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1 Theory and methods

1.1 Background on Structural Identifiability and Observability (SIO)
Structural identifiability and observability are two key concepts in system identification and dy-
namic modelling. To give their formal definitions we consider models described by ordinary differ-
ential equations with general form:

M :

{
ẋ = f (u(t), x(t), θ) ,

y = g (u(t), x(t), θ) ,
(1)

where f and g are analytic functions (therefore infinitely differentiable); x(t) ∈ Rnx is the state
variables vector; u(t) ∈ Rnu , the known inputs vector; y(t) ∈ Rny , the outputs vector; θ ∈ Rnθ ,
the parameters vector. The input vector, u(t), is assumed to consist of infinitely differentiable
functions.

A parameter θi of M (1) is structurally locally identifiable (s.l.i.) if a neighbourhood N (θ∗)

exists such that, for any θ̂ ∈ N (θ∗), y(t, θ∗) = y(t, θ̂) holds if and only if θ∗i = θ̂i, for almost any
parameter vector θ∗ ∈ Rnθ . We say that a parameter is structurally unidentifiable (s.u.) if this
relationship does not hold in any N (θ∗). If all the parameters of a model are s.l.i., the model is
s.l.i. too. Accordingly, if at least one the parameters is s.u., the model is s.u.

A s.l.i. parameter can be determined from knowledge of the output y(t) and input u(t) of the
model. Likewise, a state xi(τ) is said to be observable if it can be determined from the output y(t)
and any known inputs u(t) of the model in the interval t0 ≤ τ ≤ t ≤ tf , for a finite tf . Otherwise,
it is unobservable. A model is observable if all its states are observable, and unobservable if at
least one of them is unobservable.

1.2 SIO analysis with the Observability Rank Condition
Let us begin with the analysis of observability. The available knowledge for inferring the internal
state x of model M consists of the output y and its derivatives. Following a differential geometry
approach [3, 19] we construct a matrix O(x) that represents a map between the model output y
and its derivatives ẏ, ÿ, ..., on the one hand, and its state x on the other. We can then evaluate
the observability by calculating the rank of O(x). If it has full rank, then the model is observable.
If rank(O(x0)) = nx, M is observable around x0.

With time varying inputs, the output derivatives ẏ, ÿ, ... are the so-called “extended” Lie deriva-
tives. The extended Lie derivative [8] of g with respect to f is defined by:

Lfg(x) =
∂g(x)

∂x
f(x, u) +

j=∞∑
j=0

∂g(x)

∂u(j)
u(j+1)

and the high order derivatives are recursively calculated:

Li
fg(x) =

∂Li−1
f g(x)

∂x
f(x, u) +

j=∞∑
j=0

∂Li−1
f g(x)

∂u(j)
u(j+1)
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The ith Lie derivative may contain input derivatives only up to order (i − 1) [24]. We can then
truncate the infinite summation at j = i− 1 and rewrite the extended Lie derivative:

Lfg(x) =
∂g(x)

∂x
f(x, u) +

j=i−1∑
j=0

∂g(x)

∂u(j)
u(j+1)

We summarise the way of computing the observability matrix in the following way:

O(x(t)) =



∂

∂x
y(t)

∂

∂x
ẏ(t)

...
∂

∂x
y(nx−1)(t)


=



∂

∂x
g(x)

∂

∂x
(Lfg(x))

...
∂

∂x

(
Lnx−1
f g(x)

)


. (2)

For structural identifiability, parameters can be considered as constant state variables [17].
Assessing the observability of these states is equivalent to assessing the structural identifiability of
the parameters. To this end we construct an augmented state vector x̃ = [x(t); θ] with dimension
nx̃ = nx + nθ and then we have that ˙̃x = [f(x̃(t), u(t)); 0]. For a new model with these changes in
the variables and equations we construct now an observability-identifiability matrix, OI(x̃(t)), in
the same way as O(x(t)). Then, if system M given by (1) satisfies rank(OI(x̃0)) = nx̃ = nx + nθ,
with x̃0 a point in the augmented state space, the model is observable and identifiable around x̃0.

1.3 SIO analysis with the FISPO algorithm in STRIKE-GOLDD
In [21] we see that full rank of OI might be achieved with less than nx̃ − 1 Lie derivatives. We
also have a minimum number of Lie derivatives, nd, for which the matrix may be full rank. In
STRIKE-GOLDD, the OI is recursively calculated. Once the nd Lie derivative is computed, the
rank is calculated after adding each new derivative allowing early termination of the procedure.
If the full rank is achieved, the OIC is fulfilled; if the rank stops increasing, there is at least
one unobservable state or unidentifiable parameter. In the latter case we can determine which
parameter or state is unidentifiable or unobservable, respectively. Each column of OI corresponds
to the partial derivative with respect to a parameter or state. Removing each of the columns and
recalculating the rank allows us to know which of the variables is unidentifiable or unobservable.
If the rank does not change when we remove the ith column, then the ith variable is unidentifiable
or unobservable.

Some models have unmeasured inputs. This is the case of disturbances or time-varying pa-
rameters, for example. To analyse them we define a new model that includes them as additional
variables:

Mw :

{
ẋ = f (u(t), w(t), x(t), θ) ,

y = g (u(t), w(t), x(t), θ) ,
(3)

where w(t) refers to the unknown inputs. Then, we define a property analogous to observability
for these variables. An unknown input wi(τ) is reconstructible if it can be determined from y(t)
and u(t) in t0 ≤ τ ≤ t ≤ tf , for a finite tf . A model is reconstructible if all its unknown inputs are
reconstructible (or “input observable”).

