	4.06034
С	-4.96434	-3.17734	0.22176		С	2.01654	4.67467	2.22527
С	-5.95313	-4.13666	0.55592		С	2.91023	3.49053	2.35621
Ĉ	-5 57069	-5 47180	0 73233		Ċ	3 45818	1 55965	0 84350
й	-6 30812	-6 22511	0.08567		č	4 04161	1 30741	-0 41522
	-0.30012	-0.22311	0.90007		ů.	2 04 492	0.47470	1 16005
	-4.23924	-3.02003	0.56991		П	3.94403	2.1/4/0	-1.16005
н	-3.93089	-6.85714	0.72832		C	4./16//	0.22117	-0.71966
С	-3.25684	-4.85839	0.27401		н	5.14994	0.07977	-1.70234
С	-3.62610	-3.51568	0.08492		С	4.83225	-0.79067	0.23476
н	-2.87337	-2.77535	-0.15006		С	4.26255	-0.61724	1.49729
Ċ	-1 88120	-5 18506	0 16042		Ĥ	4 36057	_1 40077	2 23870
č	0.67527	-5.10500 5.20572	0.10042		C	2 56015	0 54040	1 20010
č	-0.07527	-3.30372	0.00000			3.30043	0.04040	0.77040
C	0.67527	-5.30572	-0.05586		н	3.13040	0.68089	2.77942
С	1.88128	-5.18505	-0.16043		С	6.87582	-2.16271	-0.29879
С	4.96434	-3.17734	-0.22176		С	7.89538	-1.21350	-0.22957
С	3.62609	-3.51568	-0.08492		н	7.68421	-0.17997	0.01568
н	2 87337	-2 77535	0 15005		С	9 19394	-1 64239	-0 48145
Ċ	3 25683	-4 85830	-0 27401		Ĥ	10 00547	-0.92506	-0 43421
č	1 22022	5 82863	0.58001		Ċ	0 47594	2 08224	0.701/12
	4.23923	-0.02003	-0.56991			9.47504	-2.90224	-0.79140
н	3.93088	-6.85714	-0.72832		н	10.49973	-3.28148	-0.98247
С	5.57069	-5.47181	-0.73233		С	8.45773	-3.92490	-0.85195
Н	6.30811	-6.22511	-0.98566		н	8.68087	-4.95979	-1.08649
С	5.95313	-4.13666	-0.55592		С	7.14118	-3.52262	-0.60426
С	6 92751	-2 06073	-0.37156		С	4 88791	-3 24457	-0 25423
õ	7 20676	-3 42350	-0.65209		č	5 87100	-4 21349	-0 57578
č	9 50001	2 000 12	-0.03203		č	5.07100	-4.21040 E E2644	-0.07070
	0.52001	-3.00043	-0.94113		C III	5.47 300	-5.53041	-0.00123
н	8.75328	-4.84495	-1.15798		н	6.20723	-6.29616	-1.04676
С	9.52187	-2.84661	-0.94452		С	4.13229	-5.87264	-0.71657
н	10.54299	-3.13244	-1.16812		Н	3.81167	-6.89163	-0.89233
С	9.22711	-1.50454	-0.65704		С	3.15556	-4.89367	-0.40996
н	10 02624	-0 77192	-0 65927		С	3 53992	-3 56236	-0 17389
Ċ	7 03143	_1 09244	-0 36547		й	2 70216	-2 81476	0.05438
U U	7.33143	-1.03244	0.12770			1 77255	-2.01470	0.00450
	1.1101	-0.00000	-0.13770		C	1.77300	-5.20500	-0.34572
C	4.87591	-0.71852	0.21640		C	0.56539	-5.32733	-0.27115
С	4.74229	0.29716	-0.73163		С	-0.78617	-5.32793	-0.17175
Н	5.17747	0.17025	-1.71540		С	-1.99127	-5.20591	-0.05769
С	4.04364	1.45821	-0.42065		С	-5.01095	-3.12325	0.22390
Ĥ	3 93200	2 23786	-1 16092		Ċ.	-3 69591	-3 49993	-0.00965
Ċ	3 45307	1 50083	0.93719		ŭ	2 03231	2 78030	0.26760
Č	3.45307	1.09900	0.03710			-2.93231	-2.76039	-0.20709
C	3.58228	0.58472	1.78744		C	-3.35088	-4.85879	0.10731
н	3.13841	0.70054	2.76601		С	-4.35130	-5.81601	0.42117
С	4.30137	-0.56349	1.47934		н	-4.06741	-6.85735	0.50506
Н	4.41331	-1.34911	2.21649		С	-5.66576	-5.42876	0.62626
С	1 77852	3 39715	0 29504		Ĥ	-6 41850	-6 17265	0 86150
č	1 2737/	1 50307	1 03/11		Ċ	-6.01265	-4.07567	0.53580
č	0.25900	4.39397	0.65205		Č	-0.01203	-4.07307	0.33309
	0.35600	5.57471	0.05295		C	-0.94/8/	-1.97452	0.47811
C	0.14620	6.61952	1.56801		C	-7.24779	-3.34363	0.69576
Н	-0.56124	7.40008	1.31202		С	-8.55414	-3.72106	1.02197
С	0.79968	6.66810	2.80071		Н	-8.79743	-4.76402	1.19149
