
Supplementary Material 1 

Recommendations for quantifying and reducing uncertainty in climate projections of species 2 

distributions 3 

Stephanie Brodie*1,2, James A. Smith1,3, Barbara A. Muhling1,3, Isaac C. Kaplan4, Lewis A.K. 4 

Barnett5, Gemma Carroll6, Paul Fiedler3, Steven J. Bograd1,2, Elliott L. Hazen1,2, Michael G. 5 

Jacox1,2,7, Kelly S. Andrews4, Cheryl L. Barnes8, Lisa Crozier4, Jerome Fiechter1, Alexa Fredston9, 6 

Melissa A. Haltuch4, Chris J. Harvey4, Elizabeth Holmes4, Melissa A. Karp10, Owen R. Liu4, 7 

Michael J. Malick4, Mercedes Pozo Buil1,2, Kate Richerson4, Christopher N Rooper11, Jameal 8 

Samhouri4, Rachel Seary1,2, Rebecca L. Selden12, Andrew R Thompson3, Desiree Tommasi1,3, Eric 9 

J. Ward4, Rich Zabel4 10 

1 Institute of Marine Sciences, University of California Santa Cruz, Monterey, CA, USA 11 
2 Environmental Research Division, Southwest Fisheries Science Center, National Marine 12 

Fisheries Service, National Oceanic and Atmospheric Administration, Monterey, CA, USA 13 
3 Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and 14 

Atmospheric Administration, San Diego, CA, USA 15 
4 Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and 16 

Atmospheric Administration, Seattle, WA, USA  17 
5 Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and 18 

Atmospheric Administration, Seattle, WA, USA 19 
6 Environmental Defense Fund, Seattle, USA 20 
7 Physical Sciences Laboratory, Earth System Research Laboratories, National Oceanic and 21 

Atmospheric Administration, Boulder, CO, USA 22 
8 Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, 23 

Seattle, WA, USA 24 
9 Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, 25 

NJ, USA 26 

10 ECS Tech, in support of, NOAA Fisheries Office of Science & Technology, Silver Spring, MD 27 
11 Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada 28 
12 Department of Biological Sciences, Wellesley College, Wellesley, MA, USA 29 

 30 

 *lead and corresponding author: sbrodie@ucsc.edu  31 

mailto:sbrodie@ucsc.edu


Supplementary Material 32 

Operating Models: Simulated Species Biomass 33 

Spatial biomass for three species archetypes were simulated for each year and each ESM from 34 

1985-2100. Simulations used the ‘virtualspecies’ R package (Leroy et al., 2016) that is 35 

spe­cifically designed to reflect real-world properties and datasets (Meynard et al., 2019). 36 

Species simulations used a two-step process. First, habitat suitability was simulated based on 37 

environmental data and defined species’ habitat preferences (Table S1). The distributions used 38 

to specify these responses were normal (e.g. SST had a domed influence on habitat suitability), 39 

or logistic (e.g. prey probability of presence had a monotonically increasing influence on habitat 40 

suitability) (Table S1). Environmental variables used to force species distributions varied among 41 

species archetypes. For the HMS archetype, habitat suitability was forced by SST, MLD, and a 42 

simulated prey species, where the prey species was forced by SST and zoo_200. For the CPS 43 

archetype, habitat suitability was forced by SST, zoo_50, and bathymetry. For the GFS 44 

archetype, habitat suitability was forced by bottom temperature, bottom oxygen, and 45 

bathymetry. Bathymetry was used in both CPS and GFS simulations to help additionally 46 

structure known spatial distributions, where CPS prefer inshore waters and GFS prefer slope 47 

habitats (Leeuwis et al., 2019; Stierhoff et al., 2020). The domain for the CPS and GSF 48 

archetypes was reduced to inshore waters (inshore of 126W) to reflect these preferences. 49 

  50 

Second, habitat suitability was calculated and converted to species presence-absence using a 51 

logistic function. The parameters of this function are listed in Table S1, and define at what 52 

habitat suitability each species becomes present. This step used the ‘generateSpFromFun’ 53 

function in the ‘virtualspecies’ package. When species were present, biomass was estimated 54 

from a log-normal distribution, and when species were absent biomass was set to zero. Biomass 55 

at each grid cell was then multiplied by habitat suitability of that same grid cell to provide 56 

habitat-informed biomass. For CPS and GFS archetypes, an additional biomass multiplier was 57 

used to encompass population-level dynamics from 1985-2100 (Figure S1). For CPS, biomass 58 

was additionally multiplied by annual indices from a population model (Punt et al., 2016) to 59 

encompass boom-bust population dynamics that are common in CPS species in the CCS (e.g. 60 

sardine and anchovy). Further, in years when CPS biomass was below the 25% quantile (‘bust’ 61 

years; Fig S1), we additionally multiplied biomass by a latitudinal gradient to force a preference 62 

towards southern areas. This preference for southern waters during years of low population 63 

biomass is seen in Anchovy population dynamics (MacCall et al., 2016). For GFS, biomass was 64 

additionally multiplied by an annual index that reflected a 20-year phase shift between low and 65 

high recruitment, as seen for sablefish (an example groundfish species)  (Haltuch et al., 2019). 66 

