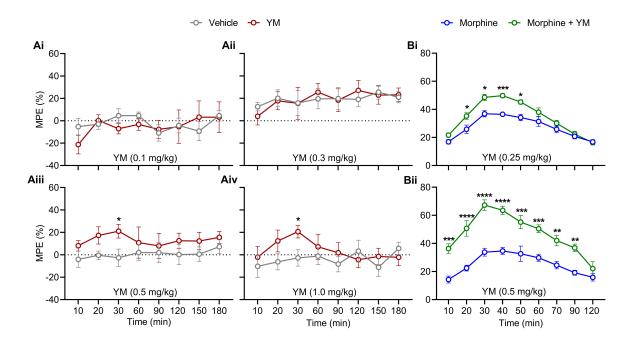
Supplementary Information

Exploring pharmacological inhibition of G_{q/11} as an analgesic strategy.

Subhi Marwari, Cody Kowalski and Kirill A. Martemyanov *

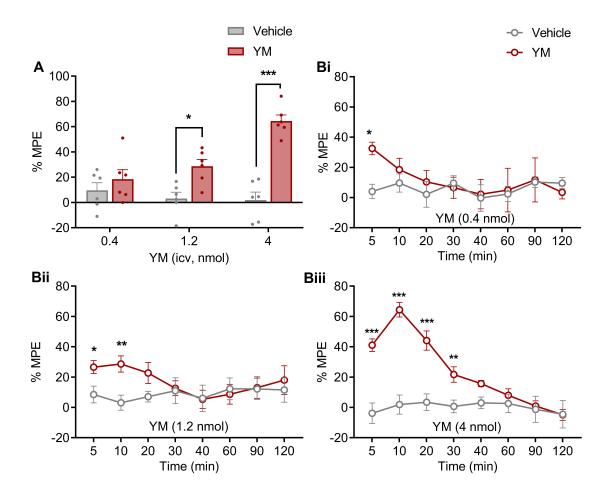
Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA

Running Title: Antinociceptive effect of $G_{q/11}$ inhibition in mice.

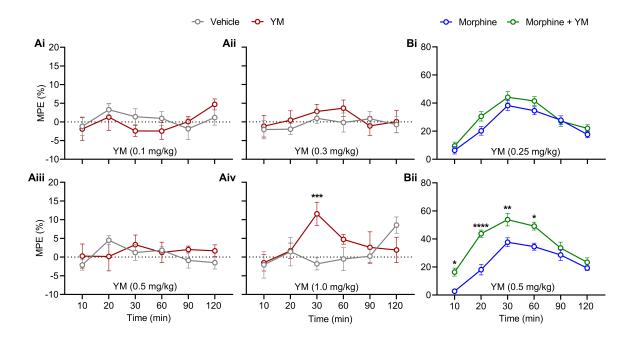

*Correspondence to:

Kirill A. Martemyanov, PhD
Department of Neuroscience
The Scripps Research Institute,
130 Scripps Way, Jupiter, FL, 33458, USA
Email: kirill@scripps.edu (K.A.M.)
Phone: (561) 228-2270

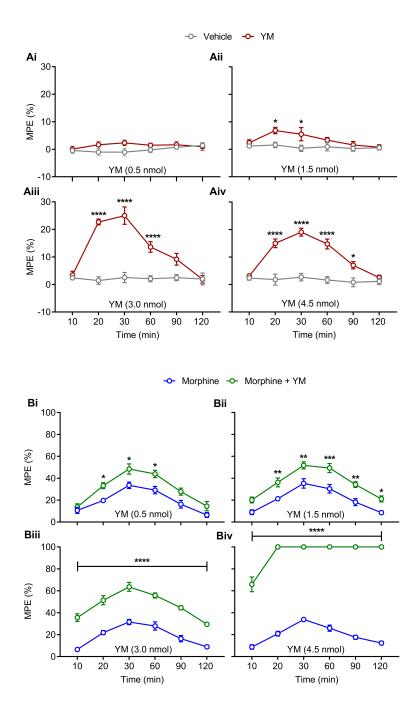
This PDF file includes:


