Supplemental material to Gattmann et al. Plant Physiology

Supplemental Methods S1. Non-linear model fitting.

The following models were fit via Bayesian calibration as described in the main text. The number of accounted auto-correlation structures (number of seedlings measured) per model is given.

1) g_c response to increasing vapor pressure deficit (VPD)

For both treatments (aCO₂, n = 6 and eCO₂ n = 6) we assumed g_c to decline with VPD according to the following equation:

$$g_{\rm c} = a_1 \rm VPD^{b_1} \tag{S1}$$

in which g_c is the canopy conductance in mol m⁻² s⁻¹, VPD is the vapor pressure deficit in kPa, and a_1 and b_1 are the calibrated coefficients of the regression.

2) g_c response to declining midday leaf water potential (Ψ_{leaf})

For the two treatments (aCO₂ and eCO₂) we assumed a logistic decline of g_c following Ψ_{leaf} reductions, with a non-zero asymptote to represent minimum canopy conductance:

$$100 \cdot \left(\frac{g_{\rm c}}{g_{\rm c,max}}\right) = a_2 + \frac{(100 - a_2)}{1 + \left(\frac{\Psi_{\rm leaf}}{b_2}\right)^{c_2}} \tag{S2}$$

in which $100 \cdot \left(\frac{g_c}{g_{c,max}}\right)$ is the percentage of g_c with respect to the maximum canopy conductance, and Ψ_{leaf} is the midday leaf water potential (MPa). Regarding the calibrated coefficients, a_2 is the percent of stomatal conductance relative to the maximum at the asymptote, which is the equivalent of minimum g_c . b_2 is the leaf water potential at which the percent of g_c relative to maximum g_c is $\frac{100+a_2}{2}$, and c_2 is a scaling factor.

3) ABA response to declining midday leaf water potential (Ψ_{leaf})

For the two treatments (aCO₂ and eCO₂) we assumed a potential increase of ABA concentration with declining Ψ_{leaf} as follows:

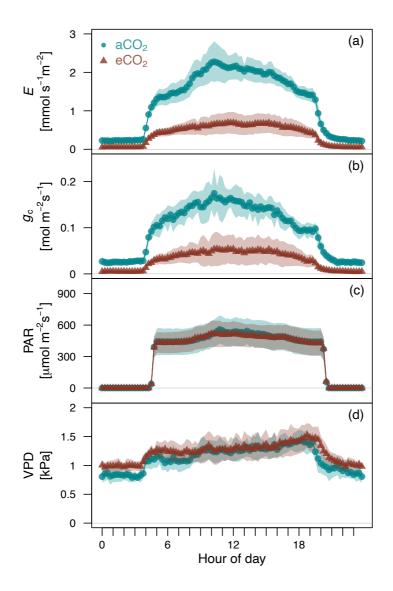
$$ABA = a_4 \cdot (-\Psi_{\text{leaf}})^{b_4} \tag{S4}$$

in which ABA is the concentration of abscisic acid in the leaves (ng g⁻¹), Ψ_{leaf} is the midday leaf water potential (MPa), and a_4 and b_4 are the calibrated coefficients for the regression.

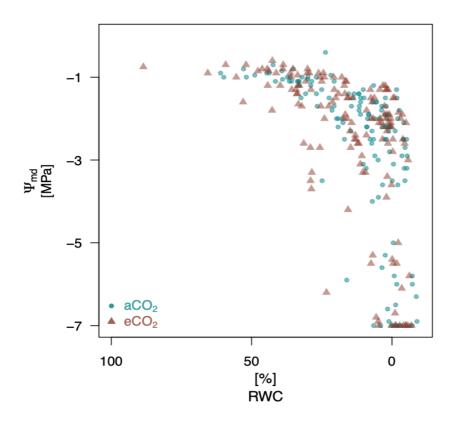
4) Percent loss in conductance with declining xylem water potential (Ψ_{xylem})

For both treatments (aCO₂ n = 5 and eCO₂ n = 6) we fitted a cumulative probability function in form of a Weibull distribution:

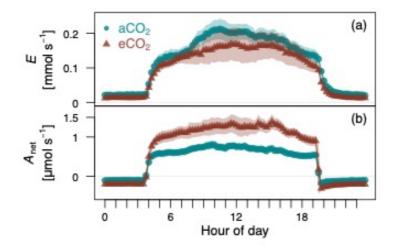
$$PLC = 100 \cdot \left(1 - \exp\left(-\left(\frac{\Psi_{\text{xylem}}}{a_5}\right)^{b_5}\right)\right)$$
(S5)


with PLC is the percent loss of hydraulic conductance (%), Ψ_{xylem} is the xylem water potential (MPa), a_5 and b_5 are the calibrated coefficients, where a_5 is a scale parameter of reference xylem water potential value (MPa), and b_5 a shape parameter.