н	0.59381	7,48987	3.47658		С	-9.53341	-2.74298	1.13236
Ċ	1 70565	5 67310	3 17023		Ĥ	-10 55002	-3.02218	1 38312
ŭ	2 22228	5 60103	1 12121		C	0.21607	1 20105	0.02043
	2.22320	5.09105	4.12134		C III	-9.21097	-1.39105	0.92943
C	1.92483	4.65208	2.26154		н	-9.99321	-0.64119	1.03183
С	2.84827	3.48994	2.37503		С	-7.92665	-0.98756	0.60361
					Н	-7.69240	0.05961	0.46277
92					С	-4.88744	-0.64734	-0.11089
da2	76-P-prop2 out	Energy	-1676310 03241	38	С	-5 36031	0 23446	-1 08491
0	1 49658	2 97146	_0 79848		й	-6 27509	0.00766	-1 61788
č	3 62000	2 10260	3 77620		Ċ	1 66761	1 20260	1 20540
0	3.02900	3.19300	3.21039			-4.03/01	1.39209	-1.39349
0	-1.49284	3.17458	0.86795		Н	-5.03428	2.05199	-2.16121
0	-3.43906	3.17141	-3.31734		С	-3.43775	1.66915	-0.76505
Ν	2.75374	2.76018	1.15318		С	-2.96084	0.78600	0.21100
Ν	5.50603	-2.00558	-0.08360		Н	-2.03673	0.99309	0.72609
N	-5,58492	-1.84749	0.18815		С	-3,69357	-0.34414	0.54801
N	-2 68508	2 83180	-1 11061		й	-3 32805	-1 00044	1 32720
Ċ	1 91650	2 200 100	0.28050		Ċ	1 76166	2 101044	1.02128
Č	1.01002	3.30047	0.20900			-1./0100	0.40490	-0.20039
C	1.35466	4.60852	1.00396		C	-1.19264	4.62231	-1.05447
С	0.46264	5.60489	0.60679		С	-0.25173	5.58878	-0.70015

-0.40399	7.46755	1.23127
0.94690	6.73056	2.72728
0.76682	7.57125	3.38703
1.82958	5.72059	3.11283
2.33342	5.74009 4.67467	2 22527
2 91023	3 49053	2 35621
3 45818	1 55965	0.84350
4.04161	1.39741	-0.41522
3.94483	2.17478	-1.16005
4.71677	0.22117	-0.71966
5.14994	0.07977	-1.70234
4.83225	-0.79067	0.23476
4.26255	-0.61724	1.49729
4.36057	-1.40077	2.23870
3.56845	0.54848	1.80014
3.13040 6.87582	0.00009	2.77942
7 89538	-1 21350	-0.29079
7.68421	-0.17997	0.01568
9.19394	-1.64239	-0.48145
10.00547	-0.92506	-0.43421
9.47584	-2.98224	-0.79148
10.49973	-3.28148	-0.98247
8.45773	-3.92490	-0.85195
8.68087	-4.95979	-1.08649
7.14118	-3.52262	-0.60426
4.88791	-3.24457	-0.25423
5.07 199	-4.21349	-0.5/5/6
6 20723	-6 29616	-1.04676
4 13229	-5 87264	-0 71657
3.81167	-6.89163	-0.89233
3.15556	-4.89367	-0.40996
3.53992	-3.56236	-0.17389
2.79216	-2.81476	0.05438
1.77355	-5.20588	-0.34572
0.56539	-5.32733	-0.27115
-0.78617	-5.32793	-0.17175
-1.99127	-5.20591	-0.05769
-5.01095	-3.12325	0.22390
-3.09091	-3.49993	-0.00905
-3 35688	-4 85879	0 10731
-4.35130	-5.81601	0.42117
-4.06741	-6.85735	0.50506
-5.66576	-5.42876	0.62626
-6.41850	-6.17265	0.86150
-6.01265	-4.07567	0.53589
-6.94787	-1.97452	0.47811
-7.24779	-3.34363	0.69576
-8.55414	-3.72100	1.02197
-0.79743	-4.70402	1 13236
-10 55002	-3 02218	1 38312
-9.21697	-1.39105	0.92943
-9.99321	-0.64119	1.03183
-7.92665	-0.98756	0.60361
-7.69240	0.05961	0.46277
-4.88744	-0.64734	-0.11089
-5.36031	0.23446	-1.08491
-6.27509	0.00766	-1.61788
-4.65/61	1.39269	-1.39549
-3.U3420 _3.12775	2.00199	-2.10121
-3.43773 -2 96084	0.78600	0.70000
-2 03673	0 99309	0 72600
-3.69357	-0.34414	0.54801
-3.32805	-1.00044	1.32729
-1.75155	3.48498	-0.26839
-1.19264	4.62231	-1.05447
-0.25173	5.58878	-0.70015

С	0.00766	6.58400	-1.65678
Н	0.73564	7.35306	-1.42453
н	-0.02129	7 37653	-2.90303
C	-1 54518	5 60543	-3 24778
Ĥ	-2.03849	5.58970	-4.21168
С	-1.81413	4.63765	-2.29509