The property that encompasses observability, structural identifiability, and reconstructibility is
called FISPO (full input, state, and parameter observability) [24]. Let x̃(t) = [x(t), θ, w(t)] be the
vector of unknown model quantities (i.e. states, parameters and inputs), with z(t) ∈ Rnx+nθ+nw ,
and let us denote each element of x̃(t) at time τ as zi(τ). We say that the model M (1) has the
FISPO property if every x̃i(τ) can be determined from the output y(t) and any known inputs u(t)
of the model in the interval t0 ≤ τ ≤ t ≤ tf , for a finite tf . Thus, M is FISPO if, for every x̃i(τ),
for almost any vector x̃∗(τ) there is a neighbourhood N (x̃∗(τ)) in which the following holds:

ˆ̃x(τ) ∈ N (x̃∗(τ)) and y(t, ˆ̃x(t)) = y(t, x̃∗(τ))) ⇒ ˆ̃xi(τ) = x̃∗
i (τ).

For assessing reconstructibility, we consider a new augmented state vector x̄ = [x(t); θ;w(t)]
and consequently new state dynamics ˙̄x = [f(x̄(t), u(t)); 0; ẇ(t)]. Now, the ith Lie derivative may
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contain derivatives up to w(i) so, we need to include them in the augmented state vector:

x̄ =



x(t)

θ

w(t)

ẇ(t)

...

w(i)(t)


(4)

thus the state dynamics are:

˙̄x =



f(x̄(t),u(t))

0

ẇ(t)

ẇ(t)

...

w(i+1)(t)


. (5)

where x̄ ∈ Rnx̄ , nx̄ = nx + nθ + nw(i+ 1).
Let Mw be a model of the form (3). Mw is FISPO if the new matrix OI computed with

the new augmented state vector x̄(t) (4) and its corresponding equations ˙̄x(t) (5) is such that
rank(OI(x̄, u)) = nx̄. If the matrix is not full rank when it is not computationally feasible or
convenient to keep calculating Lie derivatives, the result is inconclusive. To deal with this, we may
set to zero the derivatives of w(t) of order higher than a given one (i). We will then have that
w(j) = 0, ∀j ≥ i. Even though this assumption restricts the type of inputs that can be analysed,
in [24] (page 5, Subsection 2.3) it was suggested that perhaps the results might apply to generic
inputs under certain circumstances.

1.4 SIO analysis with a probabilistic algorithm to test local algebraic
observability in polynomial time: ObservabilityTest

Sedoglavic presented an algorithm [15] related with the differential algebra approach [5], with
the goal of computing the set of observable variables of a model in polynomial time. When
this technique determines that a variable is observable, the result is guaranteed to be correct.
If it classifies it as unobservable, the result is correct with high probability. This approach is
applicable to nonlinear rational dynamical systems without unknown inputs. Its definition of
algebraic observability is built on the existence of algebraic relations between the state variables
and the successive derivatives of the inputs and the outputs. If there is an algebraic relation
that allows finitely many trajectories of the state variables that are solutions of the vector field
and yield the same specified input-output behavior, the state variables are said to be locally
observable [15]. A Maple implementation of this method, called ObservabilityTest, is available at
https://github.com/sedoglavic/ObservabilityTest/.

Let us now introduce some notation [15] to formalize the previous definition. We use capital
letters to denote the initial conditions of a function and its derivatives, i.e., u(r)(0) = U (r) and
y(r)(0) = Y (r) for r ≥ 0 and then U = (U (0), U (1), ...), Y = (Y (0), Y (1), ...). We denote the field
adjoining the indeterminates U

(0)
i , U

(1)
i , ... for i = 1, ..., nu and Y

(0)
j , Y

(1)
j , ... for j = 1, ..., ny to R

as R ⟨U, Y ⟩.
We say that xi, i ∈ {1, ..., nx} is locally algebraically observable if xi is algebraic over the field

R ⟨U, Y ⟩. The system M (1) is locally algebraically observable if the field extension R ⟨U, Y ⟩ ↪→
R ⟨U, Y ⟩ (x) is algebraic. The number of non-observable state-variables which should be assumed
known, in order to obtain an observable system, can be calculated as the transcendence degree
of R ⟨U, Y ⟩ ↪→ R ⟨U, Y ⟩ (x). In [15] the transcendence degree is also calculated with the rank of
O(x(t)) (2). Thus, if it is a full rank matrix, the transcendence degree is zero and the system is
algebraically observable. If it is not full rank, then at least one of the variables is not identifiable
and further analysis would be needed to determine which one it is.

While the way of analysing the properties is the same as in the FISPO algorithm, the procedure
to compute the matrix and its rank is rather different. In this case, a variational system derived
from M (1) is used to directly compute the Jacobian matrix O [15]; with x, θ, and u specialized
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on some given values. Let us denote by Φ(x, θ, u, t) the formal power series in t with coefficients
in R ⟨u⟩ (x, θ) solution of Φ̇ = f(Φ, θ, u) with initial condition Φ(x, θ, u, 0) = x. Then:

Φ(x, θ, u, t) = x+
∑
j∈N∗

Ljf(x, θ, u)
tj

j!
.

Besides, using Φ, we define the formal power series in t with coefficients in R ⟨u⟩ (x, θ) as:

y(x, θ, u, t) = g(Φ(x, θ, u, t), θ, u, t) = g(x, θ, u) +
∑
j∈N∗

Ljg(x, θ, u)
tj

j!

