New Phytologist Supporting Information
Article title: A multi-omics framework reveals strawberry flavor genes and their regulatory elements

Authors: Zhen Fan, Denise M. Tieman, Steven J. Knapp, Philipp Zerbe, Randi Famula, Christopher R.
Barbey, Kevin M. Folta, Rodrigo R. Amadeu, Manbo Lee, Youngjae Oh, Seonghee Lee, Vance M.
Whitaker*

Article acceptance date: 21 July 2022
Fig. S1. Model based clustering with k=4 (a) and LD decay (b).

Fig. S2. Comparisons of marker R2 and —logP among different types of eQTL.

Fig. S3. Dot plot maps the lead SNPs on Fana array for all eQTL (a). Density plot of minimum distance

between significant SNPs on the Fana array (b).

Fig. S4. Characterization of trans-eQTL and their master regulators on chromosome 5D.
Fig. S5. Additional quality evaluations of the assembly.

Fig. S6. Karyoplots of F12 assembly (a) and Bea assembly (b).

Fig. S7. Hi-C contact map of Bea haploid assembly.

Fig. S8. Synteny plot between two haplotypes.

Fig. S9. Density distribution of expression ratios of genes (a). Allelic expression ratios of genes within

alpha-linolenic acid metabolism pathway (b).

Fig. S10. Circos plot of allele-specific expressed genes (ASEs) in ‘FL.15.89-25".

Fig. S11. Cluster analysis and chemical relationships among volatiles.

Fig. S12. Linkage view of the two hotspots for median-chain esters (a) and terpenes (b).
Fig. S13. Marker prediction of overripe (a) and sweetness (b) scores.

Fig. S14. Manhattan plots of pentanal (a); butanoic acid, 2-methyl- (b); 2-hexenal, (E)- (c).

Fig. S15. Box-plots of relative abundance of pentanal (a), 2-hexenal, (E)- (b), and 2,3-butanedione (c)

with different dosage of the alternative allele.

Fig. S16. Dosage effect on mesifurane abundance (a). Detection of indel using short reads alignment (b).

High resolution melting curve for the InDel marker (c).



Fig. S17. Chromosomal alignment of 3C to the ‘Camarosa’ reference genome (a). Translated nucleotide

sequences alignment between FaNESIt and FaNES! (b). Haplotypes of FaNESI.

Fig. S18. IGV view of short reads alignment to FaNES|.

Fig. S19. Schematics of three haplotypes at the FaFAD1 region.

Fig. S20. Gene models, SV locations, genome alignments between haplotypes.

Fig. S21. Tissue-specific expression of Fa4Sal (a). Manhattan plot for methyl anthranilate (b).
Fig. S22. Long-range alignment to the FaASal region.

