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Appendix S1: Details of bibliographic analysis 

 

Our bibliography was first generated in Clarivate Analytics Web of Science (WoS) using the 

following search terms (ecolog* AND “habitat complexity” OR “spatial heterogeneity” OR 

"habitat structure" OR "habitat heterogeneity" OR "structural complexity”). We selected 

papers over the last 60 years from 1961 to 2021. This generated a total of 27,864 articles. 

Given the considerable number of articles returned, we then we performed a bibliometric 

analysis with the Bibliometrix R package (Aria & Cuccurullo, 2017) to identify any potential 

conceptual structures that may exist. To do this, the scope of our bibliography was reduced 

by selecting the following ecological journals: Ecology, Ecology Letters, Landscape ecology, 

Ecological Monographs, Oikos, Journal of Applied Ecology, Journal of Ecology, American 

Naturalist, Methods in Ecology and Evolution, Nature Ecology and Evolution; we also 

complemented the set with articles from the following multidisciplinary journals: 

Proceedings of the National Academy of Sciences of the USA (PNAS), Proceedings of the 

Royal Society B Biological Sciences, Nature Communications, Science Advances, Nature, 

and Science. Through this process, a relevant set of 1374 articles were generated and their 

metadata (title, author list, journal, keywords, year of publication, abstract, text and reference 

list) were exported. The conceptual structure of our bibliographic collection was analyzed 

using a co-occurrence network (which reveals links between keywords based on co-

occurrence in the articles) and a multiple correspondence analysis (which reveals clusters 

based on the keywords metadata). Following the results of our bibliographic analysis, we 

further reduced our scope by selecting only recent articles (over the last two decades from 

2000 to 2021) using the search terms (ecolog* AND “habitat complexity” OR “structural 

complexity” OR “spatial heterogeneity”). This returned 1002 articles from which we selected 

the top 150 articles from the following ecology journals: Ecology, Ecology Letters, 
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Ecological Applications, Journal of Ecology, Journal of Applied Ecology, Oikos, Nature, 

Science, American Naturalist, Ecological Monographs, Journal of Biogeography, Ecography 

and Scientific Reports, and complemented this selection with the top 50 relevant results 

generated by Google Scholar. This resulted in a manageable set of 136 relevant articles. 

Papers were downloaded and read individually to generate counts for each metric (i.e. Figure 

1b). Of all the articles that used fractal dimension (𝐷) as a metric of complexity, we checked 

whether 𝐷 was correlated with species richness (𝑆) and abundance (𝑁) (Table S1.1).  

 
 
Table S1.1 Recent ecological papers (published after 2000; n = 39) that measured fractal 
dimensions (𝐷). Only 14 of the 39 papers correlated 𝐷 with species richness (𝑆), and 15 with 
individual abundance (𝑁). Out of the 14 papers that correlated 𝐷 with 𝑆, the majority found 
weak relationships. 
Reference S N R2 (with S) Strength Direction 
Attrill et al., 2000 ✓ ✓ Not provided Weak Negative 
Bailey et al., 2004 - - NA NA NA 
Beck, 2000 ✓ ✓ NA NA Positive 
Bodmer et al., 2021 - ✓ NA NA NA 
Bouda et al., 2016 - - NA NA NA 
Bué et al., 2019 ✓ ✓ NA NA Positive 
Burrows et al., 2009  - - NA NA NA 
Carsartelli & Ferragut, 2018 ✓ ✓ NA NA Positive 
Commito & Rusignuolo, 2000 - - NA NA NA 
Dibble & Thomaz, 2009 - ✓ NA NA NA 
Dijkstra et al., 2017 ✓ ✓ 0.71 Strong Positive 
Duarte et al., 2020 ✓ - 0.001/0.004 Weak Positive 
Frost et al., 2005 - - NA NA NA 
Fukunaga et al., 2020 - - NA NA NA 
Kalacska et al., 2018 - - NA NA NA 
Hashimi & Causey, 2008  ✓ - 0.01/0.06 Weak Positive 
Johnson et al., 2003 ✓ - 0.42/0.16 Both Positive 
Kamal et al., 2014 - - NA NA NA 
Kostylev et al., 2005 ✓ ✓ 0.53/0.32/0.46 Strong Positive 
Kostylev & Erlandsson, 2001 - ✓ NA NA NA 
Kovalenko et al., 2010 - - NA NA NA 
Mancinelli et al., 2007 - ✓ NA NA NA 
Marsden et al., 2002  - - NA NA NA 
McAbendroth et al., 2005 ✓ ✓ 0.04 Weak Positive 
Pascoe et al., 2021 - - NA NA NA 
Reichert et al., 2017 - - NA NA NA 
Reishofer et al., 2018 - - NA NA NA 
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Sadchatheeswaran et al., 2019 - - NA NA NA 
Schmid et al., 2002  - - NA NA NA 
Taniguchi & Tokeshi, 2004 ✓ ✓ 0.23/0.24/0.09 Weak Positive 
Thomaz et al., 2008 ✓ ✓ 0.49 Strong Positive 
Tonetto et al., 2014 - ✓ NA NA NA 
Torres-Pulliza et al., 2020 ✓ ✓ 0.046 Weak Positive 
Vorsatz et al., 2021 - - NA  NA NA 
Warfe et al., 2008 ✓ ✓ 0.08 to 0.80 Both Positive 
Yanovski et al., 2017 - - NA NA NA 
Young et al., 2017 - - NA NA NA 
Zhou et al., 2017 - - NA NA NA 
Zhou et al., 2018 - - NA NA NA 
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 Appendix S2: Case study of Torres-Pulliza et al. (2020) 
 
