Supplemental Material

to

Structure and thermodynamics of a UGG motif interacting with Ba²⁺ and other metal ions: accommodating changes in the RNA structure and the presence of a G(*syn*)–G(*syn*) pair.

*Agnieszka Kiliszek, Martyna Pluta, Magdalena Bejger, *Wojciech Rypniewski

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland

*Corresponding authors: Agnieszka Kiliszek, kiliszek@ibch.poznan.pl, Wojciech Rypniewski, <u>wojtekr@ibch.poznan.pl</u>

Table S1. X-ray data and refinement statistics.

	RNA-Ba(1)	RNA-Ba(2)	RNA unliganded	RNA-Cs	RNA-Sr	RNA-Cd	RNA-Ca
Data collection							
Space group	P6522	P4 ₃ 2 ₁ 2	R3	P21	P21	P21	P21
Cell parameters (Å, °)	a=b=84.0 c=139.0	a=b=34.1 c= 81.3	a=b=49.2 c=69.8	a=28.1 b=91.3	a=28.2 b=90.6	a=28.1 b=91.1	a=28.1 b=90.3
				c=139.5 β=91.4	c=139.6 β=91.4	c=138.1 β=91.5	c=138.2 β=91.4
Resolution (Å)	2.26	1.79	2.02	2.86	2.46	2.75	2.85
R _{merge}	0.062 (0.702)	0.090 (0.816)	0.061 (0.722)	0.080 (1.580)	0.044 (0.893)	0.045(0.703)	0.074 (0.893)
I/σ	14.73 (1.93)	11.49(1.89)	16.78(1.88)	8.51 (0.80)	14.36 (1.27)	16.31 (1.63)	14.48 (1.95)
CC _{1/2}	99.9 (61.9)	99.8 (72.5)	99.9 (73.7)	99.9 (52.7)	99.9 (59.1)	99.9 (73.1)	99.9 (76.6)
Completeness (%)	99.8 (99.9)	99.7(98.6)	99.8 (99.5)	96.4 (90.3)	99.1.0(99.0)	98.6 (97.4)	99.5 (99.5)
Redundancy	3.9 (3.9)	4.6 (4.6)	5.6 (4.3)	3.5 (3.6)	3.5 (3.6)	3.8 (3.7)	6.9 (7.0)
No. of unique	25605 (unmerged)	8634 (unmerged)	4105	30808	48753	18088	16139
reflections				(unmerged)	(unmerged)		
Refinement							
Overall mean B-factor	47.65	27.47	44.3	93.02	96.65	91.89	90.26
(A^2)							
Number of reflections:	24317/1274	8201/428	3686/410	28808/1828	44744/3910	16240/1789	15145/962
work/test					(unmerged)		
Rwork/Rfree	19.09/24.04	18.25/23.61	19.7/24.3	22.1/26.9	19.92/24.78	21.85/26.66	20.77/26.60
RNA atoms	2326	403	380	5343	5366	5320	5320
Water molecules	66	43	21	none	12	1	3
No. ligands	12 Ba ²⁺ ions	$2 \operatorname{Ba}^{2+}$ ions and 1	1 acetate and	28 of Cs ⁺ ions	22 Sr ²⁺ ions	3 Cd ²⁺ ions	none
		Na ⁺ ion	4 SO4 ²⁻ ions				
RMSD in bonds (Å)	0.006	0.005	0.007	0.002	0.006	0.002	0.001
RMSD in angles (°)	1.062	0.93	0.92	0.465	1.085	0.479	0.460
PDB code	8AMG	8AMI	8AMJ	8AMM	8AMN	8AML	8AMK
DOI of raw imiges	10.18150/	10.18150/	10.18150/4UIWH	10.18150/	10.18150/	10.18150/	10.18150/
8	TGVHHI	LRK0NW	U	YJBZDE	FO5TNS	VRMIWO	FOPWWU

Figure S1. The noncanonical U•A pair of CD duplex in the RNA-Ba(1) structure. The 9U nucleotide is flipped in a way that the sugar moiety is rotated half a turn and the direction of the main chain is reversed. The uracyl ring still stacks with the neighboring 8A residue and interacts *via* the O6 carbonyl with the *exo*-amino group of 1A of chain C (H bond marked in black). According to Leontis and Westhof nomenclature the U-A pair forms *trans* WC-WC pair (10.1017/s1355838201002515).