Based on this we have:

Oalg =
∂(y(i))0≤i≤nx̃

∂(x, θ)
= coeffs

(
∂g

∂x

∂Φ

∂x
,
∂g

∂x

∂Φ

∂θ
+

∂g

∂θ

)
= coeffs

(
∇y

(
Φ,

∂Φ

∂x
,
∂Φ

∂θ

)
, jj , j = 0, ..., nx̃

)
.

(6)

where ∇y(Φ,Γ,Λ, θ, u) =
(

∂g
∂xΓ,

∂g
∂xΛ + ∂g

∂x

)
(Φ,Γ,Λ, θ, u). Consequently, we have to compute the

nx̃ first terms of the power series expansion of Φ, Γ = ∂Φ
∂x and Λ = ∂Φ

∂θ .
Since P (ẋ, x, θ, u) = 0, the numerators of the rational relations ẋ− f(x, θ, u) = 0 and ∇P :

P (ẋ, x, θ, u),

∂P

∂ẋ
(x, θ, u)Γ̇ +

∂P

∂x
((ẋ, x, θ, u)Γ,

∂P

∂ẋ
(x, θ, u)Λ̇ +

∂P

∂x
((ẋ, x, θ, u)Λ +

∂P

∂θ
((ẋ, x, θ, u),

the power series Φ,Γ and Λ are solutions of the system of ordinary differential equations ∇P = 0
with the associated initial conditions Γ(x, θ, u, 0) = Idnx×nx and Λ(x, θ, u, 0) = 0nx×nθ

.
Next, we specialize the parameters on some random integer θ∗ and the inputs on the power

series u∗, which are truncated at order nx̃ + 1 with random integer coefficients. Then, we solve
the associated system ∇P = 0 for some integer initial conditions x0, and we compute with ∇y the
specialization of Oalg.

The Newton operator used in the algorithm is based on the resolution of the following system
of linear ordinary differential equations:

∂P

∂ẋ
Ėj+1 +

∂P

∂x
Ej+1 +∇P = 0 mod t2j+1, (7)

with Ej+1 = (Φ−Φj ,Γ− Γj ,Λ−Λj) mod t2j+1, correction term, with Φj , Γj and Λj are approx-
imations of Φ, Γ and Λ, respectively. The system is solved using (Φj+1, Γj+1, Λj+1) = (Φj , Γj ,
Λj) + Ej+1 and the initial conditions Φ0 ∈ Znx , Γ0 = Idnx×nx and Λ0 = 0nx×nθ

. The resolution
of the linear ordinary differential system relies on the method of integrating factors. We take the
homogeneous system

∂P

∂ẋ
(Φj , θ

∗, u∗)Ω̇j +
∂P

∂x
(Φ̇j ,Φj , θ

∗, u∗)Ωj +∇P = 0 mod t2j+1,

where Ωj denotes a nx×nx unknown matrix whose coefficients are truncated series. This homoge-
neous system is then solved by means of a procedure called “Homogeneous Resolution” [15] based
on matricial resolution and, in a similar way, the expression in (7) can be computed with a given
precision by a procedure called “Constants Variation” [15]. Algorithm 1 summarizes the procedure.

2 New developments in STRIKE-GOLDD 4.0

2.1 A new algorithm for SIO analysis in STRIKE-GOLDD: ProbObsTest

STRIKE-GOLDD 4.0 includes a Matlab implementation of an extended version of Sedoglavic’s
ObservabilityTest algorithm. The new method is called ProbObsTest. It is introduced with the
aim of complementing the FISPO algorithm, achieving computational acceleration with respect
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Preprocesing Construct a straight-line program encoding the variational system ∇P and
the expressions used during its integration.

Specialization Specialization of the parameters, θ∗, and the inputs, u∗

Power Series Solution Computation of the power series solution of ∇P at order nx̃ + 1
with a specialised value for the states

Jacobian computation Evaluation of ∇y on the series Φj, Γj and Λj where
j = ln2(nx̃ + 1), giving the coefficients of the Jacobian matrix

Rank computation Calculation of the matrix rank and transcendence degree
if transcendence degree = 0 then

System is algebraically observable
else

Determine which variable or variables are not observable.
end

Algorithm 1: Probabilistic algorithm to test local algebraic observability in polynomial time

to it. In the FISPO algorithm the Lie derivatives are recursively calculated. When their number
is relatively small they can be computed in a feasible amount of time. However, for each new
Lie derivative that is needed the computational complexity increases, and calculations quickly
become impracticable when the number of unknown variables grows. To avoid the need for such
calculations, in our implementation of ProbObsTest we use the variational system described by
Sedoglavic, substituting all the symbolic variables with random numerical values. After this, we
get a polynomial matrix that we vectorize, exploiting MATLAB capabilities, in order to obtain an
even more efficient implementation. Thus we perform the computations with numerical matrices
instead of symbolic expressions. This yields a new code, whose computational complexity increases
at a significantly slower rate than FISPO for complex models (as will be demonstrated in Section
2.4). The remainder of this section describes the new developments included in ProbObsTest with
respect to the ObservabilityTest algorithm originally presented in [15].