С	-2.75277	3.48735	-2.37786
92			
da270	6-P-prop3.out	Energy:	-1676308.9854645
0	1.51895	3.14774	-0.85737
0	3.45571	3.16602	3.33341
0	-1.51896	3.14774	0.85736
N	-3.43372	3.10002 2.80681	-3.33341 1.13704
N	5.52800	-1.92998	-0.14791
Ν	-5.52799	-1.92999	0.14792
Ν	-2.70261	2.80681	-1.13704
C	1.78993	3.47265	0.27246
C	1.26437	4.64124	1.03395
C	0.35070	5.02554 6.64518	1 50281
н	-0.59154	7.42898	1.34354
С	0.73967	6.66010	2.84193
Н	0.51588	7.46263	3.53498
С	1.63478	5.65415	3.20929
Н	2.12255	5.64348	4.17605
c	2 78453	3 48479	2.27024
č	3.42979	1.62163	0.79949
С	4.61914	1.30093	1.46735
Н	4.98827	1.93842	2.25463
C	5.30145	0.12912	1.16183
н С	0.19212	-0.12807	1.72118 0.15725
č	3.67636	-0.38260	-0.53227
Ĥ	3.32017	-1.01568	-1.33472
С	2.96228	0.76168	-0.20253
Н	2.06393	0.99999	-0.74805
C	6.89/6/	-2.06853	-0.40101
н	7.67152	-0.04780	-0.29742
C	9.18800	-1.50629	-0.76423
Н	9.97774	-0.76556	-0.81852
С	9.49095	-2.85563	-1.00170
Н	10.51065	-3.14242	-1.23036
н	0.49439 8 72723	-3.02112	-0.95596
C	7.18424	-3.43379	-0.65577
C	4.93630	-3.19456	-0.24780
С	5.93413	-4.15105	-0.56062
C	5.57254	-5.49491	-0.70952
н С	0.32204	-0.24090	-0.94650
н	3.95208	-6.90335	-0.68887
С	3.25618	-4.90957	-0.24490
С	3.60904	-3.56012	-0.07061
Н	2.84684	-2.83909	0.18761
C	1.88339	-5.24813	-0.12942
č	-0.67620	-5 37307	0.04409
č	-1.88337	-5.24813	0.12939
С	-4.93628	-3.19457	0.24780
С	-3.60903	-3.56012	0.07060
H C	-2.84684	-2.83909	-0.18/62
C	-3.20010 -4.24723	-4.90957 -5 86976	0.24400
н	-3.95205	-6.90336	0.68884
С	-5.57252	-5.49493	0.70951
Н	-6.32261	-6.24092	0.94649
C	-5.93411	-4.15106	0.56062
U	-0.09/0/	-2.00000	0.40102

С	-7.18422	-3.43380	0.65578
С	-8.49437	-3.82115	0.95398
Н	-8.72721	-4.86168	1.15084
С	-9.49094	-2.85566	1.00172
Н	-10.51063	-3.14245	1.23039
С	-9.18799	-1.50631	0.76427
Н	-9.97773	-0.76559	0.81856
С	-7.89429	-1.09352	0.46457
н	-7.67152	-0.04782	0.29746
С	-4.84165	-0.72506	-0.15724
С	-3.67635	-0.38261	0.53227
Н	-3.32016	-1.01568	1.33472
С	-2.96228	0.76168	0.20252
н	-2.06393	0.99999	0.74804
С	-3.42980	1.62162	-0.79949
С	-4.61915	1.30092	-1.46734
Н	-4.98829	1.93842	-2.25462
С	-5.30146	0.12911	-1.16182
Н	-6.19214	-0.12808	-1.72116
С	-1.78994	3.47265	-0.27246
С	-1.26438	4.64124	-1.03395
С	-0.35071	5.62554	-0.65710
С	-0.11470	6.64518	-1.59282
н	0.59153	7.42898	-1.34355
С	-0.73969	6.66010	-2.84194
Ĥ	-0.51590	7.46263	-3.53498
С	-1.63480	5.65415	-3.20930
н	-2.12257	5.64348	-4.17606
С	-1.88132	4.66131	-2.27624
Ċ	-2.78455	3.48479	-2.38405

Macrocycle 1

95		_	
da-288	3-P-6311.out	Energy:	-1926982.2877855
0	-1.49666	3.37146	0.81743
0	-3.70327	3.36718	-3.22194
0	1.27061	3.41775	-0.90084
0	3.41963	3.59654	3.16490
N	-2.75518	3.03099	-1.11267
N	-5.03403	-1.94591	0.24291
N	5.14852	-1.66600	-0.13659
N	2.51275	3.17436	1.05365
С	-1.84019	3.72391	-0.28298
С	-1.44423	4.94716	-1.04535
С	-0.57254	5.98325	-0.70758
С	-0.46785	7.03535	-1.63287
С	-1.17900	7.03822	-2.83434
С	-2.03339	5.98485	-3.16328
С	-2.14742	4.95497	-2.24489
С	-2.98088	3.72325	-2.32571
С	-3.34945	1.78028	-0.77381
С	-3.88633	1.58135	0.49984
С	-4.43582	0.34968	0.83648
С	-4.47694	-0.68365	-0.10144
С	-3.95739	-0.47272	-1.38072
