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Note S1 

eQTL mapping 

The eQTL were also mapped with the 50K Fana SNP array (Hardigan et al., 2020) for 185 individuals. 

Genomic DNA was isolated from either fruit or leaf tissue. CEL files containing sample fluorescence data 

were imported into the Affymetrix Axiom Analysis Suite (v1.1.1.66) and run in “polyploid” mode to 

predict marker genotype clusters (Hardigan et al., 2021). The SNP calls of the 185 individuals (Dataset 

S1) were concatenated and imputed using AlphaImpute version 1.9.8.3 (Whalen & Hickey, 2020). The 

outputted genotype probabilities were imported for LMM models in GEMMA to associate with gene 

expression data. The approach to define an eQTL was identical to RNAseq variants with a lenient p-value 

(0.05/49,330=1.01×10-6).   

Trans-eQTL hotspots were searched using the density function in R with the default “Gaussian” kernel. 

The number of windows was set to 215=32,768, equivalent to a window size of 870 bp. Hotspots within 5 

kb were merged and the total number of embedded trans-eQTL were counted for each hotspot. The 

density threshold was computed via permutation tests. Permutation tests were conducted with the 

following steps: all lead SNP sites were randomly shuffled a number of times equal to the total number of 

eQTL (repeated sampling was allowed), and the highest density was stored; the first step was repeated 

1,000 times; the distribution of the highest density was drawn, and the density at p = 0.05 was used as the 

threshold.  

 

Note S2 

Genome annotation 

A repeat library was constructed using EDTA version 1.9.0 with “—sensitive 1” to allow RepeatModeler 

to identify remaining TEs (Ou et al., 2019). The TE annotation library was generated by EDTA in a 

separate run. TE regions of both haploid assemblies were masked by ReapeatMasker version 4.1.1 

provided with the repeat library. Protein-coding genes were annotated following the MAKER-P 

annotation pipeline (Campbell et al., 2014). In the initial run, MAKER integrated transcript and protein 

evidence. Transcript evidence included the Fragaria ×ananassa GDR RefTrans V1 

(https://www.rosaceae.org/analysis/230) and non-overlapping transcripts assembled from over 20 

genotypes (Barbey et al., 2020). RNAseq reads were first cleaned using Trimmomatic version 0.39 and 

mapped to the new assemblies without the gene annotation file by STAR version 2.7.6a (Dobin et al., 

2013). A unified set of transcripts was assembled by PsiCLASS version 1.0.1 (Song et al., 2019). The 

curated protein database for tracheophyta was downloaded from UniProt (https://www.uniprot.org/) and 

https://www.uniprot.org/


transposases filtered out. In the sequential iterative runs, ab initio gene predictors SNAP (Korf, 2004) and 

Augustus (Stanke & Waack, 2003) were iteratively trained and used for gene prediction. Functional 

annotations were assigned via the UniProt/Swiss-Prot protein database using iprscan version 5.50. The 

final set of annotated genes were either supported by the evidence (AED < 1.0) or encoding a Pfam 

domain. KEGG K-numbers for annotated genes were assigned by KofamKOALA (Aramaki et al., 2020).  

Evaluation of genome assembly and annotation 

Basic summary stats for the assemblies such as total length, N50, and N95 were obtained using QUAST 

version 5.0.2 (Mikheenko et al., 2018). Genome quality and phasing quality (QV, completeness, 

switching error and hamming error) were evaluated by Merqury version 1.1 and Yak version 0.1 (Rhie et 

al., 2020; Cheng et al., 2021). The completeness of the haploid assemblies and protein-coding gene 

annotations were assessed with the BUSCO eudicots database including 2,326 conserved plant genes 

(Seppey et al., 2019). The quality of scaffolding was inspected on the Hi-C contact map and a FL 15.89-

25 linkage map that was built with 1676 SNPs using 66 progeny of ‘Florida Beauty’ × FL 15.89-25 with 

the ‘onemap’ package in R (Margarido et al., 2007). The public Hi-C data (Lee et al., 2021) from 

Fragaria ×ananassa was downloaded from the NCBI SRA database (accession number: SRX10474285 

& SRX10474284) to evaluate scaffolding quality. Hi-C reads were mapped to the Bea haploid assembly 

using HiC-Pro version 3.0 and visualized in Juicebox version 1.11. 