2.2 Extending the algorithm to admit unknown polynomial inputs
Sedoglavic’s ObservabilityTest algorithm cannot analyse models with unknown inputs. An exten-
sion of Sedoglavic’s algorithm with this purpose has recently been presented in [16]. Similarly
to the FISPO algorithm, ProbObsTest can handle unknown polynomial inputs by treating them
as states. To this end the state is augmented as in (4) and the state function f as in (5). We
can include as many input derivatives as additional states as the number of non-zero derivatives
specified as options; the last element of vector f will always be a zero in the presence of unknown
polynomial inputs. This method cannot handle an infinite number of non-zero derivatives, since
the order of the computations grows with the number of derivatives. If the user indicates an infi-
nite number of derivatives in the options, the toolbox automatically lowers it to a relatively small
number of non-zero derivatives, warning the user of the change and advising her/him to increase
the number if needed, or using the FISPO algorithm to consider the infinite case.

2.3 Automatic model reformulation: obtaining a rational model
In principle, ObservabilityTest can only be applied to rational models. In ProbObsTest we have
included a procedure to replace non-rational expressions appearing in the model equations with
their Taylor expansions. This allows applying the algorithm to non-rational models for which such
an expansion is possible; while it is not feasible to do the Taylor expansion for all non-rational
functions, this solution covers a significant amount of models. The toolbox automatically checks
whether it is possible to perform the transformation. If it is, the non-rational expression is replaced
by the Taylor expansion truncated at the Matlab default order (six), approximating the expressions
with fifth-degree polynomials.. If it is not, the algorithm cannot be applied and an error is issued.
When this change is possible, it increases the number of variables to be replaced by random values
in the system equations. This may increase the computation time, specially if a large truncation
order is set. However, this growth is not a function of the number of unknown variables of the
model (which would be problematic, since it could compromise its application to large models)..

The polynomial numerators of rational terms are obtained with the function rational2poly −
nomial, which we implemented as an adaptation of the dagnormal procedure in ObservabilityTest.
Both functions obtain the numerator and denominator of a rational expression. However, we re-
alised that ObservabilityTest has problems when non-integer exponents appear in the equations:
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such terms are non-rational, but the algorithm does not detect it. To fix this issue we automati-
cally approximate such values with the closest integer, which allows applying the procedure while
obtaining correct results in the general case.

A note of caution. Care should be taken when performing this type of reformulation, since it
may change the SIO properties of the model. When that happens, the results of the SIO analysis
are valid for the reformulated model, but not necessarily for the original one. The following example
illustrates this point. Consider a model with states x1 and x2, with the following state equations:

ẋ1 = 1,

ẋ2 = x2,

y = x2 + ex1

We have that x1 = t + x1(0) and x2 = x2(0)e
t. Replacing the values of x1 and x2 in the output

equation we obtain y = (x2(0) + ex1(0))et. For every value of x1(0) one can find a value of x2(0)
that produces the same y, so x1 and x2 are not locally observable. However, if we transform the
model to a polynomial form by replacing ex1 with p(x1) (where p is a fixed polynomial) in the
expression of y, then both x1 and x2 become locally observable. Thus, the transformation does
not preserve the non-observability of the original model. An alternative approach to rationalise
some equations is by adding extra equations and variables, as seen in the supplementary data of
[6] (example A.2) and also in [4, 11] . However, this procedure has not been automated yet. In
[11] it was demonstrated that, even for this type of exact rationalizations, the unidentifiability
of the transformed model does not ensure the unidentifiability for the original one. In contrast,
the identifiability of the transformed model entails that the original one is also identifiable. This
problem is also seen in example 3 of [4].

2.4 Implementation: a Matlab toolbox with graphical interface
The ProbObsTest algorithm has been included in STRIKE-GOLDD 4.0, which has been imple-
mented as a Matlab toolbox. A screenshot of its graphical interface is shown in Fig. 1.C of the
main text. The interface allows choosing the algorithm from a drop-down menu and specifying
its settings; likewise, it is possible to select one of the models already existing in the folder from
a drop-down menu, or creating a new model from scratch in a new window. This new interface
coexists with the previously existing way of executing the toolbox, which is by running a Matlab
script; in this case one must indicate the settings by editing an options file. Further details can be
found in the user manual included in the documentation folder of STRIKE-GOLDD 4.0.

3 Results

3.1 Comparing FISPO and ProbObsTest

To determine the computational improvement achieved by ProbObsTest with respect to FISPO,
we have compared their performance by applying them to a set of 22 problems, which are listed in
Table 1. We considered a number of variations of some of them, so as to assess the effect of varying
the number of unknown input derivatives on the performance of the algorithms. The CPU times of
both algorithms for the set of 22 models are shown in Figure 1.B of the main text; complementary
to this, we show in figure 1 a graphic comparing the performance of the two algorithms with respect
to the number of unmeasured variables. In the remainder of this section we describe each of the
models and discuss the results of the two aforementioned algorithms while also comparing them,
when possible, with ObservabilityTest.

C2M model: The model corresponds to a two compartment system appearing in [22, 24]. The
model consists of:

• 2 states, x = (x1;x2),

• 4 parameters, θ = (k1e; k12; k21; b),

• 1 input, u,
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Table 1: List of benchmark models and their main features.

