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Figure 1: Benchmarks on 88 cores E5-2699v4 CPU & nvidia RTX8000 GPU. (A) Runtime measure-
ments between ElPiGraph, Elpigraph reduced (one topology per grammar), SimplePPT using CPU and
SimpePPT using GPU on an UMAP embedding of 150000 cells, with varying number of nodes. (B)
Comparison of feature testing runtime between scFates and STREAM, on a dataset of 3217 cells × 16934
genes (C) Overlap of significant features detected by both methods. (D) Comparison of trees generated
by Monocle3 and scFates on the UMAP embedding of 6188 cells. (E) Overlap of the list of significant
features detected by GAM and Moran’s I test. (F) Runtime for the generation of the tree shown in (D),
between monocle3 default tree learning, scFates’s SimplePPT (CPU) and SimplePPT (GPU). (G) Feature
testing runtime comparing Monocle3 Moran’s I test, scFates GAM and scFates wrapper of Moran’s I test
(6188 cells x 20222 genes). (H) Runtime for feature clustering (6188 cells x 6016 genes) between Mon-
ocle3 approach, scFates CPU function (scanpy-based PCA, knn-graph and leiden clustering) and scFates
GPU function (cuml-based PCA, scanpy-based knn-graph and cugraph-based leiden clustering).
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A Forebrain dataset with cell selections
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C PCA plots of top 3 deviating markers
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1Figure 2: Example of deviation from linearity analysis. (A) PCA plot (2st PCs) of published forebrain
dataset, containing a transition from radial glia to neurons [1], with overlayed learned curved trajectory
(top). Selections of the populations for the test (bottom). (B) Top deviating markers, which displays
in the cells of putative bridge a higher difference from the linear of mixture of putative progenies and
progenitors. (C) Top three deviating markers expression shown on PCA plot.
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A TGFB dataset

UMAP1

U
M
AP
2

treatment_id

Mock
TGFB

UMAP1

U
M
AP
2

pseudotime

0

5

10

15

20

B Significant markers

0

1

2

3

4

ex
pr

es
si

on

TGFBI

0

1

2

3

4

ex
pr

es
si

on

FN1

0 5 10 15 20
pseudotime

0

1

2

3

ex
pr

es
si

on

MT-ND6

model
null hypothesis
model
null hypothesis
model
null hypothesis

1Figure 3: Example of covariate testing on a dataset integrating two experiments, focusing on epithelial to
mesenchymal transition. (A)UMAP embeddings with the cells colored by treatment (top) and by inferred
pseudotime (bottom). (B) Selection of markers with amplitude and trend differences (top, center) and
amplitude difference only (bottom).
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Reconstruction of principal tree with SimplePPT

SimplePPT is available as a separate python package named simpleppt. It consists in fitting a principal

tree in M-dimensional space to a set of data points x1,…, xN . The tree is composed of principal points

z1,…, zK arranged and connected in the same space. Precise description of the underlying mathematics is

available in the related paper [2]. The output of the algorithm are three matrices (fig. 4): F, describing the

position of the principal points in the same space as the datapoints (dimensions: K×M). B, an adjacency

matrix defining the principal tree (dimensions: K×K). R, a soft assignment matrix linking the observed

data-points to the principal points (dimensions: K×N).

features/M

cells/N

counts

- trancripts    
- ATAC peaks
- ...                 
.X or .layers

reduction

- PCA        
- diffusion
- ...            