Fig. S23. Genetic variations of genes involved in the anthocyanin pathway.
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Fig. S1. (a) Model-based clustering of 196 strawberry accessions using a pruned SNP dataset including
168,476 SNP loci. The k (number of clusters) was set to 4. Populations are ordered based on geographic
origin, separated by black vertical lines. Cos: “cosmopolitan”; Mara BC: ‘Mara des Bois’ BC1; UF:
University of Florida; UC: University of California (b) LD decay measured by r* in University of Florida
(UF), University of California (UC) and combined set.
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Fig. S2. Comparisons of marker R? (left) and —logP (right) among different types of eQTL. Label cis,
homoeo, intrachr and other represent cis-eQTL, homoeologous trans-eQTL, intrachromosomal trans-
eQTL, and other trans-eQTL, respectively. Letters below the boxes indicate the significant differences at
a=0.05 using Tukey’s HSD test. Boxes are delimited by upper and lower quantiles. Two whiskers
represent highest/lowest values; dots represent outliers; and horizontal lines represent medians.
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Fig. S3. (a) Dot plot maps the lead SNPs on Fana array of eQTL against the middle positions of mapped
eGenes. (b) Density plot of minimum distance between significant SNPs on the Fana array within cis-
eQTL and their associated eGenes
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Fig. S4. Characterization of trans-eQTL and their master regulators on chromosome 5D. (a) Trans-eQTL
density on chromosome 5D. The locations of identified potential master regulators are annotated with
green triangles. Location of putative regulators at the largest hotspot is labeled with their gene IDs. (b)
Circos plot links the trans-eQTL hotsplot at 7796793 to 7803611 bp on chromosome 5D to physical
positions of its trans-regulated genes. (c) Comparisons of FxaC_20g13890 expression with different
dosage of wild alleles at the cis-eQTL. Different letters represent significant differences at alpha = 0.05
using TukeyHSD test. Boxes are delimited by upper and lower quantiles. Two whiskers represent
highest/lowest values; dots represent outliers; and horizontal lines represent medians. (d) Heatmap
showing scaled expression patterns of genes having trans-eQTL between 7796793 to 7803611 bp on
chromosome 5D and the putative regulator FxaC 20g13890. The row for FxaC 20g13890 expression is
labeled. The top panel is annotated with allelic dosage of 14 makers within the hotspot region. Color
deepens with more doses of the alternative allele. Genotypes are grouped into six clusters, whereas genes

are grouped into two clusters based on the hcluster function and cuttree with different k values.



Cumulative length

Cumulative length {Mbp)

T ¥
o 150 300 450 600
Contig index

—— Fl2.hap == Fl2.hap broken == Referencel

Total k-mers (size)
30,000,000
40,000,000

50,000,000
2,000,000+ 60,000,000
i I;:
o - Assembly
g. _@, @ Beautyhap
m
= @ Fiz.hap
b
o T
1,000,000{ @
Q
04 L o @ e ed @
0 1,000,000 2,000,000

beauty.hapmer

Count

Count

lemer

— read-only
Beautyhag-only
F12 hap-only
shared

75 50 75
kmer_multiplicity

kemer
— Fi2 hapmeroniy
1
2
3
4
=4

k=mer
ray — beautyhapmeranly
f 1
2
3
4
>d

..\.-

N
.

—_—

i 10

20 30
kmer_multiplicity

Fig. S5. (a) Cumulative length of contigs and scaffolds of the F12 haploid assembly. The red dashed line,
red solid line, and black dashed line represent the accumulated length of phased contigs,
pseudochromosomes and the pseudochromosomes of the reference genome. (b) Hapmer blob plot of the
scaffolded assemblies. Red blobs represent Bea pseudochromosomes, while blue blobs are the F12
pseudochromosomes. Blob size is proportional to pseudochromosome size, and each
blob/pseudochromosomes is plotted according to the number of contained Bea (x values) and F12 (y
value) hap-mers. Results indicate F12 specific k-mers are only found in F12 pseudochromosomes and
vice versa. (c) Copy number spectrum (spectra-cn) of the same k-mers plotted as unstacked histograms
colored by the maternal (Beauty, red), paternal (F12, blue), shared between parents (green) and in the
child’s reads only. The assembly k-mers absent from the read set (likely to be base errors in the assembly)
are plotted as a bar at zero multiplicity (close to 0 in our assemblies). (d&e) Hap-mer spectra-cn plot of
Bea and F12 assembly, close to 0 F12 hapmers is found was Bea assembly, while close to 0 beauty

hapmers was found in F12 assembly.
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Fig. S6. Karyoplots of F12 assembly (a) and Bea assembly (b). TE density is plotted underneath the
genome track in green and gaps in pseudochromosomes are plotted as vertical lines on top of the genome
track.



1D /[!;

1B

s

2C

2A s N

2B " o+

3B

48

5D ~ i

w

a
L

£

3

6B \

s Pl T
7C
7A
7B
70

chro_B : ; I

Fig. S7. Hi-C contact map of Bea haploid assembly using public Hi-C data from Fragaria xananassa.