Model Ref. States Param. Known
inputs

Unknown inputs
(nonzero derivatives) Outputs

1: C2M 1 [22, 24] 2 2 0 1(0) 1
2: HIV 3 [24, 13] 3 5 1 0 2
3: C2M 2 [22, 24] 2 4 1 0 1
4: 2DOF 1 [10] 4 3 1 1(0) 2
5: C2M 3 [22, 24] 2 3 0 1(0) 1
6: 2DOF 2 [10] 4 3 1 1(2) 2
7: C2M 4 [22, 24] 2 2 0 1(3) 1
8: 2DOF 3 [10] 4 3 0 2(0) 2
9: PK 1 [14] 4 10 1 0 2
10: C2M 5 [22, 24] 2 3 0 1(3) 1
11: PK 2 [14] 4 10 0 1(0) 2
12: PK 3 [14] 4 10 0 1(3) 2
13: 2DOF 4 [10] 4 3 0 2(3) 2
14: SIRS [2] 5 10 0 0 2
15: MARKOV 1 [22] 2 10 1 0 1
16: NF-κB 1 [9, 21] 15 13 1 0 6
17: βIG 1 [7] 3 5 1 0 1
18: HIV 5 [25] 5 10 0 0 2
19: βIG 2 [7, 20] 3 5 0 1(0) 1
20: NF-κB 2 [9, 21] 15 29 1 0 6
21: βIG 3 [7] 3 5 0 1(3) 1
22: MARKOV 2 [22] 2 10 1 0 1
23: JAK-STAT [1] 25 27 5 0 14
24: CHO [23] 32 117 0 0 13

• 1 output, x1,

and it is governed by the following state equations:

f(x, θ, u, w) =

(
−(k1e + k12) · x1 + k21 · x2 + b · u

k12 · x1 − k21 · x2

)
.

We start considering the input as known, obtaining a FISPO result from both algorithms. Then,
we assume the input as unknown and parameter b as known. Finally, we also assume k1e as known.
ObservabilityTest can not be applied when there is an unknown input. For the other two methods
we also distinguish between constant input and with three non-zero derivatives.

For the known input case the analyses with ObservabilityTest, FISPO and ProbObsTest are
done in 0,047 seconds, 0,38 seconds and 1,25 seconds, respectively.

With an unknown constant input (i.e. considered as an additional parameter), considering b
and k1e known, the analyses take 0,28 seconds with FISPO and 1,29 seconds with ProbObsTest.
With an unknown input with 3 non-zero derivatives, it takes 0,87 seconds with FISPO and 2,96
seconds with ProbObsTest.

Finally, with k1e unknown, the analysis with an unknown constant input takes 0,67 seconds
with FISPO and 1,40 seconds with ProbObsTest. With 3 non-zero derivatives it takes 2,14 seconds
with FISPO and 4,19 seconds with ProbObsTest.

HIV model: This dynamic system represents a HIV virus infection. We consider two different
types of this model. The first one, presented and analysed in [24, 13], consists of:

• 3 states, x = (Tu;TI ;V ),

• 5 parameters, θ = (λ; ρ;N ; δ; c),

• 1 know input, η,

• 2 outputs, g(x, θ, w) = (V ;TI + Tu),
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Figure 1: Comparison of times of FISPO and ProbObsTest with respect to the number of unmea-
sured variables.

and it is governed by the following state equations:

f(x, θ, u, w) =

λ− ρ · Tu − η · Tu · V
η · Tu · V − δ · TI

N · δ · TI − c · V

 .

The three algorithms yield a FISPO result. ProbObsTest takes 2,88 seconds, STRIKE-GOLDD
implementation 0,37 and ObservabilityTest 0,093.

The other model is introduced in [25]. It has:

• 5 states, x = (xx; y; v;ww; z),

• 10 parameters, θ = (β;λ; a; b; c; d;hh; k; q;uu),

• 0 inputs,

• 2 outputs, g(x, θ, w) = (ww; z),

and it is governed by the following state equations:

f(x, θ, u, w) =


λ− (d · xx)− (β · xx · v)

(β · xx · v)− (a · y)
(k · y)− (uu · v)

(c · z · y · ww)− (c · q · y · ww)− (b · ww)
(c · q · y · ww)− (hh · z)

 .

The results obtained are the same for the three algorithms: 3 non observable states and 4 non
identifiable parameters. FISPO takes 8237,7 seconds, ProbObsTest 10,57 and ObservabilityTest
0,203.

2DOF model: This model is introduced and studied in [10]. It is an affine-in-the-inputs model
that characterizes the behavior of a mechanical system. The model consists of:

• 4 states, x = (x1;x2; ẋ1; ẋ2),

• 3 parameters, θ = (k1; δk1;m2),

• 1 known input, u = F1,

• 1 unknown input, w = F2,

• 2 outputs,
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and it is governed by the following state equations:

f(x, θ, u, w) =


ẋ1

ẋ2

(−(k1 + δ · k1 · x1)x1 + k2 · (x2 − x1)− c1 · ẋ1 + c2 · (ẋ2 − ẋ1) + F1)/m1

(k2 · (x1 − x2) + c2 · (ẋ1 − ẋ2) + F2)/m2

 ,

and the output equations:

g(x, θ, w) =

(
x1

(k2 · (x1 − x2) + c2 · (ẋ1 − ẋ2) + F2)/m2

)
.

As we have an unknown input, we did the analysis for the constant case and with two non-zero
derivatives. In both situations we find that the model is FISPO with both of the algorithms. FISPO
spent 0,5 seconds running for the constant case and 0,83 for time-varying one, while ProbObsTest
required 5,33 and 9,48, respectively.