С	-3.38473	0.74850	-1.71409
С	-6.36360	-2.18829	0.59908
С	-7.42944	-1.29454	0.70344
С	-8.67004	-1.80677	1.06852
С	-8.85111	-3.17554	1.31989
С	-7.78860	-4.06294	1.20383
С	-6.52960	-3.57577	0.83896
С	-4.34468	-3.16063	0.25660
С	-5.24258	-4.19491	0.61625
С	-4.76350	-5.50638	0.69473
С	-3.42783	-5.76404	0.42962
С	-2.53175	-4.72602	0.08113
С	-3.00052	-3.40850	-0.00377
С	4.54166	-2.91688	-0.26117
С	3.18801	-3.23698	-0.24675
С	2.80918	-4.57673	-0.40991

С	3.81279	-5.56156	-0.58100	(С	-0.78250	7.07437	-2.82707
č	5 15672	5 22008	0.62008		ĉ	1 62074	6 02850	3 21657
0	5.15072	-5.25000	-0.02000		2	-1.02074	0.02000	-5.21057
С	5.54446	-3.89522	-0.46577	(C	-1.82264	5.01022	-2.29993
С	6.53070	-1.83021	-0.25837	(С	-2.64570	3.77803	-2.43879
č	6 012/0	2 20400	0.46624		č	2 16000	1 04504	0.00000
C	0.01340	-3.20400	-0.40034	(-3.10900	1.04521	-0.09093
С	8.14216	-3.61542	-0.61280	(С	-4.33987	1.45608	-1.55462
C	9 15595	-2 66787	-0 54587	(C	-4 94372	0 24033	-1 25438
ě	0.10000	2.00101	0.04001		š	4.40000	0.24000	0.05000
C	8.85678	-1.31387	-0.32936	(C	-4.42392	-0.59045	-0.25889
С	7.54474	-0.87598	-0.18118	(С	-3.26598	-0.19031	0.41189
Ĉ	4 47004	0 44412	0 15949		ĉ	2 63002	0.00060	0.08650
C	4.47994	-0.44412	0.15646	(6	-2.03002	0.99900	0.00059
С	4.43666	0.58169	-0.78697	(С	-6.41351	-1.97893	0.39116
C	3 70654	1 78027	0 40163	(r r	7 13861	-1 03336	0 /3750
C	3.79034	1.70027	-0.49103		5	-7.43004	-1.03330	0.43739
С	3.17795	1.95103	0.74815	(С	-8.70602	-1.46638	0.81357
C	3 20890	0 92342	1 69265	(C	-8 95434	-2 80714	1 14229
ě	0.20000	0.02042	1.00200		š	7.00704	2.00114	1.14220
C	3.86666	-0.26509	1.40021	(C	-7.92766	-3.74192	1.11383
С	1 58103	3 80800	0 19652	(C	-6 64355	-3 33262	0 74204
č	1 10107	E 00007	0.00709		č	4 44000	2.05116	0.02475
C	1.12197	5.02907	0.92720	(-4.41090	-3.05110	0.23475
С	0.20865	6.01748	0.55813	(С	-5.37276	-4.01163	0.64687
Ċ	0.05158	7 08606	1 45567	(Č.	1 05377	5 32537	0 979/2
0	0.03130	7.00090	1.45507			-4.95577	-3.32337	0.07042
С	0.75087	7.15016	2.66247	(C	-3.62099	-5.65916	0.70938
C	1 64437	6 14 14 0	3 02530	(C.	-2 66885	-4 70416	0 27835
ě	1.04400	5.00500	0.02000		Š	2.00000	4.70410	0.27000
C	1.81100	5.09563	2.13329	(C	-3.08569	-3.38982	0.02419
С	2 69402	3 90232	2 25305	(C	4 41893	-3 05121	-0 23476
č	1 10550	E 00744	0.10295		č	2 00565	2 20000	0.00445
C	-1.12000	-5.03741	-0.19265	, i		3.00000	-3.30900	-0.02415
С	-0.59006	-6.15210	-0.79171	(С	2.66878	-4.70420	-0.27829
č	0.9100/	6 10020	0.02510		ĉ	3 62080	5 65021	0 70035
C	0.01994	-0.10929	-0.92519	(3.02009	-5.05921	-0.70935
С	1.39622	-4.96436	-0.42439	(С	4.95367	-5.32543	-0.87843
\$	0 153/1	-3 02//7	0 24556	(r r	5 37268	_1 01170	-0 64680
	0.10041	-5.52447	0.24000		-	5.57200	-4.01170	-0.04003
н	0.20562	7.85761	-1.41442	(C	6.41348	-1.97901	-0.39122
н	-1 05503	7 86874	-3 52100	(C.	6 64349	-3 33271	-0 74210
	-1.00000	7.00074	-0.02100		Š	7.00750	-0.00271	-0.74210
н	-2.58834	5.96447	-4.09419	(C	7.92758	-3.74203	-1.11392
н	-3.84810	2.37504	1.23374	(С	8.95427	-2.80726	-1.14240
L L	1 00607	0 10050	1 02206		[°]	0 70500	1 46650	0.01260
п	-4.02027	0.10230	1.03300	(0.70590	-1.40050	-0.01309
н	-4.00188	-1.26974	-2.11404	(С	7.43861	-1.03346	-0.43768