Figures S1 to S6

Supplementary Figures

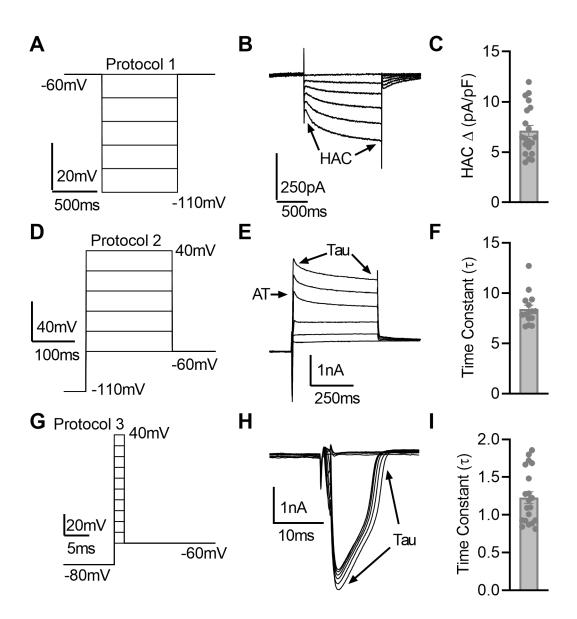

Supplementary Figure S1. The effect of systemic subcutaneous administration of YM on nociception.

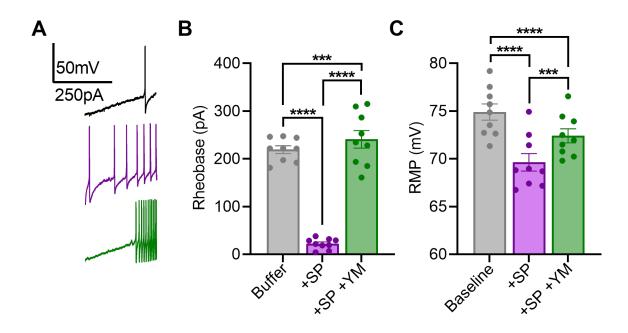
A. Dose-response effect of different concentration of subcutaneous YM and vehicle were tested on hot plate test for 3 h. Ai. YM 0.1 mg/kg: Treatment $F_{(1, 80)} = 0.31$, time $F_{(7, 80)} = 0.84$, interaction $F_{(7, 80)} = 0.59$. Aii. YM 0.3 mg/kg: Treatment $F_{(1, 80)} = 0.001$, time $F_{(7, 80)} = 0.76$, interaction $F_{(7, 80)} =$ 0.20. Aiii. YM 0.5 mg/kg: Treatment $F_{(1, 80)} = 10.27$, time $F_{(7, 80)} = 0.26$, interaction $F_{(7, 80)} =$ 0.26. Aiv. YM 1 mg/kg: Treatment $F_{(1, 80)} = 3.62$, time $F_{(7, 80)} = 0.81$, interaction $F_{(7, 80)} = 0.90$. Two-way ANOVA with Bonferroni's post hoc test. **B.** Time course effect of combined administration of subcutaneous YM (0.25 and 0.5 mg/kg) with single dose of subcutaneous morphine (5 mg/kg) on hot plate test for 2 h. YM was administered 10 min before the administration of morphine. **Bi.** YM 0.25 mg/kg: Treatment $F_{(1, 90)} = 46.32$, time $F_{(8, 90)} = 44.07$, interaction $F_{(8, 90)} = 2.44$. **Bii.** YM 0.5 mg/kg: Treatment $F_{(1, 90)} = 177.8$, time $F_{(8, 90)} = 19.30$, interaction $F_{(8, 90)} = 2.62$. Two-way ANOVA with Bonferroni's post hoc test. N = 6 mice/group. In all panels statistical analysis was performed combining both sexes and significance was *p <0.05 and **p < 0.001, data sets (mean \pm SEM) as analyzed using two-way ANOVA with Bonferroni's post hoc tests.