Bea

1B \\

& luns”

1C W .

2C N

2A T jf
2D -

v /".\
e,

2B r
3D s

3B

A8 %A

£ & %

5D

5B . ¥ "y A

5c - v Ll

6A

" | "\";\
N

¥

6B

6D
7c
7A
78 T - . .

7D . : N

FI29 2 9S8 SR 882 282325882 38 3 gRapep

Fig. S8. Dot plot shows synteny between two haplotypes (x axis: F12 haplotype; y-axis: Bea haplotype).
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Fig. S9. (a) Density distribution of expression ratios of genes in ripe strawberry fruit across four
biological replicates. (b) Allelic expression ratios of genes within alpha-linolenic acid metabolism
pathway. Red cells represent higher expression from F12 allele, while green ones represent lower
expression. Expression ratios were centered at 0. Up to four homologs were plotted for each enzyme.



4 Hlaar-smad
PRI I Mo

A4 i‘;-';.ei--"-'f;f-::.-'f’;\
GJ—-— - L r‘h
23 . £1ih
b Sty
d;%.l_‘_‘ 3\ 1:.
‘\. i et
O s L F g
A o P )
S Walk: 1w
QW P
6‘ L 7 5ot
¢ .
:“;"7“?,! ¥ h‘lr" P e
2% ™ ) 1

L
DG e A

Fig. S10. Circos plot of allele-specific expressed genes (ASEs) in ‘FL15.89-25". Track A depicts SV
density in exons. Track B depicts density of ASEs. Track C plots the median expression ratios of ASEs.
The allelic expression ratio was computed by dividing the F12 allelic read count by the sum of the F12
allelic read count and the Bea allelic read count. Red or blue represents higher expression of the F12 or

Bea allele. The range of median expression ratios was between 0 and 1.
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Fig. S11. Cluster analysis and chemical relationships among volatiles. K =15 was used for K-clustering
analysis. Five distinct volatile clusters are colored in the second column. Color of each cell in the center
panel reflects the pairwise Pearson correlation between two volatiles.




Fig. S12. Linkage view of the two hotspots for median-chain esters (a) and terpenes (b), respectively. The
lead SNPs of the GWAS peaks are labeled. Blue asterisks represent significant marker positions.
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Fig. S13. (a) Marker effect of AX-184745816 on scores of overripe flavor. X axis indicates doses of the
alternative allele. Boxes are delimited by upper and lower quantiles. Two whiskers represent
highest/lowest values; dots represent individual values; and horizontal lines represent medians. (b)
Sample sweetness scores are plotted with soluble solids content percentages (SSC%). The predicted
sweetness score using linear regression is shown as a straight line. Samples with one dose of the

alternative allele of marker AX-166515537 are in red color.



a Pentanal

AX-184016449  AX-184236819 AX-184422639

-logP

0 v

14 1B 1C 1D 24 28 2C 2D 3A 38 3C 3D 44 4B 4C 4D 5A 5B 5C 5D A 6B

b Butanoic acid, 2-methyl-

AX_16651 0620 AX-184726549

: AX-184067957

6C €D 7A 7B 7C 7D

a
bo
o
I I I
14 1B 1C 1D 2A 28 2C 2D 3A 3B 3C 3D 4A 4B 4C 4D 5A 5B 5C 50 6A 68 6C 6D 7A 7B 7C 7D
C 2-Hexenal, (E)
AX-166513835
Ax'184:°9~?518 AX-184879320 AX-184972204
* ®
| . : - é .t w5 ;_
o2 = 3
g § © |
- ﬁ