Here we present a critical evaluation of a study by Torres-Pulliza et al. (2020), who derived 

formulas relating geometric quantities of 2D surfaces, and used these to make claims about 

how fractal dimension and rugosity can be used to characterize such surfaces. Let 𝑆 be the 

slope of average height range versus linear extent across two scales of a 2D surface: 

𝑆 =
log(Δ𝐻/Δ𝐻,)
log(𝐿/𝐿,)

(𝑆2.1) 

where Δ𝐻 and Δ𝐻, are the average height range at the large and small scale, respectively, and 

𝐿 and 𝐿, are the corresponding linear extents of the two scales. Rearranging Eq. (S2.1) and 

subtracting log2√2𝐿,4 from both sides gives 

log5
Δ𝐻,
√2𝐿,

6 + 𝑆 log8
𝐿
𝐿,
9 = log5

Δ𝐻
√2𝐿,

6 

Now define a quantity 

𝑋 = ;
Δ𝐻,<

(2𝐿,)<
+ 1 

which allows us to write 

1
2 log

(𝑋< − 1) + 𝑆 log8
𝐿
𝐿,
9 = log5

Δ𝐻
√2𝐿,

6 (𝑆2.2) 

We emphasize that Eq. (S2.2) is mathematically guaranteed to be true for any surface, even a 

non-fractal surface. But Torres-Pulliza et al. (2020) make three stronger claims: (i) they claim 

that 𝑋 is a measure of rugosity; (ii) they claim that 𝑆 is related to fractal dimension via the 

formula 𝐷 = 3 − 𝑆; and (iii) they claim, based on (i) and (ii), that Eq. (S2.2) therefore relates 

rugosity, fractal dimension and height range, and that “any one of the surface descriptors can 

easily be expressed in terms of the other two”. 
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We identify two main problems with these claims. The first problem relates to claim (i) about 

rugosity. The quantity 𝑋 is exactly equal to rugosity only in the idealized case where the 

highest corner of every grid cell is exactly a height Δ𝐻,	above the lowest corner and the two 

intermediate corners are Δ𝐻,/2 above the lowest corner (Extended Data Figure 2 in Torres-

Pulliza et al. (2020)). We show in Figure S2.1 that in general 𝑋 exhibits deviations from true 

rugosity 𝑅, suggesting that Eq. (S2.2) may not be accurate if true 𝑅 is used in place of 𝑋. 

 

The second problem relates to claim (ii) about fractal dimension. The estimator 3 − 𝑆 does in 

theory give the correct fractal dimension for an idealized mathematical object that is truly 

fractal. But, as explained in the main text, measuring fractal dimension from a digital surface 

is no trivial matter. Even if the underlying physical object is close to fractal—itself a big 

assumption—methods to estimate fractal dimension are subject to a range of biases, which 

are stronger at small and large scales. Because Eq. (S2.1) estimates 𝑆 from information only 

at the smallest and largest scales, the estimator 3 − 𝑆 is likely to be a very poor estimator of 

fractal dimension in practice. 