Also, to check the behaviour with more than one unknown input, we have adapted the model
taking the known input as unknown. For the constant case we found that x2 is non observable
and F1 and F2 are not reconstructible. The solution obtained matches the one achieved with the
previous implementation. FISPO took 0,5 seconds running while the ProbObsTest took 5,33. With
two non-zero derivatives we found that ẋ2 and x2 are unobservable, and F1, Ḟ1, F2 and Ḟ2 are
not reconstructible. The times are now 18,9 for STRIKE-GOLDD, and 20,79 for the new code.
ObservabilityTest cannot be applied to this model since it has unknown inputs.

Pharmacokinetics model (PK): This example is taken from [14]. It is a model of the be-
haviour of certain orally administered drugs. It consists of:

• 4 states, x = (x1;x2;x3;x4),

• 10 parameters, θ = (k1; k2; k3; k4; k5; k6; k7; s2; s3),

• 1 input, u, that will be considered known and unknown,

• 2 outputs, g(x, θ, w) = (s2 · x2; s3 · x3),

and it is governed by the following state equations:

f(x, θ, u, w) =


u1 − (k1 + k2) · x1

k1 · x1 − (k3 + k6 + k7) · x2 + k5 · x4

k2 · x1 + k3 · x2 − k4 · x3

k6 · x2 − k5 · x4

 .

For the known input case we obtain that x2, x3 and x4 are unobservable and k1, k2, k3, k7, s2 and
s3 are unidentifiable. The execution times are 1,95 seconds for STRIKE-GOLDD, 5,81 seconds for
ProbObsTest and 0,141 seconds for ObservabilityTest. When u is an unknown constant input only
k4, k5 and k6 are identifiable, all the states are unobservable, and the input is not reconstructible.
FISPO takes 6,54 seconds and ProbObsTest 7,3. With 3 non-zero derivatives of the input we get
the same result; FISPO takes 14,75 seconds and ProbObsTest 16,8.

SIRS model: In [2] the transmission of respiratory syncytial virus (RSV) is modeled. We work
with the model that takes into account the seasonal nature of transmission through an oscillating
contact rate. The population is divided into susceptible (S), infected and infectious (I), and
recovered (R) individuals. The model consists of:

• 5 states, x = (S; I;R;x1;x2),

• 10 parameters, θ = (ν; b1; b0;M ;µ; g),

• 0 inputs,

• 2 outputs, g(x, θ, w) = (I;R),

9



and it is governed by the following state equations:

f(x, θ, u, w) =


µ− S · µ− b0 · (1 + b1 · x1) · S · I + g ·R

b0 · (1 + b1 · x1) · S · I − (ν + µ) · I
ν · I − (µ+ g) ·R

−M · x2

M · x1

 .

The three implementations find b1 unidentifiable and x1 and x2 unobservable. STRIKE-GOLDD
took 70,56 seconds, ProbObsTest 7,55 and ObservabilityTest 0,125.

Markov model: These models are used to describe how ion channels regulate the flow of ions
across cell membranes. We are using the model from [22], where a reduction of a cyclic Markov
model is considered. The model consists of:

• 2 states, x = (x1;x2),

• 10 parameters, θ = (a12; a21; b12; b21; a23; a32; b23; b32; a13; b13),

• 1 known input, u1,

• 1 output, g(x, θ, w) = x1,

and it is governed by the following state equations:

f(x, θ, u, w) =

 x2 · ea21+b21·u1 − x1 · (ea12+b12·u1 + ea13+b13·u1) . . .

· · · − ea13−a12+a21−a23+a32+u1·(b13−b12+b21−b23+b32) · (x1 + x2 − 1)

x1 · ea12+b12·u1 − ea32+b32·u1 · (x1 + x2 − 1)− x2 · (ea21+b21·u1 + ea23+b23·u1)

 .

This example highlights the different behaviour of the algorithms in regard to the number of
derivatives for the known inputs.

For the constant known input case, the analysis with FISPO takes 624,11 seconds. ProbObsTest
gets the same results in only 18,65 seconds.

With an infinite number of derivatives, FISPO is not able to do the analysis due to an out
of memory error. In contrast, ProbObsTest seems unaffected by this change, and concludes the
analysis within 18,49 seconds. In [22] the time-varying input the study is accomplished performing
4 experiments with different constant inputs observing identifiability as the probabilistic method.
This example can be analysed with ProbObsTest using the automatic reformulation for non rational
systems.

NF-κB model: NF-κB stands for ”nuclear factor kappa-light-chain-enhancer of activated B
cells”. We use as reference the analysis done with STRIKE-GOLDD in [21] based in [9]. The
model consists of:

• 15 states, x = (x1;x2;x3;x4;x5;x6;x7;x8;x9;x10;x11;x12;x13;x14;x15),

• 29 parameters, θ = (t1; t2; c3a; c4a; c5; k1; k2; k3; kprod; kdeg; i1; e2a; i1a; ...
a1; a2; a3; c1a; c2a; c5a; c6a; c1; c2; c3; c4; kv; e1a; c1c; c2c; c3c),

• 1 known input, u1,

• 6 outputs: g(x, θ, u, w) =



x7

x10 + x13

x9

x1 + x2 + x3

x2

x12


,

10



and it is governed by the following state equations:

f(x, θ, u, w) =



kprod − kdeg · x1 − k1 · x1 · u1

−k3 · x2 − kdeg · x2 − a2 · x2 · x10 + t1 · x4 − a3 · x2 · x13 . . .