0 A I I

14 1B 1C 1D 24 2B 2C 2D 3A 38 3C 3D 4A 48 4C 4D 5A 58 5C S50 6A 68 6C 60 7A 8 IC 7D

Fig. S14. Manhattan plots of pentanal (a); butanoic acid, 2-methyl- (b); 2-hexenal, (E)-, (c). The lead SNP
for each GWAS signal is labeled.
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Fig. S15. Box-plots of relative abundance of pentanal (a), 2-hexenal, (E)- (b), and 2,3-butanedione (c)
with different dosage of the alternative allele. X axis indicates total number of alternative alleles
(functional alleles) for two GWAS signals. The sample counts and means are given below the boxes.
Letters above the boxes indicate the significant levels at a=0.05 using Tukey’s HSD test. The lead SNPs
used for each box plot are included in the plot title. Boxes are delimited by upper and lower quantiles.
Two whiskers represent highest/lowest values; dots represent individual values; and horizontal lines
represent medians.
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Fig. S16. (a) Comparisons of mesifurane abundances in accessions with different dosages of non-
functional haplotypes (haplotype 4, 7 and 8). Boxes are delimited by upper and lower quantiles. Two
whiskers represent highest/lowest values; dots represent individual values; and horizontal lines represent
medians. (b) Two tracks show the non-functional haplotype 8 from the ‘Royal Royce’ genome assembly
and heterozygous ‘Floridal27’ whole genome sequencing reads mapped to the functional haplotype 2 of
FaOMT from the F12 assembly. A 28bp InDel (middle of the plot) is present in half of the short reads at
the first exon of FaOMT. (c) High-resolution melting curves for the InDel2 of FaOMT using 38 breeding
lines. Clear separation in melting curve patterns is shown between individuals with different allelic
dosage.
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Fig. S17. (a) Alignment between 3C_F from F12 haploid assembly and 3C from the ‘Camarosa’ reference
genome. A 1.61Mb region was missing in the reference genome. (b) Translated nucleotide sequences
alignment between FaNESIt and FaNES] derived from F12 assembly and published sequence from
NCBI. Predicted conserved domain were annotated with red bars. The [266V mutation was annotated in
orange. (c) Four haplotypes of FaNES! identified with two unlinked significant markers (r<0.5). Marker
was named according to chrID_position. Left annotation shows haplotype frequency. Right annotation
shows haplotype effect in unit of normalized count. The central heatmap shows marker genotype. Blue
represents the reference allele; red represents the alternative allele.



Fig. S18. IGV view of ‘Florida Beauty’ whole genome sequencing reads mapped to FaNESI on 3-3 F. A
24bp deletion (middle of the plot) is present in half of the reads at the first exon of FaNES].
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Fig. S20. Gene models, SV locations, genome alignments between haplotypes obtained from F12
haplotype assembly (_F12), Bea haplotype assembly (_Bea), Camarosa reference genome (_Cam) and
Royal Royce PHASE1 (_ RR1) and PHASE2 (_RR2) for three flavor genes. For FaGT2, the insertion at
promoter region is too large to be plotted as one continuous line.
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Fig. S21. (a) FaASal expression in leaf (L), green fruit (G), turning fruit (T), red fruit (R). The highest
expression was recorded in red fruit. Gene expression was quantified using qPCR. Boxes are delimited by
upper and lower quantiles. Two whiskers represent highest/lowest values and horizontal lines represent
medians. (b) Four putative candidate genes underlying four GWAS peaks for methyl anthranilate.
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Fig. S23. Genetic variations of genes involved in the anthocyanin pathway. (a) Simplified anthocyanin
pathway in strawberry. Pelargonidin 3-O-glucoside is the predominant anthocyanin in strawberry fruit. (b)
Expression changes for different dosages of alternative alleles for genes involved in the anthocyanin
pathway. Boxes are delimited by upper and lower quantiles. Two whiskers represent highest/lowest
values; dots represent individual values; and horizontal lines represent medians. (c) Manhattan plots show
significant peaks for 3 homoeologous FaDFRs. Gene locations were labeled for their respective eQTL. (d)
Expression of FxaC_8g06290 is plotted with FxaC_6g44881 expression. The shaded line represents linear

model built with expressions of two genes.
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