.obsm

dims/M

F

Principal tree node
positions matrix
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or

N
odes/K
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principal tree
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Nodes/Kfeatures/Mdims/M

R
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.obsm

Nodes/K
Inputs

cells/N
N

odes/K

Figure 4: Schematic of the data inputs (in dashed lines) and outputs that scFates uses for tree learning.
Text in italic shows the data location in anndata format

Briefly, the algorithm starts with the initialization of a matrix F. These initial positions can be manually

given or randomly sampled by choosing K cells as being the initial principal points. F is then fixed, and

R and B matrices are solved. B is solved by obtaining the minimum spanning tree from principal point

pairwise distances. R is obtained by solving the following constrained optimization problem:

min
R∈Br

N∑
i=1

K∑
k=1

rik(∥xi + zk∥2 + σrik log rik) (1)

Which is in other words consisting in computing pairwise distance matrix P between principal points and
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data points. P is transformed following a similar step applied in diffusion maps algorithm [3]:

R = exp (−P

σ
) (2)

The resulting transformation is then row-normalized, leading to a matrix with each data point i being

assigned to a principal point k, with the following characteristics:

0 > rik > 1 and
∑K

k=1
rik = 1 (3)

σ in equation (2) is the sigma parameter, which acts as a gaussian kernel to control the locality of the

assignments between principal points and data points. For example, a sigma too high will collapse all the

principal points into the “middle” of all data points.

Once R and B are calculated, these are fixed to calculate F, by solving the following:

F = XR(λL+ Λ)−1 (4)

Where L is the Laplacian matrix, calculated by subtracting the diagonal of the degree matrix of B by the

matrix B. Λ is the diagonal matrix of the row-sums of R. λ is the parameter lambda which constrains the

total length of the tree.

These twomain steps are repeated until a defined number of steps or convergence, the latter being defined

as the difference between the current F and previous F matrices is below a defined threshold. SimplePPT

algorithm can be used by calling the following function:

scFates.tl.tree(adata, Nodes, method="ppt", ppt_sigma, ppt_lambda)

Reconstruction of principal tree with ElPiGraph

ElPiGraph relies on elastic principal graphs to learn a tree in reduced space. Elastic principal graphs are

based on minimization of the energy potential containing three parts:

U = MSE + λUE + µUR (5)

MSE is the mean squared error of data approximation, UE is the sum of squared edge lengths, UR is

a term minimizing the deviation of the principal graph embedment from harmonicity (generalization of

linearity). λ, µ are coefficients of regularization. The structure of the graph is generated by application

of a sequence of graph transformations, using operations from predefined graph grammar. The simplest
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graph grammar ”Bisect an edge”, ”Add a node to a node” leads to construction of a principal tree. A

more detailed explanation of the algorithm can be found in the related publication [4]. The output of

the algorithm is a principal tree, curve or circle, composed of nodes and a list of edges connecting them

together.

To make ElPiGraph output compatible with scFates, the node edge list is converted into the B adjacency

matrix, the nodes positions are used as F matrix, and R is generated by assigning cells to their closest

principal point, generating a hard assignment matrix, with the following characteristics:

rik ∈ {0, 1} and
∑K

k=1
rik = 1 (6)

ElPiGraph algorithm can be used by calling the following functions:

scFates.tl.tree(adata, Nodes, method="epg", epg_lambda, epg_mu)

scFates.tl.curve(adata, Nodes, epg_lambda, epg_mu)

scFates.tl.circle(adata, Nodes, epg_lambda, epg_mu)

Reconstruction of principal tree from CellRank reduction with SimplePPT

scFates can construct a principal tree on CellRank output to allow better interpretation of bifurcations. To

do so, fate absorption probabilities are combined into a 2D simplex using circular posteriori projection

[5]. The calculated CellRank pseudotime is concatenated into the 2D simplex to generate a 3D space,

on which SimplePPT will be run. Conversion from CellRank output can be performed by calling the

following function:

scFates.tl.cellrank_to_tree(adata, time, Nodes)

Mapping of cells on the tree

Assigning a pseudotime value to cells requires first to assign that value to principal points. To do so, a

root node is selected, either in a manual manner, or according to the value of a measurement (expression

of marker, or other cell-wise observation). Pseudotime of a given node is calculated as the distance on

the principal tree from the root to that point, in the distance metric used for tree learning. The root is

selected with the following function:

scFates.tl.root(adata,root)
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To map a cell onto a given tree, the first closest principal point pp1 is selected by using the maximum

assignment value from R. The closest principal point to pp1, pp2, is also selected. The cell is then

projected onto the edge connecting pp1 and pp2, by calculating a weighted average of both principal

points distances to the root, using the probabilities given by R. This weighted average is considered as

the pseudotime value of the cell (fig. 5 A & B.).