Supplementary Figure S2. The effect of intracerebroventricular injection of YM on nociception

A. Dose-response effect of different concentration of i.c.v. YM (0.4, 1.2, 4 nmol) and vehicle were tested on hot plate test after 10 min of administration. Treatment $F_{(1, 30)} = 45.04$, dose $F_{(2, 30)} = 6.40$, interaction $F_{(2, 30)} = 10.86$. Two-way ANOVA with Bonferroni's post hoc test. **B.** Time course effect of different concentration of i.c.v. YM and vehicle were tested on hot plate test for 2 h. **Bi.** YM 0.4 nmol: Treatment $F_{(1, 5)} = 0.62$, time $F_{(7, 35)} = 1.57$, interaction $F_{(7, 35)} = 1.55$. **Bii.** YM 1.2 nmol: Treatment $F_{(1, 5)} = 2.28$, time $F_{(7, 35)} = 0.97$, interaction $F_{(7, 35)} = 3.45$. **Biii.** YM 4 nmol: Treatment $F_{(1, 5)} = 17.86$, time $F_{(7, 35)} = 13.54$, interaction $F_{(7, 35)} = 15.30$. Two-way ANOVA with Bonferroni's post hoc test. N = 6 mice/group. In all panels statistical analysis was performed combining both sexes and significance was *p < 0.05 and **p < 0.001, data sets (mean \pm SEM) as analyzed using two-way ANOVA with Bonferroni's post hoc tests.

Supplementary Figure S3. The effect of systemic subcutaneous administration of YM on spinal analgesia.


A. Dose-response effect of different concentration of subcutaneous YM and vehicle were tested on tail immersion test for 2 h. Ai. YM 0.1 mg/kg: Treatment $F_{(1, 60)} = 0.32$, time $F_{(5, 60)} = 1.34$, interaction $F_{(5, 60)} = 0.84$. Aii. YM 0.3 mg/kg: Treatment $F_{(1, 60)} = 0.96$, time $F_{(5, 60)} = 0.73$, interaction $F_{(5, 60)} = 0.35$. Aiii. YM 0.5 mg/kg: Treatment $F_{(1, 60)} = 0.55$, time $F_{(5, 60)} = 0.69$, interaction $F_{(5, 60)} = 0.86$. Aiv. YM 1 mg/kg: Treatment $F_{(1, 60)} = 2.37$, time $F_{(5, 60)} = 1.65$, interaction $F_{(5, 60)} = 2.70$. Two-way ANOVA with Bonferroni's post hoc test. **B.** Time course effect of combined administration of subcutaneous YM (0.25 and 0.5 mg/kg) with single dose of subcutaneous morphine (5 mg/kg) on tail immersion test for 2 h. YM was administered 10 min before the administration of morphine. **Bi.** YM 0.25 mg/kg: Treatment $F_{(1, 60)} = 7.28$, time $F_{(5, 60)} =$ 35.48, interaction $F_{(5, 60)} = 0.71$. **Bii.** YM 0.5 mg/kg: Treatment $F_{(1, 60)} = 52.40$, time $F_{(5, 60)} =$ 35.48, interaction $F_{(5, 50)} = 3.17$. Two-way ANOVA with Bonferroni's post hoc test. N = 6 mice/group. In all panels statistical analysis was performed combining both sexes and significance was *p < 0.05, **p < 0.001, ***p < 0.0001 and ****p < 0.00001, data sets (mean \pm SEM) as analyzed using two-way ANOVA with Bonferroni's post hoc tests.


Supplementary Figure S4: The effect of local intrathecal administration of YM on spinal analgesia.