Annotation evaluation 

Although fewer protein-coding genes were annotated in our new phased assemblies (90372 and 89218) 

compared to the recent reannotation (108,447) of the reference genome (Edger et al., 2019), comparable 

completeness of BUSCO genes was achieved, of which 97.1% and 96.9% were complete including 91.8% 

and 92% duplicated. TE regions comprised 40.97% and 42.24% of the haploid assemblies. The increase 

of TE percentage compared to the reference genome (36.08%) was largely attributed to higher percentage 

of helitron (5.19-5.43% VS 0.09%) identified with EDTA pipeline (Ou et al., 2019). 

 

Note S3 

Fruit allele-specific expression within “FL15.89-25” 

To connect gene annotations in our new haploid assembles, the F12 annotated protein database was 

blasted to Bea annotated protein databases. Synteny blocks were classified using MCScanx version 

20130328 (Wang et al., 2012). A matched gene must satisfy one of the two criteria: 1. The matched gene 

must reside on the same chromosome with a one-to-one physical relationship. 2. If a multiple-to-one 



relationship was found, the difference in physical positions of the matched gene pair was limited to 1 Mb 

on the same chromosome. Potential presence/absence variation (PAV) genes were genes with no matched 

pair in the other haplotype. In addition, PAV genes were accessed by alignment of parent-specific CCS 

reads binned by HiCanu version 2.1. Only genes with less than 30% coverage of their whole length were 

considered as PAV genes. Gene ontology (GO) enrichment analysis was conducted using Bioconductor 

package topGO version 2.38.1. The whole gene set from both haploid assemblies were used as the 

universal set. The significances of GO terms were assessed by the classic Fisher’s exact test and false 

discovery rate used for multiple test correction. 

Four biological replicates of FL 15.89-25 full-red fruit samples harvested from different plants on two 

dates were sent for transcriptome sequencing. More than 6 Gb Illumina 150PE short-read data were 

generated for each sample. Gene expression was computed using the same approach as described for 

eQTL mapping. The concatenated haplotype assemblies were used as the reference genome. The 

corresponding annotations of the same gene in both haploid assemblies were identified by the 

abovementioned ortholog search. The allelic expression ratio was computed by dividing the F12 allelic 

read count by the sum of the F12 allelic read count and the Bea allelic read count. A general linear model 

(GLM) was fitted for each gene, specifying a binomial distribution (Crowley et al., 2015) and a logit link 

using the GLM function in R. P-values from the Z-statistic, testing whether the intercept was different 

from 0, were adjusted with Bonferroni corrections (α = 0.05). There was no need to correct for gene 

length or total number of reads since the GLM model was gene-specific.  

 

Note S4 

Volatile quantification method 

Volatiles were sampled from headspace with a 2-cm tri-phase solid-phase micro-extraction (SPME) fiber, 

separated on an Agilent Technologies DB-5 column and analyzed on an Agilent Technologies 6890N gas 

chromatograph (GC) coupled with a mass spectrometry using EI ionization. Volatile identification and 

quantification of peak area were conducted with MassHunter Workstation software (Version 10.0; 

Agilent Technologies). Retention times of 12 common strawberry volatiles (butanoic acid, ethyl ester; 

butanoic acid, methyl ester; mesifurane; gamma-decalactone; gamma-dodecalactone; octanoic acid, 

methyl ester; octanoic acid ethyl ester; methyl anthranilate; 2-hexenal, (E)-; 1-hexanol; nonanal; hexanoic 

acid, methyl ester) were compared with authentic standards (Sigma Aldrich) for identification and 

calibration. The rest of compounds were tentatively identified based on matches to the NIST library 



version 14 (match score > 0.9). Three biological replicates (harvests) were tested for each genotype. Log-

transformed mean values across biological replicates were used for genetic associations. 

 

Note S5 

Volatile-GWAS method 

Because the GWAS population was mostly constituted of bi-parental crosses, strong relatedness and 

stratification existed in the population. To account for population structure, we used a linear mixed model 

implemented in fastGWA (GCTA Version 1.93.2beta) including the top 10 principal components and a 

relationship matrix derived from SNPs. A high number (10) of principal components was chosen to 

explain the multi-family structure of the panel. All of the small off-diagonal elements (<0.05) in the 

relationship matrix were set to 0 (Jiang et al., 2019) to counter overcorrection by population structure 

within families. To determine the genome-wide significance threshold, we estimated the number of 

effective SNPs by pruning with window size of 50 SNPs and 𝑟𝑟2 = 0.5 using PLINK Version 1.90b3.39 