 

Thus we see that, although Eq. (S2.2) does give the exact mathematical relationship between 

the quantities 𝑋, 𝑆 and Δ𝐻,, claims that it continues to work well we assume 𝑅 ≈ 𝑋 and 𝐷 ≈ 

3 − 𝑆 are questionable. To investigate this further, we rearranged Eq. (S2.2) to give 

Δ𝐻 = √2𝐿, 8
𝐿
𝐿,
9
C
D𝑋< − 1 (𝑆2.2) 

This formula holds exactly, as one can easily confirm with simulated fractal surfaces (Figure 

S2.2a). Now consider the corresponding approximate formula 

Δ𝐻 ≈ √2𝐿, 8
𝐿
𝐿,
9
EFG

D𝑋< − 1 (𝑆2.3) 



 7 

The accuracy of this formula compared to the exact Eq. (S2.2) is substantially diminished, as 

shown by application to simulated fractal surfaces where true 𝐷 is known (Figure S2.2c). If 

we instead measure 𝐷 via box-counting at intermediate scales (which tends to yield reliable 

results; see main text, Figure 4), the formula is similarly inaccurate (Figure S2.2d). In fact, 

formula (S2.2) is accurate only if we use an inaccurate estimator for fractal dimension, e.g., 

the variation method across all scales (Figure S2.2b). Again, this undermines the claim of 

Torres-Pulliza et al. (2020) that Eq. (S2.2) can be interpreted as a relationship between 

rugosity, fractal dimension, and height range. 

 

But how do we reconcile this with the finding of Torres-Pulliza et al. (2020), shown in their 

Figure 2d, that measured 𝑅, 𝐷 and Δ𝐻 values fall almost perfectly on a 2D plane, suggesting 

that their formula is indeed accurate and that “any one of the surface descriptors can easily be 

expressed in terms of the other two”? The answer is simply that they did not actually test 

whether 𝑅,𝐷 and Δ𝐻 fall on a plane, but instead whether 𝑋, 𝑆 and Δ𝐻 fall on a plane, which 

they are mathematically guaranteed to do. The only error that comes into their analysis arises 

from their measurement of 𝑆 from a linear regression of height range on linear extent across 

multiple scales, rather than just two scales as in Eq. (S2.1). But this error is fairly minimal 

(e.g., Figure S2.2d) and in their case leads to 𝑅< = 0.98 instead of the guaranteed 𝑅< = 1.0 

they would have obtained if Eq. (S2.1) had been used directly. 

 

We have gone through this case study not to single out Torres-Pulliza et al. (2020), but to 

demonstrate that confusion surrounding geometric metrics of complexity in ecology is 

pervasive and that interpretations about how metrics relate to one another are fraught with 

difficulties. Thus, one should generally be wary of sweeping claims, such as that “three 

structure descriptors” can explain “98% of surface variation” (abstract of Torres-Pulliza et al. 
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2020), which in this case we have revealed to be closer to a mathematical truism than a grand 

statement about nature. 

 

A coda to all this is that Torres-Pulliza et al. (2020) themselves make various contradictory 

claims. For instance, they claim at one point that “the three descriptors explain more than 

98% of the variation in fractal dimension 𝐷”, which does not make sense because 𝐷 is itself 

one of the descriptors. And they claim that “All three descriptors are essential for capturing 

structural complexity because they explain different elements of surface geometry”, despite 

their main claim that the three descriptors lie on a plane and thus that one of them is 

redundant. It is perhaps not worth reading too much into these statements, but they do 

reinforce the notion that confusion reigns when it comes to measuring complexity in ecology. 

 

 

 
Figure S2.1 The rugosity metric 𝑋 of Torres-Pulliza et al. (2020) exhibits deviations from 
true rugosity 𝑅. Results are generated using two-dimensional binary maps of dimension 4097 
× 4097 from a midpoint-displacement algorithm with values of 𝐻 ranging from 0.01 to 0.99 
(see example in Figure 2a). (a) Plot of the rugosity metric 𝑋 against 𝑅 measured directly as 
the summed surface areas of all triangles comprising a triangular mesh generated from each 
map; (b) Plot of 𝑋 and 𝑅 versus fractal dimension 𝐷.  
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Figure S2.2 The framework of Torres-Pulliza et al. (2020) gives accurate estimates of height 
variation in a 2D surface only if fractal dimension 𝐷 is measured inaccurately. Results are 
shown for (a) the exact formula, Eq. (S2.2), which instead of 𝐷 uses 𝑆, the log–log slope of 
height range versus linear extent across two scales; (b) the approximate formula, Eq. (S2.3), 
which replaces 𝑆 with 3 − 𝐷, where 𝐷 is the fractal dimension, and where here we have used 
the known fractal dimensions that were used to generate the maps; (c) the approximate 
formula but with 𝐷 now estimated using the box-counting at intermediate scales, which is a 
reliable method (Figure 4 in main text); and (d) the approximate formula, but with 𝐷 now 
estimated using the variation method across all scales, which is an unreliable method that 
gives inaccurate estimates of 𝐷 (Figure 4 in main text). 
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Appendix S3: Supplementary information for Box 2  
 

Figure S3.1 (a) Example of a 1D fractional Brownian motion (fBm) with 𝐻 = 0.5. (b) 
Hypothetical example of how estimations of 𝐷 using box counting can be different depending 
on where the box grid is placed. 
 