OMIT MAPS

2Fo-Fc MAPS

Figure S2. The electron density map analysis of G(syn)-G(syn) pair observed in the structure of RNA-Ba(2). On the left panel the guanosine residues are modeled into omit map (green) in three different arrangements: G(syn)-G(syn), G(anti)-G(syn), G(syn)-G(anti). The right panel represents the calculated $2F_0$ - F_c electron density maps for each G-G arrangement. The omit maps were contoured at 3σ level while the $2F_0$ - F_c electron density maps (blue) were contoured at 1σ level.

UGG Ba(2) model chains G and H

UGG Ba(2) model chains I and J

UGG Cs model chains Q and R

UGG Cs model chains S and T

UGG Cs model chains Y and Z

Figure S3. The $2F_o-F_c$ (left panel; blue) and omits maps (right panel; green) calculated for G-G pairs. The omit maps were contoured at 3σ level while the $2F_o-F_c$ electron density maps were contoured at 1σ level.

Figure S4. Cartoon representation of AUGUGGCAU models with bound metal ions in the major groove. The $2F_{o}$ – F_{c} electron density map (gray) was contoured at 1σ level. Sphere represents metal ions. The structure with water molecule was obtained in the presence of Ca²⁺ ions. The relatively low electron density for Cd²⁺ probably indicates its partial occupancy or disorder.

Figure S5. Interactions of sulfate ion with *exo*-amino groups of guanosine residues associated with U·G pairs. The sulfate ion is located on the three-fold axis and interacts with three symmetry-related RNA chains. The hydrogen bonds are dash-lines.

Table S2. Shear (in Å) calculated using 3DNA.

	structure	RNA-Ba(1	.)					RNA-Ba(2)	unliganded	RNA-Sr			_			
	chain ID	AB	CD	EF	GH	IJ	KL	AB	AB	AB	CD	EF	GH	IJ	KL	MN
No. base pair																
1	A-U	-0.03	-3.12	-0.33	-0.26	0.11	-0.21	-0.05	-0.32	-0.47	-0.09	-0.38	-0.92	-0.16	-0.28	0.24
2	U-A	0.08	-0.09	0.24	0.02	0.41	0.35	-0.03	0.11	-0.25	-0.20	0.12	0.66	0.12	-0.21	-0.30
3	G-C	-0.05	-0.39	-0.06	-0.08	0.23	-0.08	-0.24	-0.33	-0.04	-0.07	-0.20	-0.09	-0.68	-0.33	0.20
4	U-G	2.31	2.62	2.23	2.22	2.01	2.25	2.16	2.47	2.07	2.19	2.60	2.36	2.09	2.16	2.32
5	G-G	-2.88	-2.62	-2.83	-2.52	-0.00	-2.32	-0.01	-2.61	-2.96	-2.47	-2.55	-2.57	-2.32	-2.48	-2.90
6	G-U	-1.97	-2.74	-2.13	-2.45	-2.19	-2.25	-2.13	-2.26	-2.05	-2.32	-2.44	-2.19	-2.29	-2.48	-2.20
7	C-G	0.16	-0.10	-0.03	0.25	0.24	-0.49	0.23	0.36	0.27	0.24	0.09	0.18	0.34	-0.10	0.07
8	A-U	0.52	-0.27	-0.50	-0.41	-0.45	-0.01	0.09	0.15	0.11	0.67	0.24	0.11	0.63	0.28	-0.22
9	U-A	-0.14	-0.03	0.21	-0.04	0.38	0.04	0.25	0.56	0.43	0.10	-0.08	-0.19	0.38	0.24	0.52
	average value	-0.22	-0.75	-0.36	-0.36	0.08	-0.30	0.03	-0.21	-0.32	-0.05	-0.29	-0.29	-0.21	-0.36	-0.25
	s.d.	1.48	1.81	1.45	1.43	1.09	1.38	1.08	1.51	1.45	0.85	1.53	1.48	1.40	1.42	1.52

Shear parameter based on RC8--YC6 vectors

Table S3. Shift (in Å) calculated using 3DNA.