Additionally, the biomass habitat suitability multiplier was lagged by 2 years to reflect how prior 67 

habitat suitability can influence recruitment. Simulated data were generated for each grid cell 68 

(HMS = 21912 grid cells; CPS & GFC = 4012 grid cells) once per year for 116 years (1985-2100). R 69 



code for the simulation is provided on github 70 

(https://github.com/stephbrodie1/Projecting_SDMs). 71 

 72 

Estimation Models: Species Distribution Models 73 

We fit a series of different SDM types and parameterization options to the simulated species 74 

biomass (Figure 1; Table S2). We used four types of SDMs: generalized linear mixed models 75 

(GLMM), generalized additive models (GAM), boosted regression trees (BRT), and multilayer 76 

perceptron (MLP) - a type of neural network model. Parameterization options included various 77 

combinations of environmental (E), spatial (S), temporal covariates (T) (Figure 1). All SDMs were 78 

delta models, where both the probability of presence (binomial with logit link) and biomass are  79 

modeled as individual components. Because biomass is skewed, we used log(biomass) as a 80 

response for the positive component of the model. All SDMs were trained on data from 1985-81 

2010, where only 500 random samples per year were used for fitting (n=13 000). Random 82 

samples assumed a perfect probability of detecting the species. Fitted SDMs were then used to 83 

predict species biomass on projected environmental data. Only 500 random samples per year 84 

were used for testing purposes (n=45 000).  85 

 86 

GAMs were fitted using the mgcv R package (Wood, 2017). Five separate GAMs were fitted for 87 

each species archetype, with each model parameterized differently (Table S2): environmental 88 

covariates only; spatial covariates only; both environment and spatial covariates; 89 

environmental, spatial, and temporal covariates; and environmental covariates with additional 90 

residual spatiotemporal correlation implemented with a Gaussian correlation structure from 91 

the nlme R package (Pinheiro et al., 2017). Environmental covariates and spatial covariates 92 

were included using a thin plate regression spline, with smoothness selected via Generalized 93 

Cross Validation (GCV) (Table S2). Spatiotemporal terms were either included as a 3-way tensor 94 

product smooth (predictions vary non-linearly in space and by year, with each year allowing for 95 

a differing spatial smooth), or as a Gaussian correlation structure (Table S2). Each of the GAM 96 

models represents a different approach to including spatial or temporal covariates, and there 97 

are different ways that these models propagate uncertainty into the future: uncertainty in the 98 

models with no time effects (GAM_E, GAM_S, GAM_ES) is not affected by time; the tensor 99 

smooth in model GAM_EST will extrapolate a time signal and tends to increase the prediction’s 100 

standard errors over time; and the correlated errors in model GAM_Ecor model do not 101 

propagate through time. Extrapolating a time pattern 90 years (as done in GAM_EST) would 102 

generally be a risky decision, and an alternative is to make the time value constant by specifying 103 

a first-order penalty (m=1) for that variable, although this may over-constrain the model. 104 

 105 

GLMMs were fitted using the sdmTMB R package (version 0.0.19.90) (Anderson et al., in review; 106 

Anderson, 2019). These methods differ from the GAM approach above in that they implement 107 



the Stochastic Partial Differential Equation (SPDE) method to estimate Gaussian random fields 108 

as Gaussian Markov random fields (Lindgren et al., 2011). As with the GAMs described above, 109 

spatial or spatiotemporal fields may be added to any GLMM model. Models estimated with the 110 