н	-2 08108	0 00507	-2 70582	(r r	1 12301	-0 50051	0 25887
	-2.30130	0.30307	-2.70502		2	4.42001	-0.53051	0.23007
н	-7.30033	-0.23741	0.50161	(C	4.94375	0.24027	1.25434
н	-9 51505	-1 13157	1 15719	(С	4 33992	1 45603	1 55460
	0.00000	2 54202	1 60274		ĉ	2 16004	1 04517	0.00002
п	-9.03200	-3.54202	1.60374	l l	C	3.10904	1.04517	0.69093
н	-7.93529	-5.12201	1.39175	(С	2.63003	0.99957	-0.08658
н	-5 42600	-6 31010	0 07571	(r	3 26507	-0 10035	_0 /1180
	-3.42000	-0.31910	0.97571		-	3.20397	-0.19035	-0.41109
н	-3.04843	-6.77532	0.52307	(С	1.69292	3.80485	0.30939
н	-2 33164	-2 60525	-0 28874	(C	1 21784	5 00717	1 05162
	2.00104	2.00020	0.20074		š	0.05000	0.00717	0.05504
н	2.44137	-2.45866	-0.13920	(C	0.35298	6.02819	0.65521
н	3.52324	-6.60221	-0.66786	(С	0.16298	7.07174	1.57513
L L	5 00104	6 00729	0.76221		ĉ	0 70260	7 07/2/	2 02712
п	5.90104	-0.00730	-0.70221	(0	0.76200	1.01434	2.02712
н	8.37939	-4.66246	-0.77375	(С	1.62083	6.02846	3.21661
н	10 10028	-2 07533	-0 65865	(C	1 82272	5 01018	2 20006
	0.00404	-2.57 555	-0.00000		Š	0.04570	0.01010	2.20000
н	9.66461	-0.59129	-0.27354	(C	2.64578	3.77799	2.43880
н	7.32121	0.17033	-0.00662	(С	-1 26373	-5 08822	0 12142
L L	4 00222	0 42515	1 75501		č	0 70402	6 24427	0.06620
	4.90222	0.43515	-1.75501	l l		-0.70403	-0.34437	0.00039
н	3.75960	2.57172	-1.22856	(С	0.70478	-6.34438	-0.06607
н	2 73632	1 05080	2 65647	(r	1 26366	-5 08824	_0 12132
	2.70002	1.00000	2.00047		~	1.20000	-0.00024	-0.12102
н	3.90821	-1.06044	2.13560		S	-0.00004	-3.87915	-0.00006
н	-0 65495	7 87343	1 21139	H	н	0 50725	7 88289	-1 31381
	0 50504	7 00160	2 22694			0 50470	7 00600	2 50707
п	0.00001	7.99100	3.32001	Г	П	-0.59476	7.09090	-3.30727
н	2.18978	6.16621	3.96173	ł	H	-2.09680	6.00526	-4.18894
н	-1 20134	-6 96196	-1 17151		н	-4 75633	2 07981	-2 32970
	1.20104	0.00100	1.17101				2.07001	2.02010
н	1.38936	-0.88744	-1.41818	I	н	-5.82452	-0.06630	-1.80414
				ŀ	Н	-2.86086	-0.80920	1.20202
05				I	LI LI	1 7/100	1 20660	0 62204
95		_		Г	П	-1.74109	1.20000	0.02394
da28	8-P-prop1-fre	q.out Energy:	-1927013.941038	5 I	H	-7.25835	0.00680	0.20054
0	-1 44341	3 40232	0 82905	ŀ	н	-9 51693	-0 74805	0 85539
0	-1.44041	0.40000	0.02000			0.01000	0.14000	4.40750
0	-3.28260	3.42862	-3.40088	ł	п	-9.95454	-3.11155	1.42759
0	1.44347	3.49231	-0.82904	H	Н	-8.11738	-4.77501	1.38317
Ō	3 20257	3 17956	3 10088		н	5 66277	6 07010	1 20442
0	3.20201	3.42000	3.40000	1	11	-5.00277	-0.0/010	1.20442
N	-2.53190	3.08667	-1.20283	ł	H	-3.29753	-6.66803	0.93120
N	-5 05818	-1 81550	0 07271	ŀ	н	-2 38130	-2 65217	-0.33650
	5.00010	1.01000	0.07074			2.00100	0.05000	0.00000
IN	5.05815	-1.81565	-0.0/2/4	ł	п	2.38127	-2.05220	0.33656
N	2.53195	3.08664	1.20283	ŀ	Н	3.29741	-6.66807	-0.93117
C	1 60295	3 80/197	0 30038		н	5 66265	6 07926	1 20115
Č	-1.03200	5.00407	-0.00800	r ·		0.00200	-0.07020	-1.20440
С	-1.21776	5.00719	-1.05159	ł	Н	8.11728	-4.7512	-1.38326
С	-0.35290	6.02820	-0.65518	ŀ	н	9,95446	-3.11170	-1.42773
č	0 16200	7 07175	1 57500			0 51600	0 74040	0 05550
C	-0.10289	1.0/1/5	-1.3/308	ł		9.01090	-0.74819	-0.80003

Н	7.25835	0.00671	-0.20063
н	5.82456	-0.06637	1.80409