· · ·+ t2 · x5 + (k1 · x1 − k2 · x2 · x8) · u1

k3 · x2 − kdeg · x3 + k2 · x2 · x8 · u1

a2 · x2 · x10 − t1 · x4

a3 · x2 · x13 − t2 · x5

c6a · x13 − a1 · x6 · x10 + t2 · x5 − i1 · x6

i1 · kv · x6 − a1 · x11 · x7

c4 · x9 − c5 · x8

c2 + c1 · x7 − c3 · x9

−a2 · x2 · x10 − a1 · x10 · x6 + c4a · x12 . . .

· · · − c5a · x10 − i1a · x10 + e1a · x11

−a1 · x11 · x7 + i1a · kv · x10 − e1a · kv · x11

c2a + c1a · x7 − c3a · x12

a1 · x10 · x6 − c6a · x13 − a3 · x2 · x13 + e2a · x14

a1 · x11 · x7 − e2a · kv · x14

c2c + c1c · x7 − c3c · x15



.

For this model the execution time with FISPO is 2866,55 seconds while for ProbObsTest is 279,51
and for ObservabilityTest 8,422 seconds. We found that states x8 and x15 are unobservable and k2,
c4, c1c, c2c and c3c are unidentifiable. We also did the analysis with parameters a1, a2, a3, c1a, c2a,
c5a, c6a, c1, c2, c3, c4, kv, e1a, c1c, c2c and c3c fixed to some specific values. In this case we have
that x15 is unobservable. For the second model the times are 844,46, 291,21 and 3,14, respectively.

βIG model: This example is one of the four case studies presented in [7], representing a phys-
iological circuit that models possible regulatory mechanisms of glucose homeostasis. It was also
included in [20]. It consists of:

• 3 states, x = (G;β; I),

• 5 parameters, θ = (p; si; γ; c;α),

• 1 input, called u that will be considered both as known and unknown,

• 1 output, g(x, θ, w) = G,

and it is governed by the following state equations:

f(x, θ, u, w) =


u− (c+ si · I) ·G

β ·
0,021
24·60

1 + ( 8,4G )1,7
−

0,025
24·60

1 + ( G
4,8 )

8,5

p · β ·G2

α2 +G2
− γ · I

 .

With this model we are going to analyse different cases. For all of them the results with the
two algorithms match. With the input as known, FISPO takes 984,89 seconds while ProbObsTest
only 12,65. For constant unknown input these times were 14140,08 and 21,85 seconds, respectively.
With three non-zero derivatives of the unknown input, FISPO yields an out of memory error while
ProbObsTest takes 38,95 seconds. Here we have the best exhibit of the improvements that the
new implementation can achieve. For this relatively small but complex system, even for the known
input case we see that a great computational acceleration is obtained. Moreover, with the unknown
input with three non-zero derivatives we reach a point where FISPO cannot analyse the model
while the new algorithm can. Finally, in order to analyse this model with ObservabilityTest we
need to approximate the non-integer exponents in the equations with integer values. Otherwise,
the code issues an error but it gives no clue about its cause or possible fix. After fixing it, the
analysis took 0,016 seconds.
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JAKSTAT model: This model is introduced in [1] and consists of:

• 25 states, x = (EpoRJAK2;EpoRpJAK2; p1EpoRpJAK2; p2EpoRpJAK2;
p12EpoRpJAK2;EpoRJAK2CIS;SHP1;SHP1Act;STAT5; pSTAT5;
npSTAT5;CISnRNA1;CISnRNA2;CISnRNA3;CISnRNA4;CISnRNA5;
CISRNA;CIS;SOCS3nRNA1;SOCS3nRNA2;SOCS3nRNA3
;SOCS3nRNA4;SOCS3nRNA5;SOCS3RNA;SOCS3),

• 27 parameters, θ = (CISEqc;CISEqcOE;CISInh;CISRNADelay;
CISRNATurn;CISTurn;EpoRActJAK2;EpoRCISInh;EpoRCISRemove;
JAK2ActEpo; JAK2EpoRDeaSHP1;SHP1ActEpoR;SHP1Dea;SHP1ProOE;
SOCS3Eqc;SOCS3EqcOE;SOCS3Inh;SOCS3RNADelay;
SOCS3RNATurn;SOCS3Turn;STAT5ActEpoR;STAT5ActJAK2;
STAT5Exp;STAT5Imp; initEpoRJAK2; initSHP1; initSTAT5),

• 5 known inputs, u = (ActD;CISoe;SOCS3oe;SHP1oe;Epo),

• 0 unknown inputs,

• 14 outputs, with equations:

g(x, θ, w) =



2 · (EpoRpJAK2 + p12EpoRpJAK2 + p1EpoRpJAK2 + p2EpoRpJAK2)

initEpoRJAK2

16 · (p12EpoRpJAK2 + p1EpoRpJAK2 + p2EpoRpJAK2)

initEpoRJAK2

SOCS3

SOCS3Eqc

STAT5 + pSTAT5

initSTAT5
pSTAT5

initSTAT5

STAT5

SHP1 + SHP1Act

CIS

SOCS3

100 · pSTAT5

STAT5 + pSTAT5

SOCS3RNA

CISRNA

(SHP1 + SHP1Act) · (SHP1oe · SHP1ProOE + 1)

initSHP1
CIS

CISEqc



.

For state equations we will refer to [18]. To analyse this model we consider the last parameter,
which is the initial condition of one of the measured states, as known. FISPO yields an out
of memory error; to avoid it, the analysis has to be done decomposing the model. In contrast,
ProbObsTest takes 1914,79 seconds and ObservabilityTest just a few seconds.