SPDE approach differ in that they also provide estimates of spatial covariance and derived 111 

quantities (spatial range). Four separate GLMMs were fitted for each species archetype, with 112 

parameterization options (Table S2) including: environmental covariates and constant spatial 113 

effects implemented via a spatial random field; constant and time-varying spatial effects 114 

implemented via a spatial random field and spatiotemporal random fields with temporal 115 

correlation following a first order autoregressive (AR1) process (Anderson, 2019); 116 

environmental covariates and spatially varying temporal trends implemented via spatial 117 

random fields for the intercept and slope (Barnett et al., 2021); and environmental covariates, 118 

constant and time-varying spatial effects implemented via a spatial random field and AR(1) 119 

spatiotemporal random fields. All environmental variables were included as quadratic terms to 120 

allow for non-linear responses. Like the GAMs above, each of these alternative model 121 

configurations propagates future uncertainty differently. The model with only environmental 122 

and spatial effects (GLMM_ES) behaves similarly to the GAM_E model in that uncertainty does 123 

not increase through time. The GLMMs with a spatiotemporal component (GLMM_S, 124 

GLMM_EST) have uncertainty increasing over time (as with GAM_EST) because the 125 

spatiotemporal fields are modeled as AR(1). Model GLMM_EST deals with time slightly 126 

differently, in that the trend is estimated as a spatially varying coefficient; with this model, 127 

uncertainty is similar to the GLMM_ES or equivalent GAMs in that it is constant through time.  128 

 129 

BRTs were fitted using the dismo package (Elith et al., 2008), with a tree complexity of 3, bag 130 

fraction of 6, and a learning rate of 0.01 or 0.001 to ensure >1000 trees during the fitting 131 

process. Three BRTs were fit for each species archetype, with parameterization options (Table 132 

S2) including: environmental covariates only; environmental and spatial covariates; and 133 

environmental, spatial, and temporal covariates.  134 

 135 

MLPs were fitted using the neuralnet package (Fritsch et al., 2019) using the resilient 136 

backpropagation with weight backtracking algorithm and a logistic activation function. Three 137 

MLPs were fit for each species archetype, with parameterisation options (Table S2) including: 138 

environmental covariates only; environmental and spatial covariates; and environmental, 139 

spatial, and temporal covariates. MLPs used 3 neurons in the single hidden layer, and the 140 

threshold was adjusted between 0.2 and 0.5 to ensure convergence.  141 

 142 

 143 
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Table S1 Variables used to simulate species spatially-explicit biomass and their parameter 188 

values associated with a distribution. All variables define habitat suitability responses, except 189 

for ‘Biomass’ which is the argument used to determine abundance when present, and 190 

‘Occurrence’ which is the function used to convert habitat suitability to a presence-absence. 191 

Three species archetypes are shown: Highly Migratory Species (HMS), Coastal Pelagic Species 192 

(CPS), and Groundfish species (GFS). 193 

 194 

Species 
Archetype 

Name Description Parameter 1 Parameter 2 Distribution 

HMS SST (°C) Sea surface temperature  = 17  = 4 normal 

 MLD (m) Mixed layer depth  = 50  = 30 normal 

 Prey presence Preference for prey  = -0.15  = 0.4 logistic 

 Prey SST (°C) Prey sea surface 
temperature 

= 14  = 7 normal 

 Prey Zoo200 (mmol N 
m-2) 

Zooplankton integrated 
over top 200m 

= -10 = 45 logistic 

 Biomass (kg) Biomass if species 
considered present in a 
grid cell 

log  = 3.29 log () = 0.26 Log normal 

CPS SST (°C) Sea surface temperature  = 16  = 6 Normal 

 Zoo50 (mmol N m-2) Zooplankton integrated 
over top 50m 

 = -5  = 20 Logistic 

 Bathymetry (m) Spatial covariate  = -500  = -2000 Logistic 

 Biomass (kg) Biomass if species 
considered present in a 
grid cell 

log  = 6.87 log () = 0.14 Log normal 

GFS BT (°C) Bottom temperature  = 4  = 3 Normal 

 BO (mmol m3) Bottom oxygen  = 57  = 62 Normal 

 Bathymetry (m) Spatial covariate  = 900  = 1600 Normal 

 Biomass (kg) Biomass if species 
considered present in a 
grid cell 

log  = 5.14 log () = 0.22 Log normal 

All species Occurrence (0 or 1) Occurrence as a function 
of habitat suitability 

 = -0.7 = 0.4 Logistic 

  195 



Table S2 Summary of model configurations and parameterization in R syntax for an example 196 

species archetype, highly migratory species (HMS). Environmental variables for the HMS 197 

archetype include sea surface temperature (SST), surface chlorophyll-a (Chla), and mixed layer 198 

depth (MLD). SDMs include boosted regression trees (BRT), multilayer perceptron (MLP), 199 

generalized additive model (GAM), and generalized linear mixed model (GLMM). SDM 200 

parameterization options include combinations of environmental (E), spatial (S), temporal 201 

covariates (T) 202 

 203 

Model Description R syntax  

BRT_E Environmental covariates only gbm.x = SST, Chla, MLD 

BRT_ES Environmental and spatial covariates gbm.x = SST, Chla, MLD, lat, lon 

BRT_EST Environmental, spatial, and temporal covariates gbm.x = SST, Chla, MLD, lat, lon, year 