(Purcell et al., 2007). The number of effect SNPs was estimated to be 5402. The Bonferroni corrected 

genome-wide threshold was p = 1.85 × 10-5 (0.1/5,402). Narrow-sense heritability (ℎ2) and SNP-based 

heritability (ℎ𝑠𝑠𝑠𝑠𝑠𝑠2 ) were computed using the approach implemented in GCTA version 1.93.2beta (Zaitlen 

et al., 2013). This approach permitted the use of genotypes from both closely and distantly related pairs of 

individuals. Linkage disequilibrium (LD) analysis was conducted for significant SNPs within the GWAS 

clusters using the “snpStats” package version 1.42 in R. 

 

Note S6 

Miscellaneous methods 

Mendelian randomization: Mendelian randomization (MR) was applied to search both master regulatory 

genes at trans-eQTL hotspots and candidate genes underlying volatile GWAS peaks. The 𝑇𝑇𝑀𝑀𝑀𝑀  was 

estimated according to (Lawlor et al., 2008; Zhu et al., 2016) in three steps. 1. 𝛽̂𝛽𝑥𝑥𝑥𝑥 = 𝛽̂𝛽𝑧𝑧𝑧𝑧/𝛽̂𝛽𝑧𝑧𝑧𝑧  where z 

denoted a shared significant genetic variant, 𝛽̂𝛽𝑧𝑧𝑧𝑧 was the effect of z on trans-regulated eGene expression y 

and 𝛽̂𝛽𝑧𝑧𝑥𝑥  was the effect of z on cis-regulated eGene expression x. 2. 𝑣𝑣𝑣𝑣𝑣𝑣�𝛽̂𝛽𝑥𝑥𝑥𝑥� = �𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦)�1− 𝑅𝑅𝑥𝑥𝑥𝑥2 ��/

[𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥)𝑅𝑅𝑧𝑧𝑧𝑧2 ] where 𝑅𝑅𝑥𝑥𝑥𝑥2  and 𝑅𝑅𝑧𝑧𝑧𝑧2  were proportions of variance in y, explained by x and z respectively. 

The n was equal to 196, the sample size of the eQTL study. 3. 𝑇𝑇𝑀𝑀𝑀𝑀 = 𝛽𝛽𝑥𝑥𝑥𝑥2 /𝑣𝑣𝑣𝑣𝑣𝑣(𝛽̂𝛽𝑥𝑥𝑥𝑥), where 𝑇𝑇𝑀𝑀𝑀𝑀  follows 

the 𝜒𝜒2 distribution with one degree of freedom. The pchisq function in R was used to calculate the p-

value. The median p-value across all trans-regulated genes was used to represent the significance of a 



potential regulatory gene. For causal gene identification, y was volatile abundance, x was eGene 

expression, and z denoted the significant marker shared by GWAS and eQTL. 𝑅𝑅𝑥𝑥𝑥𝑥2  was estimated using 

59 shared genotypes between the eQTL and GWAS panels. For the master regulator search, the 

significance threshold was adjusted based on the number of total tests (p = 1.04×10-5). When used for 

searching candidate genes at GWAS peaks, expression correlations and predicted biological functions 

were considered, therefore no threshold was enforced.  

Sensory evaluation: Sensory evaluations of sweetness perception and overripe flavor were collected in the 

previous descriptive panel study (Fan et al., 2021b).  

RT-PCR: Total RNA from agroinfiltrated fruits was reverse-transcribed using LunaScript® RT SuperMix 

Kit (New England Biolabs). The cDNA library was mixed with Forget-Me-Not™ EvaGreen® qPCR 

Master Mixes (Biotium). RT-PCR was performed on a LightCycler480 (Roche, Inc.). Three technical 

replicates were included for each sample. The qRT-PCR data was analyzed using the comparative CT 

method (ΔΔCT) following the manufacturer’s direction. The primers sequences can be found in Table S2. 

Haplotype analysis: Phased SNP calls from Beagle output were converted to GDS files using the 

SeqArray package in R (Zheng et al., 2012). All significant makers within a cis-eQTL for the target 

volatile were LD pruned (r < 0.5). Phased calls of the remaining markers were concatenated to form final 

haplotypes. Haplotype effects on phenotypes were computed using a simple linear model. Haplotype, 

haplotype effect and LD among makers were displayed via heatmaps using ComplexHeatmap package 

(Gu et al., 2016). 

eQTL mapping using the F12 haploid assembly: The same procedures for marker calling and eQTL 

mapping was used as described above, except that the markers were not filtered for MAF > 0.05.    