A. Dose-response effect of different concentration of intrathecal YM and vehicle were tested on tail immersion test for 2 h. **Ai.** YM 0.5 nmol: Treatment $F_{(1, 60)} = 4.92$, time $F_{(5, 60)} = 0.44$, interaction $F_{(5, 60)} = 0.80$. **Aii.** YM 1.5 nmol: Treatment $F_{(1, 60)} = 13.63$, time $F_{(5, 60)} = 2.38$, interaction $F_{(5, 60)} = 1.57$. **Aiii.** YM 3.0 nmol: Treatment $F_{(1, 60)} = 109.7$, time $F_{(5, 60)} = 15.41$, interaction $F_{(5, 60)} = 16.01$. **Aiv.** YM 4.5 nmol: Treatment $F_{(1, 60)} = 116.1$, time $F_{(5, 60)} = 14.21$, interaction $F_{(5, 60)} = 11.88$. Two-way ANOVA with Bonferroni's post hoc test. **B.** Time course

effect of combined administration of intrathecal YM with single dose of subcutaneous morphine (2.5 mg/kg) on tail immersion test for 2 h. YM was administered 10 min before the administration of morphine. **Bi.** YM 0.5 nmol: Treatment $F_{(1, 10)} = 15.40$, time $F_{(5, 50)} = 39.79$, interaction $F_{(5, 50)} = 1.38$. **Bii.** YM 1.5 nmol: Treatment $F_{(1, 60)} = 68.29$, time $F_{(5, 60)} = 29.80$, interaction $F_{(5, 60)} = 0.40$. **Biii.** YM 3.0 nmol: Treatment $F_{(1, 60)} = 306.3$, time $F_{(5, 60)} = 33.79$, interaction $F_{(5, 60)} = 0.99$. **Biv.** YM 4.5 nmol: Treatment $F_{(1, 48)} = 3103$, time $F_{(5, 48)} = 40.06$, interaction $F_{(5, 48)} = 11.70$. Two-way ANOVA with Bonferroni's post hoc test. N = 6 mice/group. In all panels statistical analysis was performed combining both sexes and significance was *p < 0.05, **p < 0.001, ***p < 0.0001, and ****p < 0.00001 data sets (mean \pm SEM) as analyzed using two-way ANOVA with Bonferroni's post hoc tests.

Supplementary Figure S5. Physiological parameters of morphine-responsive DRG neurons A. Illustration of Protocol 1, used to characterize hyperpolarization-activated current. **B.** Representative trace of DRG produced by Protocol 1. Hyperpolarization-activated current delta is indicated. **C.** Quantification of hyperpolarization-activated current of nociceptors. **D.** Illustration of Protocol 2. **E.** Representative trace produced by Protocol 2, used to characterize activation threshold and A-current inactivation rate Tau as indicated. **F.** Quantification of nociceptor Acurrent tau. **G.** Illustration of Protocol 3. **H.** Representative trace produced by Protocol 3, used to determine the inactivation decay constant of the first inward current response as indicated, and the response amplitude. **I.** Quantification of the inactivation decay constant.

Supplementary Figure S6. The effect of YM on Substance P induced excitation of DRG nociceptors.

A. Representative voltage traces from a continuous 0-2 nA ramp stimulation protocol illustrating excitability of cultured DRG neurons at baseline (black), and after bath application of 10 nM Substance P (SP, purple) followed by 10 nM SP and 100nM YM (green). **B.** Quantification of rheobase from DRG recordings illustrated in A. Treatment: $F(_{8, 24}) = 5.812$. One-way repeated-measures ANOVA with Tukey's multiple comparisons test. **C.** Quantification of resting membrane potential from DRG recordings illustrated in A. Treamtent: $F(_{8, 24}) = 23.16$. One-way repeated-measures ANOVA with Tukey's multiple comparisons test. Statistical analysis was performed combining both sexes, and significance was ***p < 0.01, and ****p < 0.0001.