CHO model: This is a metabolic model of Chinese Hamster Ovary (CHO) cells, which are used
for protein production in fermentation processes [23]. The model consists of:

• 32 states, x = (x1; . . . ;x32),

• 117 parameters, θ = (θ1; . . . ; θ117),

• 0 inputs,

• 13 outputs, g(x, θ, w) = (x5;x4;x3;x2;x1;x29;x27;x21;x15;x13;x30;x32;x11).

The state equations were modelled with in lin-log kinetics. The resulting expressions are non-
rational, due to the presence of logarithms, so ObservabilityTest cannot be applied unless the
model is reformulated. STRIKE-GOLDD 4.0 checks for this possibility and reformulates the model
automatically.
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In [21], the analysis of the model with STRIKE-GOLDD (i.e. FISPO) was only partially
accomplished. When trying to analyse the whole model FISPO gives an out-of-memory error.
After decomposing it in smaller submodels, four parameters were found to be unidentifiable, 95
were classified as identifiable, and the identifiability of the remaining 18 could not be determined.
(After fixing six of them, the model was found to be FISPO.)

In contrast, ProbObsTest can analyse the whole model, obtaining conclusive results for all
parameters without the need for decomposition. However, it should be noted that it took 12 days
to conclude the analysis, which reached the 99% of the computer memory.

3.2 Synergies created by using ProbObsTest within STRIKE-GOLDD
3.2.1 Application to models with unknown polynomial inputs of high-degree

To show how ProbObsTest outperforms FISPO when working with high-degree unknown inputs,
we have increased the degree of the unknown polynomial input in our analyses of model C2M for
the case with known b. Figure 2 shows a table and a graph of the execution times for the two
algorithms for different degrees of the unknown polynomial input.

Algorithm
Degree FISPO ProbObsTest

0 0,67 1,4
3 2,14 4,19
5 8,83 7,33
10 526,54 17,23
15 43336,36 44,54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Unknown polynomial input degree
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Figure 2: Comparison of times for the analysis of unknown polynomial inputs of different degrees
for the C2M model with an unknown input and parameter b known.

We analysed this example in detail because of its comparatively low computation times, which
allow us to increase the degree significantly. As can be seen, ProbObsTest effectively is much
faster than FISPO for unknown polynomial inputs of high degree, and the difference is larger for
larger degrees. We observe a similar trend in other models, such as 2DOF with 2 unknown inputs
(examples 8 and 13 of Figure 1.B of the main text) and βIG (examples 16 and 20).

3.2.2 Application to nonrational models

The automatic conversion of nonrational to rational models enables their analysis with ProbOb-
sTest. We demonstrate the importance of this new feature with two different models.

The analysis of the CHO model, which is very large (117 parameters) and contains logarith-
mic functions, cannot be fully completed with the FISPO algorithm. In contrast, ProbObsTest
completes a full analysis (even though it took around 12 days in our computer).

In the Markov model the complication is not given by its size (it is not a large model, with
ten parameters) but by the complexity of its equations. FISPO can analyse the constant input
case, but not the time-varying input case. Thanks to the automatic reformulation of non rational
models and the new method, the toolbox is able to do both analyses in just around 18 seconds
each.

Thus, the capability to transform some nonrational models into rational models can yield
exceptional gains. However, this feature has to be used carefully, since as was previously mentioned
in some cases the identifiability properties of the model can be modified by the transformation.

3.2.3 Application within AutoRepar

AutoRepar [12] is a method available in STRIKE-GOLDD that seeks for Lie symmetries in the
model equations and removes them in order to yield a fully observable model. In previous ver-
sions of STRIKE-GOLDD the necessary SIO analysis was performed with FISPO. Since AutoRepar
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requires the models to be rational, in STRIKE-GOLDD 4.0 the analysis is performed with ProbOb-
sTest. This modification yields considerable accelerations, as demonstrated by the following two
case studies:

With the βIG model, AutoRepar takes 36 seconds when using ProbObsTest in comparison with
the 1663 seconds required by FISPO. This improvement is entirely attributable to the identifiability
analysis. The outcome can be found in [12].

For the HIV model with 5 states, running AutoRepar with FISPO takes 16078 seconds, while
with ProbObsTest it takes only 413 seconds. In the following we discuss the results. Four param-
eters are found to be unidentifiable (β, λ, c, k), and three states unobservable (xx, y, v). The
analysis tells us that two transformations are needed, and it finds two generators with two and
three different parameters to be removed, respectively. We choose to remove parameter k using
the first generator. The following changes are made:

v → v/k

β → β · k
k → 1

The equations of the reformulated model are:

f(x, θ, u, w) =


λ− (d · xx)− (β · xx · v)

(β · xx · v)− (a · y)
y − (uu · v)

(c · z · y · ww)− (c · q · y · ww)− (b · ww)
(c · q · y · ww)− (hh · z)


g(x, θ, w) = (ww; z)

For the new model, three parameters are found to be unidentifiable (β, λ, c), and three states
unobservable (xx, y, v). The method finds one generator with three different parameters to be
removed. We choose to remove parameter β. The following changes are made:

xx → β · xx
y → β · y
v → β · v
β → 1

λ → β · λ
c → c/β

The resulting model is FISPO, and its equations are:

f(x, θ, u, w) =


λ− (d · xx)− (xx · v)

(xx · v)− (a · y)
y − (uu · v)

(c · z · y · ww)− (c · q · y · ww)− (b · ww)
(c · q · y · ww)− (hh · z)


g(x, θ, w) = (ww; z)
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