 
 

Assumptions of regression methods used to estimate fractal dimension 𝐷 

The four assumptions of standard linear regression methods are (a) linearity of the true 

relationship; (b) homoskedasticity of residuals; (c) independence of observations; and (d) 

normality of residuals. When testing whether an object is truly fractal, all of these 

assumptions are potentially violated.  

 

For (a), (b) and (d), residual plots should be inspected. If substantial violations of the 

assumptions are observed, alternative regression methods that do not make such strong 

assumptions should be used. If there is substantial non-linearity in the residuals, this suggests 

that Eq. (B1.1) is not a good model and that the object may not be fractal; alternative non-

linear models can be fit to see if the object is multifractal. Assumption (c) is always violated 

in box-counting because the box counts at different scales are not independent. Several 

methods are available to mitigate this (Reeve, 1992; Da Silva et al., 2006) but apparently not 

widely used. 
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When measuring 𝐷 for an object that is assumed to be fractal, assumption (a) is true by 

definition, and violations of assumption (b) are less important because they affect statistical 

significance tests but do not bias coefficient estimates. Violations of assumption (c) can in 

general bias the coefficient estimates in linear regression, but we do not know of any study 

that has quantified this for applications to box counting specifically. Violation of assumption 

(d) is likely to be common because there is no theoretical reason why the distribution of 

log𝑁(𝜖) for given 𝜖 should be normal. 
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Appendix S4: Supplementary results of empirical investigation in Figure 4 
 
In Figure 4 in the main text, we tested standard methods for estimating fractal dimension by 

applying them to simulated maps generated by a midpoint-displacement algorithm. Here we 

present the results of a similar analysis using simulated maps generated instead by a Gaussian 

random field algorithm, but using only the box-counting algorithm to estimate fractal 

dimension. Although errors were overall somewhat larger than in Figure 4, the results were 

qualitatively similar, with the box-counting algorithm being most accurate for intermediate 

box sizes 𝜖 ≈ 64 (Figure S4.1).  

 

 
Figure S4.1 Estimated fractal dimension using the box-counting algorithm (𝐷; vertical axes), 
versus true fractal dimension (2 − 𝐻; horizontal axes), for simulated fractal maps generated 
by a Gaussian random field algorithm. Panels correspond to different box sizes (𝜖) in the 
box-counting algorithm. 
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Appendix S5: Empirical demonstration of the limitations of 𝑫 

To demonstrate how issues with the measurement of 𝐷 are not just a minor technical 

inconvenience without practical significance, and that estimation errors can easily lead to 

different interpretations of real-world data, we conducted a small field study to compare the 

relationship between complexity (as measured by 𝐷) and species richness (𝑆) in two different 

habitats: natural rocky shores (RS) and artificial rip-rap seawalls (SW). As expected, 

different values of 𝐷 were obtained depending on the resolution at which 𝐷 is measured, 

leading to different relationships between 𝐷 and 𝑆 (Fig. S5.1) which makes any 

interpretations of these results tenuous. 
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Figure S5.1 Illustration of how different relationships between species richness (𝑆) and 
fractal dimension (𝐷) can be obtained depending on the resolution at which 𝐷 is measured. 
Here, we conducted a field study to compare two different habitat types: natural rocky shores 
(RS) and artificial rip-rap seawalls (SW). Ten 1 m x 1 m scans of each habitat were 
performed to obtain DEMs (via close range photogrammetry) from which we estimated the 
fractal dimension 𝐷 at four different resolutions (𝜀 = 0.0625, 0.125, 0.25,0.50). The 
fundamental problem is that different values of 𝐷 are obtained at each resolution, due to a 
combination of sample size limitations (number of pixels) and the fact that the underlying 
object is likely multifractal, rather than truly fractal as uncritical measurements of 𝐷 assume 
(see Section 2.1.2 in main text). 
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