Н	4.75640	2.07976	2.32967
п	1.74109	1.28000	-0.02392
	2.00003	-0.00924	-1.20201
н	0.50/10	7.80686	3 50733
н	2 09689	6.00521	4 18898
н	-1 29105	-7 25237	0 10866
н	1.29101	-7.25238	-0.10815
95			
da288	-P-prop2-fre	eq.out Energy: ·	-1927015.2765481
0	1.36823	3.32420	-0.86909
0	3.61017	3.50408	3.14538
0	-1.39879	3.56074	0.87802
N	-3.40000	3.43030	-3.24204
IN N	5 04041	3.07055	0.10047
N	-5 11604	-1.09420	0.31347
N	-2 60587	3 14407	-1 08141
C	1 73019	3 73514	0 20525
Č	1.35584	5.00168	0.90521
С	0.49528	6.03069	0.51933
С	0.40745	7.12878	1.39065
С	1.12342	7.18199	2.58810
С	1.96623	6.13610	2.96675
С	2.06469	5.06071	2.10016
С	2.88580	3.82514	2.23801
C	3.24833	1.81813	0.76667
C	3.81234	1.59292	-0.49059
C	4.39218	0.36279	-0.77835
C	4.42828	-0.64126	0.19013
c	3.00900	0.40090	1.44024
C C	6 4 1 6 8 4	-2 11940	-0 19983
č	7 47115	-1 21548	-0 07359
č	8.76436	-1.70947	-0.21001
С	9.00534	-3.06877	-0.46263
С	7.95107	-3.96593	-0.57971
С	6.64007	-3.49761	-0.44681
C	4.37960	-3.10955	-0.27950
C	5.34046	-4.12725	-0.49591
C	4.09000	-5.43073	-0.70309
C C	2 57764	-4 68312	-0.03310
č	3.01274	-3.36714	-0.29895
С	-4.48105	-2.97420	0.28270
С	-3.16578	-3.28638	-0.04831
С	-2.76050	-4.62667	-0.01056
С	-3.69445	-5.63019	0.33607
C	-5.00896	-5.31399	0.64027
C	-5.41979	-3.97733	0.02200
C.	-6 67530	-3.31000	0.87992
č	-7.94014	-3.75638	1.27395
С	-8.95463	-2.82842	1.47078
С	-8.71345	-1.45880	1.28679
С	-7.46491	-0.98769	0.89430
С	-4.50816	-0.48748	-0.01429
C	-3.29040	-0.12419	0.56550
C	-2.05031	1.05/02	0.20582
c	-3.23730	1.92770	-0.7 1001
č	-5.10030	0.37870	-0.93641
Ċ	-1.69104	3.84971	-0.25594
С	-1.20819	5.00829	-1.06192
С	-0.28662	6.00708	-0.74650
С	-0.10990	7.01500	-1.70889
С	-0.79702	7.00537	-2.92461
C	-1.69436	5.98202	-3.23338
C	-1.88166	5.00006	-2.27529
C	-2.16088	3.80090	-2.32990

ССССюттттттттттттттттттттттттттт	1.14938 0.52796 -0.88291 -1.37297 -0.05081 -0.25525 1.01230 2.52409 3.77929 4.81897 3.90663 2.84659 7.29088 9.60261 10.02567 8.14254 5.60685 3.20173 2.30056 -2.46908 -3.36249 -5.70834 -8.12491 -9.3993 -9.51479 -7.28776 -2.83191 -1.71181 -4.96292 -6.03357 0.60235 -0.61732 -2.22629 1.06734	-5.00919 -6.11660 -6.10730 -4.98838 -3.93783 7.94706 8.04626 6.15506 2.36745 0.17501 -1.18828 0.99446 -0.16662 -1.02830 -3.41979 -5.01632 -6.24085 -6.72790 -2.56054 -2.51819 -6.65968 -6.09972 -4.81352 -3.16168 -0.74874 0.07263 -0.77170 1.31236 2.23536 0.10242 7.80772 7.7996 5.94853 -6.90427	-0.54762 -1.07854 -0.94475 -0.31611 0.14722 1.13276 3.23243 3.89481 -1.24403 -1.75602 2.19959 2.71258 0.12750 -0.11648 -0.56410 -0.76929 -0.85747 -0.82725 -0.17601 -0.35523 0.39115 0.90349 1.42929 1.77511 1.45719 0.76920 1.30176 0.65871 -1.98974 -1.41048 -1.50959 -3.63935 -4.17607 -1.58737
Н	-1.52583	-6.88317	-1.33956