Supplemental Table S1. Prior distributions of the Bayesian model calibrations. All priors are assumed to follow a uniform distribution, with minimum (min) and maximum (max) values as reported in the respective columns.


Model	Parameter	Distribution	Min	Max	
ABA vs Ψ _{leaf}	а	Uniform	50	500	
ADA VS Tleaf	b	Uniform	0.1	2.5	
PLC vs Ψ_{xylem}	а	Uniform	-6.5	-2.5	
	b	Uniform	1	8	
g_{c} vs VPD	а	Uniform	-3.5	0.5	
gc vs vr D	b	Uniform	-4	-0.1	
	а	Uniform	1	5	
$g_{ ext{c rel}}$ vs $\Psi_{ ext{leaf}}$	b	Uniform	-0.5	-2	
	С	Uniform	1.5	6	

Supplemental Table S2. Parameter estimates of the Bayesian models. Model coefficients are given per treatment (eCO₂ = elevated CO₂, aCO₂ = ambient CO₂) and during decreasing CO₂ (from 900 to 400 to 200 ppm) in the eCO₂ seedlings. All parameter values are reported as the median and the 95% credible intervals per treatment. Bold letters indicate non-overlapping credible intervals between treatments for a given test. ABA is abscisic acid concentration (ng g⁻¹), Ψ_{leaf} is midday leaf water potential (MPa), PLC is percent loss in xylem hydraulic conductance (%). Ψ_{xylem} is xylem water potential (MPa), g_c is canopy conductance (mol m⁻² s⁻¹), PAR is photosynthetic active radiation (µmol m⁻² s⁻¹), VPD is vapor pressure deficit (kPa) and g_{curel} is canopy conductance relative to the treatment-specific maximum canopy conductance (%).


		2.5%CI	Median	97.5%CI	2.5%CI	Median	97.5%CI			
	Treatment		Coef a			Coef b				
ABA vs Ψ_{leaf}	eCO ₂	62	159.6	283.4	0.99	1.37	1.93			
	aCO ₂	181.3	248.9	321.9	0.85	1.02	1.21			
			Coef a			Coef b				
PLC vs Ψ_{xylem}	eCO ₂	-6.48	-5.35	-4.55	2.67	4.26	5.29			
	aCO ₂	-6.47	-5.38	-4.58	3.57	4.66	7.99			
			Coef a			Coef b				
$g_{ m c}$ vs VPD	eCO ₂	0.065	0.087	0.109	-2.63	-2.33	-2.05			
	aCO ₂	0.173	0.202	0.405	-2.48	-1.68	-1.37	2.5%CI	Median	97.5%CI
			Coef a			Coef b			Coef c	
$g_{ ext{c-rel}}$ VS $\Psi_{ ext{leaf}}$	eCO ₂	2.29	2.93	3.57	-1.22	-1.2	-1.7	4.11	4.47	4.89
	aCO ₂	2.11	2.76	3.39	-1.27	-1.24	-1.21	4.31	4.64	5.11

Supplemental Figure S1. Leaf-level gas exchange. Diurnal course of leaf-level transpiration (*E*) (a) and canopy conductance (g_c) (b) as well as photosynthetic active radiation (PAR) (c) and vapor pressure deficit (VPD) (d) under ambient (aCO₂) and elevated [CO₂] (eCO₂). Shown are quarter-hourly treatment means over three (aCO₂) and four (eCO₂) days of acclimation with shaded areas depicting ± standard deviation (n = 6 seedling per treatment).

Supplemental Figure S2. Midday leaf water potential during soil drought. Midday leaf water potential (Ψ_{md}) versus daily-averaged relative soil water content (RWC) during the course of a lethal soil drought for aCO2 and eCO2 Aleppo pine seedlings (n = 18 per treatment). Shown are individual Ψ_{md} measurements (aCO₂: solid points; eCO₂: solid triangles). See also Gattmann et al. (2021).

Supplemental Figure S3. Tree-level transpiration and photosynthesis. Diurnal course of tree-level transpiration (*E*) (a) and tree-level net photosynthesis (A_{net}) under ambient (aCO₂) and elevated CO₂ (eCO₂). Shown are quarter-hourly treatment means over three (aCO₂) and four (eCO₂) days of acclimation with shaded areas depicting ± standard deviation (n = 6 seedlings per treatment).