MLP_E Environmental covariates only SST + Chla + MLD  

MLP_ES Environmental and spatial covariates SST + Chla + MLD + lat + lon 

MLP_EST Environmental, spatial, and temporal covariates SST + Chla + MLD + lat + lon + year 

GAM_E Environmental covariates only s(SST) + s(Chla) + s(MLD) 

GAM_S Spatial covariates only s(lat,lon) 

GAM_ES Environmental and spatial covariates s(SST) + s(Chla) + s(MLD) + s(lat,lon) 

GAM_EST Environmental, spatial, and temporal covariates s(SST) + s(Chla) + s(MLD) + te(lat,lon,year) 

GAM_Ecor Environmental covariates with additional 
residual spatiotemporal correlation 

s(SST) + s(Chla) + s(MLD); 
correlation=corGaus(form=~lat+lon|fYear) 

GLMM_ES Environmental covariates and a spatial random 
field 

SST + Chla + MLD + SST2 + Chla2 + MLD2 ; spatial = 
“on”, spatiotemporal = “off” 

GLMM_ST Spatial and AR1 spatiotemporal random fields spatial = “off”, spatiotemporal = “AR1” 

GLMM_EST Environmental covariates, and spatial and AR1 
spatiotemporal random fields  

SST + Chla + MLD + SST2 + Chla2 + MLD2 ; spatial = 
“off”, spatiotemporal = “AR1” 

GLMM_ESTt Environmental covariates, a spatial random field, 
and spatially varying temporal trend random 
field.  

SST + Chla + MLD + SST2 + Chla2 + MLD2; spatial = 
"on", 
spatiotemporal = "off", 
spatial_varying = ~ 0 + year 

  204 



 205 

Figure S1 Time-series of normalized biomass for CPS and GFS archetypes. Annual indices are 206 

used as a biomass multiplier to encompass population trends in the species simulations. CPS 207 

reflects boom-bust dynamics from a population model (Punt et al., 2016), and the dashed line 208 

indicates the 25% quantile threshold used to force a preference of southern habitats when 209 

biomass is low. GFS reflects 20-year phase shifts of recruitment which impacts total population 210 

biomass. 211 

  212 



 213 

Figure S2 Time-series of simulated (blue) and estimated (red) species biomass for each earth 214 

system model. Red line indicates the ensemble mean, with gray shading showing the spread 215 

across 12 species distribution models. An 11-year running mean is applied to the time-series.  216 



 217 

Figure S3 Spearman correlation coefficient between simulated and estimated biomass for each 218 

SDM on fitted data (top; 1985-2010) and forecast (bottom; 2011-2100) data. Results for each 219 

species archetype (symbol) and earth system model (color), and the ensemble mean across 220 

SDMs are shown.  221 

  222 



 223 
Figure S4 Area under the receiver operating curve (AUC) between simulated and estimated 224 

habitat suitability for each SDM on fitted data (top; 1985-2010) and forecast (bottom; 2011-225 

2100) data. Results for each species archetype (symbol) and earth system model (color) are 226 

shown.   227 



 228 

Figure S5 Spatial correlation coefficients between simulated and estimated (GAM_E and 229 

GAM_ES models) biomass for the three species archetypes, averaged across historical (1985-230 

2010) and future (2075-2100) periods. Results from the HAD earth system model are shown.231 



 232 
Figure S6 Time-series of simulated (grey line) and estimated (red line) biomass for species 233 

archetypes and the HAD earth system model. Within-model uncertainty for GAM SDMs 234 

(GAM_E; GAM_ECor; GAM_ES; GAM_EST) was generated from 100 samples from the posterior 235 

distribution of fitted models, with mean indicated by the red line and range of estimates 236 

indicated by the red shading. An 11-year running mean was applied.  237 



 238 

Figure S7 Percent of environmental extrapolation experienced by SDMs, with novelty relative to 239 

the 1985-2010 training period. An 11-year rolling mean was applied.   240 



 241 

Figure S8 Variation among environmental variables for three earth system models (ESMs), 242 

shown for three regions in the California Current System. Note that variability among ESMs is 243 

lower in northern regions for most variables. 244 