Nucleotide diversity/MAF/AA frequency: Nucleotide diversity (𝜋𝜋) was computed using vcftools version 

0.1.16 with a window size of 10 kb. MAF and AA frequency were obtained using the hardy function in 

vcftools. 

High-Resolution Melting Marker Test: The design and testing of HRM markers were according to our 

previous study (Oh et al., 2021). In brief, the primers FaOMT01_F & FaOMT01_R were designed based 

on flanking sequences of the 28 bp InDel2 within FaOMT (Table S2). The functional marker was first 

tested using 38 breeding lines previously phenotyped for volatile content (Oh et al., 2021). To validate the 

allele dosage effect, a test cross ‘FL 16.30-128’ × FL 15.89-25 was created and evaluated in year 2020. 

We selected 19 individuals which had the same genotype for the Chr 1C QTL to conduct the marker test. 

Mesifurane abundances were evaluated at three different harvests and two field replications.  



Long-range alignment: Alignment between long DNA sequences (> 10kb) was conducted using 

Minimap2 version 2.17 in asm5 mode (Li, 2018).  

Map to a reference: BWA-MEM was used for short read mapping and visualized in IGV version 2.8.9. 

Additional Illumina WGS sequence data were obtained for ‘Mara des Bois’ and ‘Florida127’ with a 

coverage of 40×.  

Pairwise alignment: Pairwise alignment of FaNES1 homologs was conducted in Geneious Prime software 

version 11.  

Note S7 

Trans-eQTL hotspots 

To mine master regulatory genes at trans-eQTL hotspots, we leveraged Mendelian Randomization (MR) 

tests and the plausible mechanism that the master regulatory gene is often governed by a cis-eQTL in the 

same region as trans-eQTL for its regulated genes (Yao et al., 2017; Albert et al., 2018). A total of 384 

master regulators were identified using this approach (Dataset S6), including five regulators controlling 

more than 100 genes. On Chr 5D, there were 67 hotspots, with 15 of them assigned with potential 

regulators including the largest hotspot (Fig. S4a). This large hotspot between 7,796,793 bp and 

7,803,611 bp contained 363 trans-eQTL for eGenes across all chromosomes (Fig. S4b). FxaC_20g13890 

encoding an E3 ubiquitin ligase BIG BROTHER-like gene was the sole candidate regulator for this region 

(p_MR=3.18e-12). E3 ubiquitin ligase controls hormonal pathways related to fruit development and 

ripening (Chen et al., 2016). In Arabidopsis, RING-finger protein BIG BROTHER has a central 

regulatory role in plant growth, such that a small change in its expression can lead to substantial 

alternation in organ size (Disch et al., 2006). We observed a decrease by 40% for FxaC_20g13890 

expression with two doses of the alternative allele in our eQTL population (Fig. S4c). The majority of 

trans-regulated genes (n = 330) were positively influenced by FxaC_20g13890 (Fig. S4d), and molecular 

functions such as calmodulin binding and protein serine/threonine kinase activity, related to plant growth 

and cell proliferation, were enriched in the regulated gene set. Notably, most accessions in the eQTL 

panel had either one or two alternative alleles within the hotspot region (Fig. S4c&d), suggesting 

selection in favor of the alternative allele, which might be attributed to a role as a repressor of plant organ 

growth (Disch et al., 2006). This large hotspot exemplifies the complex and orchestrated network of gene 

regulation in strawberry fruit and the extensive natural variations existing in breeding materials. 

  

Note S8 



Allele-specific expression 

A total of 75,429 annotated genes were matched between the two haplotypes. PAV analysis revealed 

1,534 genes were absent in the F12 haplotype compared to 1,861 genes absent in the Bea haplotype. Go-

term Enrichment pathway analysis found that PAVs were significantly enriched for 18 GO molecular 

functions (fisher exact test, p < 0.01) including the terpene synthase activity for which 16 of 280 

annotated genes were PAV (Table S3). An evaluation of SVs between two haplotypes identified a total of 

22,848 deletions, 49 inversions, 23,012 insertions, 55 interspersed duplications, 72 tandem duplications 

and 1,381 translocations. The combined assembly of both haplotypes was used for read mapping, and 

mapping rates of uniquely mapped reads varied from 31.7% to 34.1%. A total of 25,600 heterozygous 

genes had more than 10 counts for one allele in at least two replicates.  