To perform probabilistic mapping of the cells onto the tree, we can take advantage of the fact that the soft

assignment matrix R represents natural probabilistic measure as seen in (3) to assign cells onto principal

points. The first principal point pp1 is sampled according to the probabilities given by R, then the same

process is performed as described in the previous paragraph. This approach is not possible if the tree has

been calculated using ElPiGraph algorithm, due to the hard assignment matrix it generates (6). Instead,

the pseudotime calculation is performed by ElPiGraph. Additionally, a function is proposed to convert

the hard assignment matrix into a soft one, by applying one iteration of SimpePPT algorithm using the

tree generated by ElPiGraph

Cell mapping assigns to each cell a pseudotime value, a segment and a milestone. The latter, inspired by

dynverse [6], highlights the forks and tips. Cell mapping is performed by the following function:

scFates.tl.pseudotime(adata)

Testing for features associated with the tree

Feature testing is carried out using generalized additive models (GAM) on normalized counts using

gaussian errors with ’linear’ link [7]. Feature expression is modelled as a function of pseudotime in

a branch-specific manner, using cubic spline regression expi ∼ ti for each branch independently. This

tree-dependent model is then compared with the unconstrained model expi ∼ 1 using F-test. P-values

are then corrected for multiple testing, a feature is considered significant by applying a threshold on FDR

values (fig. 5 C.). This association test is performed by the following function:

scFates.tl.test_association(adata)

Fitting, visualisation and clustering of features

Significant features can be fitted to obtain smoothed values along the branches, using the same GAM

model as used in the previous section. This is performed using the following function:

scFates.tl.fit(adata)
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Fitted features can be subsequently visualised in different manners, as overview heatmap (fig. 5 D.),

single trends (fig. 5 E.) or matrix like plot (fig. 5 F.). Additionally, fitted features can be clustered using

the following approach: By default, PCA is performed on the transposed fitted features matrix, a nearest

neighbor graph is generated from PC space with a distance metric of choice, then leiden algorithm is run

to detect clusters. When run in CPU mode, PCA, nearest neighbor graph and leiden clustering are all

performed using scanpy python package. When run in GPU mode, PCA is performed by cuml python

package, knn graph is generated by scanpy and leiden clustering is performed using cugraph python

package. Clustering can be done using the following function:

scFates.tl.cluster(adata)

Covariate analysis

Features from curved trajectories or segments from trees containing cells from two or more conditions

(e.g. perturbation, disease sample) can be tested for differential expression. First, for each covariates,

features are tested for significant change along the pseudotime as explained in the previous section using

the following function:

scFates.tl.test_association_covariate(adata, group_key)

The union of significant feature from each test are then tested for amplitude using the following GAM

model:

gi ∼ s(pseudotime) + s(pseudotime) : Covariate+ Covariate (7)

Where s(.) denotes the penalized regression spline function and s(pseudotime) : Covariate denotes

interaction between the smoothed pseudotime and covariate terms. From this interaction term, p-values

can be extracted and then corrected for multiple testing. Features can also be tested for trend differences,

comparing the model described in (7) to the following reduced one:

gi ∼ s(pseudotime) + Covariate (8)

Comparison between the two model is performed with ANOVA and p-values are corrected for multiple

testing. The amplitude and trend tests can be performed using the following function:

scFates.tl.test_covariate(adata)

8



Linearity deviation test

To find features that specifically characterize the transitions (B) but not the cell population before (A)

or after (C) the transitions, a test is performed to check whether feature expression in the transition (B)

could be explained by a linear mixture of expressions of that gene in populations A and C. The feature

expression profile of each cell in Bwasmodelled as a linear combination of mean gene expression profiles

in A and C with the lm function in R without the intercept term:

lm(B ∼ meanA+meanC−1) (9)