da288 0 0 0 0 0 0 N N N N C C C C C C C C C C	3-P-prop3-fre -1.41771 -3.41284 1.41186 3.40579 -2.58022 -5.09932 5.10189 2.57418 -1.69659 -1.23915 -0.36656 -0.19777 -0.84828 -1.70231 -1.88037 -2.73047 -3.22919 -3.83658 -4.44605 -4.47580 -3.88396 -3.25142 -6.44917 -7.48935 -8.76026 -8.99511 -7.95700 -6.66816 -4.44651 -5.39065 -4.94998 -3.61086 -2.66703 -3.10021 4.45158	q.out Energy: 3.37571 3.44407 3.37706 3.44955 3.07342 -1.81495 -1.80791 3.07704 3.74197 4.96316 5.97902 7.03907 7.06725 6.03242 4.99552 3.77948 1.84152 1.66515 0.45545 -0.57735 -0.38983 0.81044 -1.98889 -1.05992 -1.50437 -2.84076 -3.76378 -3.34425 -3.04021 -4.01150 -5.31650 -5.62739 -4.65537 -3.34530 -3.03422	-1927015.7697768 0.80025 -3.34696 -0.80214 3.34558 -1.19541 0.04685 -0.04430 1.19396 -0.31400 -1.04384 -0.65168 -1.55800 -2.79306 -3.17713 -2.27706 -2.41230 -0.88934 0.35573 0.66299 -0.27621 -1.52662 -1.83019 0.36296 0.34082 0.68992 1.04821 1.06042 0.71603 0.20492 0.61708 0.85795 0.69602 0.28216 0.03347 -0.20453

С	3.10519	-3.34135	-0.03768		С	-0.21016	6.01798
С	2.67456	-4.65199	-0.28793		С	-0.05267	7.08703
С	3.62146	-5.62244	-0.69864		С	-0.75079	7.14887
С	4.96055	-5.30946	-0.85641		С	-1.64293	6.13933
С	5.39856	-4.00385	-0.61399		С	-1.80969	5.09414
С	6.45300	-1.97961	-0.35617		С	-2.69134	3.89967
С	6.67527	-3.33454	-0.70886		С	-3.17613	1.94901
С	7.96586	-3.75186	-1.04941		С	-3.78235	1.77377
Č	9.00240	-2.82713	-1.03382		Ċ	-4.42171	0.57504
č	8 76426	-1 49120	-0.67597		č	-4 47681	-0 44509
č	7 49155	-1 04892	-0.33067		Ĉ	-3 87626	-0 26144
č	4 47558	-0 57138	0.00007		č	-3 21858	0.92685
č	1 11531	0.46110	-0 66107		č	-6 52733	-1.83062
Č	2 82267	1 66007	0.35573		č	7 54080	0.87501
Č	2 22/27	1.00997	-0.33373		Č	-7.34000	-0.07091
	3.22477	1.04379	0.00007		Č	-0.00209	-1.31320
	3.24731	0.81493	1.82976		Č	-9.15180	-2.00009
C	3.88191	-0.38451	1.52719		C	-8.13861	-3.61478
C	1.69022	3.74429	0.31191		C	-6.81025	-3.20397
C	1.23106	4.96519	1.04117		C	-4.53864	-2.91/84
С	0.35725	5.97979	0.64844		С	-5.54145	-3.89550
С	0.18699	7.04003	1.55427		С	-5.15464	-5.23026
С	0.83722	7.06955	2.78944		С	-3.81112	-5.56260
С	1.69241	6.03592	3.17413		С	-2.80770	-4.57845
С	1.87196	4.99887	2.27453		С	-3.18519	-3.23853
С	2.72356	3.78396	2.41046		С	4.34354	-3.15929
С	-1.25874	-5.02815	0.12683		С	2.99931	-3.40829
C	-0.70054	-6.28386	0.05581		Ċ	2.53247	-4.72631
č	0 70700	-6 28304	-0.08777		Č	3 42963	-5 76344
Č.	1 26611	-5.02663	-0 13806		Ĉ	4 76545	-5 50453
š	0.00396	-3 81745	0.00484		č	5 24281	-4 19267
ц	0.00000	7 8/50/	-1 20652		č	6 36233	-2 18531
	0.47743	7.04334	3 46226		č	6 52077	2 57240
и Ц	2 20041	6 02104	4 12406		č	7 70045	4 05966
	-2.20941	0.03104	4.13400		č	7.70940	-4.05000
	-3.00007	2.40072	1.00000		Č	0.00110	-3.17004
н	-4.89657	0.30434	1.63626		C	8.66854	-1.80160
н	-3.91940	-1.18669	-2.25932		C	7.42723	-1.29035
Н	-2.79369	0.95324	-2.79903		С	4.47364	-0.68208
Н	-7.31654	-0.02927	0.05700		С	3.96520	-0.46773
Н	-9.58620	-0.80215	0.68075		С	3.39184	0.75308
Н	-9.99799	-3.15358	1.31453		С	3.34604	1.78034
Н	-8.14413	-4.79682	1.33196		С	3.87215	1.57812
Н	-5.64654	-6.08033	1.18532		С	4.42156	0.34647
Н	-3.27447	-6.63285	0.91354		С	1.83779	3.72485
Н	-2.40212	-2.58328	-0.28958		С	1.44101	4.94762
н	2.40504	-2.57986	0.28218		С	0.56990	5.98402
н	3.28806	-6.62881	-0.91638		С	0.46407	7.03561
H	5 65931	-6 07232	-1 18136		č	1 17412	7 03766
н	8 15553	-4 78453	-1.32058		č	2 02798	5 98420
H	10 00660	-3 13825	-1 29715		č	2 14282	4 95502
н.	0 58001	-0 78762	-0.66/16		č	2.14202	3 72281
Ц	7 31613	-0.01860	-0.00+10		ĉ	1 30/06	4 06736