Within the alpha-linolenic acid metabolism pathway (Fig. S10b), several key genes showed extreme 

dominance of alleles from the F12 haplotype, such as two putative peroxisomal acyl-coenzyme A oxidases 

1 (ACX) and two putative fatty acid beta-oxidation multifunctional protein 2 (MFP2), while a putative 

alcohol dehydrogenase (EC:1.1.1.1), essential to convert 3-hexenal to 3-hexenol, expressed dominantly 

from the Bea allele (Fig. S9b). Both cis-3-hexenal and cis-3-hexenol are among the most abundant 

volatiles in ripe strawberry and serve as substrates for a variety of esters (Aharoni et al., 2000). 

 

Note S9 

Predict sensory characteristics using SNP markers 

Our previous sensory studies have indicated medium-chain esters positively influenced sweetness 

perception, while sulfur esters imparted overripe flavor (Fan et al., 2021b,a). We correlated the best 

markers underlying the respective medium-chain ester hotspot and methyl thiolacetate to sensory scores 

of sweetness and overripe flavor using 88 samples representing 26 accessions collected in the previous 

study (Fan et al., 2021b). Although neither test reached significance, a discernable marker effect of AX-

184745816 was observed for overripe flavor in the same direction as the effect on methyl thiolacetate 

abundance (Fig. S13a). Meanwhile, more samples with the alternative allele of AX-166515537 were 

below the predicted sweetness score based on soluble solids content (SSC%), suggesting a negative effect 

of the alternative allele for this medium-chain ester hotspot (Fig. S13b). 

 

Note S10 

Deletion in FaFAD1  



To date, the effects of SVs underlying agronomic traits remains elusive in strawberry. The only natural 

SV that was discovered to cause a change in flavor in octoploid strawberry was the large deletion of the 

FaFAD1 gene, leading to the failure to produce gamma- decalactone (Chambers et al., 2014). Previously, 

using short-read sequencing and bacterial artificial chromosome libraries, the size of the deletion was 

8,262bp and harbored the whole genic region of FaFAD1 (Barbey et al., 2021). Both of the new UF 

haploid assemblies carried the functional haplotype with the complete FaFAD1 gene, whereas both 

‘Royal Royce’ haplotypes carried the non-functional haplotype. Comparisons between haplotypes 

resolved a deletion of 12,871bp in the present study (Fig. S19). The FaFAD1 gene was flanked by LTR 

regions. Comparisons among two F. ×ananassa haplotypes and the haplotype from the extent diploid 

ancestor F. vesca (Edger et al., 2018) (FaFAD1 is missing in the other extent diploid ancestor F. iinumae 

(Edger et al., 2020)) implicated that after polyploidization, the 5’ LTR has undergone contraction, 

whereas the 3’ LTR has undergone expansion (Fig. S19). The deletion was likely mediated by illegitimate 

recombination, the predominant mechanism behind TE loss (Ma et al., 2004; Woodhouse et al., 2010).  

 

Note S11 

A regulatory network of anthocyanin biosynthesis 

This comprehensive eQTL dataset could also facilitate exploration of natural variation in important 

biosynthetic pathways other than flavor-related pathways such as anthocyanin biosynthesis. A prominent 

example is anthocyanins which give strawberry fruit their characteristic color. Among 31 genes 

potentially involved in (Fig. S22a), 17 eQTL comprising 11 cis-eQTL and 6 trans-eQTL were found for 

14 genes (Fig. S22b), with minor allele frequencies ranged from 0.046 to 0.469. Previously mapped QTL 

for anthocyanidins (Zorrilla-Fontanesi et al., 2011) and pelargonidin-3-glucoside (Labadie et al., 2020) on 

homoeologous group 5 and Chr 3A colocalized with four eQTL for FaANS homoeologs and one trans-

eQTL for FaANR, respectively. We also identified homoeologous trans-eQTL for two FaDFRs 

(FxaC_6g44881 & FxaC_8g06290), co-localized with a cis-eQTL of another homoeolog 

(FxaC_7g41980, Fig. S22c). A significant positive correlation (t-test, p<10e-16) was only found between 

expression of FxaC_8g06290 and FxaC_6g44881 (Fig. S22d), but not with FxaC_7g41980. 
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