For each gene in each cell in bridge B, the magnitude of the residuals not explained by the model is

calculated. Mean residuals across all cells in bridge B are calculated and normalized to the standard

deviation of the expression of a given gene. The obtained normalized mean residual values can be used

to prioritize the genes with distinctive expression patterns in the bridge population. The test can be run

with the following function:

scFates.tl.linearity_deviation(adata)

Bifurcation analysis

Branch specific features are first detected via amplitude testing (tl.test_fork) using the following GAM

model:

gi ∼ s(pseudotime) + s(pseudotime) : Branch+Branch (10)

From s(pseudotime) : Branch interaction term, p-values are extracted and then corrected for multiple

testing. Then, each significant feature is tested for its upregulation along the path from progenitor to

derivative branch, using the linear model gi ∼ pseudotime, This first steps are performed using the

following function:

scFates.tl.test_fork(adata,root_milestone,milestones)

Differentially expressed features are then assigned between two post-bifurcation branches with defined

differences in expression and FDR cutoffs (fig. 5 D.). This is done via:

scFates.tl.branch_specific(adata,root_milestone,milestones,effect)
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Finally, DE genes can be separated between early and late genes module, according to their pseudotime

activation (fig. 5 G.). A gene is considered early if its pseudotime activation is before the pseudotime

of the bifurcation. There are two ways to estimate the pseudotime of activation of the DE features. The

first approach estimates it by separating the cells into n pseudotime bins (10 bins by default), and by

calculating the relative expression rate at a specific bin:

r(bt) =
f(bt+1)− f(bt−1)

max f − min f
(11)

Where f(b) is the mean fitted expression at a specific bin, if the rate is higher than a defined threshold,

the gene is considered to activate at the pseudotime value of the related bin. This approach can be used

by calling:

scFates.tl.activation(adata,root_milestone,milestones)

The second approach uses the linear model gi ∼ pseudotime in the progenitor branch only to estimate if

the feature displays an upward trend before the fork. While this method does not output an estimated ac-

tivation pseudotime, it is a robust alternative to separate early and late genes in more challenging dataset.

This approach can be used by calling:

scFates.tl.activation_lm(adata,root_milestone,milestones)

Local compositional heterogeneity analysis

To study local heterogeneity along a pseudotime trajectory and near a bifurcation, cell composition around

a given pseudotime t is approximated by n cells closest to t. To account for cell assignment uncertainty,

the probability of a cell being close to a pseudotime point t can also estimated as a fraction of cases the

cell is close to t across a number of sampled cell pseudotime mappings. The related function is:

scFates.tl.slide_cells(adata,root_milestone,milestones,win)

Local gene-gene correlation reflects coordination of genes around a given pseudotime t, and is defined

as a weighted gene-gene Pearson correlation with cells weighted according to the probability of being

close to the pseudotime t. Local correlation of a gene g with a module, is assessed as a mean local

correlation of that gene with the other genes comprising the module. Similarly, intra-module and inter-

module correlations are taken as themean local gene-gene correlations of all possible gene pairs inside one

module, or between the twomodules, respectively. The repulsive score, reflecting antagonistic expression
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of competing modules at a given developmental stage, is defined as the difference between inter- and

intra- module correlations. If genes inside the module correlate much stronger than they do with the

competing module, such repulsive score will be close to -1, otherwise it will be closer to 0 (fig. 5 H.).