	1 80728	0.31042	1 63/6/		č	0.82018	6 12125
	3 203/6	2 46336	1 08004		č	-0.02010	-0.1212J
	0,70007	2.40330	-1.00904		č	0.00901	-0.10309
	2.10021	0.95733	2.79605		Č	1.12014	-5.03900
н	3.91767	-1.18120	2.26006		5	-0.15115	-3.91718
н	-0.48919	7.84594	1.29230		н	0.65180	7.87375
Н	0.66407	7.90456	3.45824		н	-0.58582	7.98945
Н	2.19930	6.03554	4.13117		н	-2.18704	6.16267
Н	-1.28651	-7.19215	0.09223		н	-3.73451	2.56089
Н	1.29188	-7.19118	-0.14074		н	-4.87816	0.42414
					Н	-3.92695	-1.05276
95					Н	-2.75674	1.06899
da28	38-P-prop5-fre	q.out Energy:	-1927015.99537	100	Н	-7.31630	0.16885
0	-1.27174	3.41891	0.90033		Н	-9.65965	-0.59144
0	-3.41537	3.59265	-3.16853		н	-10.18515	-2.97281
0	1,49517	3.37347	-0.81846		н	-8.37493	-4.66046
õ	3,69705	3,36616	3.22358		H	-5,89913	-6.00520
Ň	-2.51121	3,17255	-1.05561		Н	-3,52105	-6.60159
N	-5 14544	-1 66726	0 13598		н	-2 43860	-2 46232
N	5 03200	-1 94437	-0 24136		н	2 32063	-2 60663
N	2 75153	3 03110	1 11287		н	3 05105	-6 77384
C	_1 58125	3 8077/	_0 10780		н	5 42022	-6 31/01
Č	1 100120	5 02050	0.19/09		и Ц	J.42322 7 02620	5 11647
U	-1.1221/	0.02009	-0.32007		п	1.93020	-5.11047

-0.55930 -1.45717 -2.66457 -3.02826 -2.13571 -2.25582 -0.74987 0.49533 0.79085 -0.15985 -1.40694 -1.69976 0.26011 0.18302 0.33452 0.55392 0.62079 0.26179 0.47003 0.62653 0.58490 0.40921 0.24501 -0.25698 0.00179 -0.08543 -0.43405 -0.69638 -0.61598 -0.59541 -0.83599 -1.19939 -1.31342 -1.06175 -0.69795 0.10263 1.38560 1.71872 0.77403 -0.50353 -0.83970 0.28269 1.04530 0.70722 1.63286 2.83484 3.16452 2.24557 2.32662 0.41867 0.90042 0.76608 0.18535 -0.23256 -1.21194 -3.32844 -3.96438 1.23486 1.76150 -2.14476 -2.66690 0.00707 0.27917 0.66886 0.78399 0.77187 0.67570 0.13150 0.28585 -0.52748 -0.97669 -1.38755

Н	9.83182	-3.53476	-1.59574	
Н	9.51239	-1.12658	-1.14924	
Н	7.29584	-0.23447	-0.49685	
Н	4.01794	-1.26158	2.12047	
Н	2.99843	0.91450	2.71243	
Н	3.82393	2.36847	-1.23910	
Н	4.80469	0.17587	-1.83830	
Н	-0.20797	7.85756	1.41353	
Н	1.04961	7.86722	3.52104	
Н	2.58169	5.96282	4.09502	
Н	-1.39117	-6.90680	1.37689	
Н	1.19954	-6.98036	1.1292	

References

- (1) Hesse, M.; Meier, H.; Zeeh, B.; Dunmur, R.; Murray, M. *Spectroscopic Methods in Organic Chemistry*, 2th Edition.; Thieme Verlag, 2008. https://doi.org/10.1055/b-003-108602.
- (2) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox,. Gaussian 09, Revision E.01. Gaussian, Inc., Wallingford CT, 2016.
- (3) Pracht, P.; Bohle, F.; Grimme, S. Automated Exploration of the Low-Energy Chemical Space with Fast Quantum Chemical Methods. *Phys. Chem. Chem. Phys.* **2020**, *22* (14), 7169–7192. https://doi.org/10.1039/C9CP06869D.
- (4) Bruhn, T.; Schaumlöffel, A.; Hemberger, Y.; Bringmann, G. SpecDis: Quantifying the Comparison of Calculated and Experimental Electronic Circular Dichroism Spectra. *Chirality* **2013**, *25* (4), 243– 249. https://doi.org/10.1002/chir.22138.
- (5) Pescitelli, G.; Bruhn, T. Good Computational Practice in the Assignment of Absolute Configurations by TDDFT Calculations of ECD Spectra. *Chirality* **2016**, *28* (6), 466–474. https://doi.org/10.1002/chir.22600.