Such calculation can be performed using the following function:

scFates.tl.slide_cors(adata,root_milestone,milestones)

Such function is also provided with a sliding window of overlapping cells over pseudotime, allowing

to extract trends of intra- and inter- module correlations over the trajectory (fig. 5 I.). To ensure that

the observed correlations do not arise due to the induction/repression trends of the considered genes, a

control model can be employed, where the expression levels of each gene are permuted in windows of

nperm cells along the pseudotime axis. The related function for such analysis are:

scFates.tl.synchro_path(adata,root_milestone,milestones)

Formation of fate-specific modules

In order to study decision-making process prior to the tree-reconstructed bifurcation point, a framework

is provided to identify the timing of gene inclusion into its module. The approach is based on two as-

sumptions. First, the lineage bias at a given developmental stage is manifested as coordinated expression

of a subset of fate-specific genes. Second, if a gene is involved in a coordinated expression with a subset

of fate-specific genes at a given developmental stage, then it will continue to be involved at later stages.

In other words, the genes are progressively included into a coordinately expressed fate-specific module

during differentiation, and are never excluded from the module once they join it. With these assump-

tions, one can infer the time of gene inclusion into a coordinated fate-specific module using a step-wise

indicator function Ig(t) for each fate-specific gene g:

Ig(t) =

{
0 if t < time of gene inclusion
1 if t ≥ time of gene inclusion

(12)

This approach assesses the correlation of a gene with the time-dependent module at different time points,

and identifies an inclusion time of a gene as a time at which such correlation becomes significant. Given

some inclusion function Ig(t), the correlation of a gene g at time point t with time-dependent module

Mt = {g′|Ig′(t) = 1} is:

cor(g,Mt|t) =
∑

g′∈Mt
cor(g, g′|t)
|Mt|

(13)
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where g′ is a gene from the fate-specific module Mt. cor(g,Mt|t) is approximated by the Pearson cor-

relation among a defined number of cells closest to time point t. To assess the statistical significance

of cor(g,Mt|t) expression of each gene can be locally permuted among a defined number of cells from

which an empirical p-value can be extracted. As a result, a time-series of p-values Pg(t) is generated for

each gene. The time of inclusion is identified as a change-point switching from insignificant to significant

p-values. More specifically, a new step function Ig(t) that maximizes probability is used:

L = P (Pg(t1), ..., Pg(tn)|Ig(.)) =
∏
i

P (Pg(ti)|Ig(ti)) (14)

Where Pg(ti|1) = α
1−e−α e

−αPg(ti , Pg(ti|0) = 1, and α is a parameter that regulates the stringency of the

desired significance level. The log likelihood can be rewritten as:

logL =
∑

ti≥time of inclusion

[
−αPg(ti) + log α

1− e−α

]
(15)

Iterative optimization is used to identify functions {Ig(.)}, initializing them as Ig(.) = 1. At each step,

given {Ig(.)}, for each gene g we calculated cor(g,Mt|t), then estimated Pg(t), and then updated Ig(t).

In practice, the method converges in less than 10 iterations. All steps described in that section are per-

formed by the following single function (fig. 5 J.):

scFates.tl.module_inclusion(adata,root_milestone,milestones)

Data reproducibility

The whole figure 5 can be fully reproduced by following the related notebook in the documentation:

https://scfates.readthedocs.io/en/latest/Tree_Analysis_Bone_marrow_fates.html. Bench-

marks with STREAM andMonocle3 are included in the following github repository: https://github.

com/LouisFaure/scFates_notebooks/tree/main/benchmarks.
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1Figure 5: scFates analysis plot examples on bone marrow dataset used in Palantir study [8]. All panels
have been assembled without any modification from python output: A) Representation of the tree before
(top left) and after (top right) root selection and pseudotime calculation. Cells are assigned a segment
(lower left) and a milestone (lower right). B) Dendrogram representation of the tree. C) Detection of
significantly associated genes with the the tree. D) Top DE branch specific marker expressions showed
as heatmap of cells aligned with pseudotime. E) Single trend plot from two knownmarkers. F) Same data
as shown in D, this time as a matrix plot for summarized trends over bins of pseudotime, per segment. G)
Early gene module mean expression over cells for a bifurcating trajectory. H) Correlation and repulsion
analysis of two competing early gene module along non-intersecting windows of cells. I) intra- and inter-
module correlation analysis over sliding window of cells. J) module inclusion analysis.
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