	structure	RNA-Ba(1)						RNA-Ba(2)	unliganded	RNA-Sr						
	chain ID	AB	CD	EF	GH	IJ	KL	AB	AB	AB	CD	EF	GH	IJ	KL	MN
No. base pair step																
1	AU/AU	-0.30	-0.77	-0.29	-0.63	-0.75	-0.28	-0.30	0.21	-0.74	-0.33	0.25	0.14	0.24	-0.34	-0.69
2	UG/CA	0.44	0.83	0.78	0.70	0.50	1.10	0.64	-0.60	0.37	0.11	-0.08	-0.35	-0.01	0.19	0.72
3	GU/GC	0.18	0.49	0.15	0.26	0.55	-0.01	0.08	-0.09	0.33	0.36	-0.17	0.10	0.16	-0.00	0.05
4	UG/GG	1.17	1.70	1.82	1.44	2.45	2.24	2.61	0.71	1.66	1.16	1.27	1.76	1.48	2.02	1.35
5	GG/UG	-1.95	-1.37	-1.27	-1.97	-2.60	-1.63	-2.60	-2.96	-2.22	-1.86	-2.39	-1.57	-1.46	-1.19	-1.84
6	GC/GU	-0.01	-0.37	-0.11	0.26	-0.18	-0.34	0.02	-0.29	-0.21	-0.03	-0.33	-0.25	0.03	-0.31	-0.14
7	CA/UG	-0.54	-0.52	-0.41	-0.41	-0.72	-0.46	0.06	0.39	-0.52	-0.07	-0.16	-0.11	-0.23	-0.21	-0.07
8	AU/AU	0.94	-0.04	0.34	0.12	0.39	0.27	-0.10	0.07	-0.24	0.25	-0.06	-0.26	-0.34	0.02	-0.23
	average value	-0.01	-0.01	0.13	-0.03	-0.04	0.11	0.05	-0.32	-0.20	-0.05	-0.21	-0.07	-0.02	0.02	-0.11
	s.d.	0.98	0.98	0.91	1.01	1.44	1.15	1.42	1.14	1.10	0.85	1.01	0.91	0.81	0.91	0.94

Shift parameter based on consecutive C1'-C1' vectors

Table S4. Helical twist (in degree) calculated using 3DNA.

	structure	RNA-Ba(1)						RNA-Ba(2)	unliganded	RNA-Sr						
	chain ID	AB	CD	EF	GH	IJ	KL	AB	AB	AB	CD	EF	GH	IJ	KL	MN
No. base																
pair step																1
1	AU/AU	34.7	0.85	30.45	33.38	34.7	34.21	33.92	33.64	31.44	33.37	31.68	33.73	33.59	35.51	32.36
2	UG/CA	37.55	34.51	33.75	34.02	33.52	35.8	35.4	32.85	34.18	36	35.74	33.67	35.27	34.85	36.22
3	GU/GC	31.72	33.76	34.93	32.22	38.09	33.85	34.81	25.59	30.25	30.35	26.57	32.1	28.95	29,12	26.89
4	UG/GG	34.15	32.28	32.82	42.28	34.07	32.96	35.56	38.5	35.55	40.77	33.77	36.76	37.37	34.57	39.87
5	GG/UG	32.46	38.26	40.57	29.26	36.03	38.16	36.82	31.59	34	33.62	36.11	33.61	30.33	40.72	35.18
6	GC/GU	34.62	29.98	31.41	33.2	34.2	36.3	33.33	29.49	29.35	31.45	28.36	30.86	28.22	28.37	30.13
7	CA/UG	33.28	35.36	37.21	36.35	37.34	36.39	32.06	32.99	33.76	35.57	33.21	33.73	33.66	32.23	31,07
8	AU/AU	33.91	34.08	33.32	34.56	31.92	35.37	34.88	32.8	32.6	34.09	32.78	32.19	32	33.71	36.75
	average value	34.05	34.03	34.31	34.41	34.98	35.38	34.60	32.18	32.64	34.40	32.28	33.33	32.42	34.28	33.91
	s.d.	1.76	2.56	3.27	3.77	2.05	1.66	1.47	3.68	2.14	3.19	3.34	1.74	3.16	3.72	4.41

Twist parameter based on consecutive C1'-C1' vectors

Table S5. Propeller (in degree) calculated using 3DNA.

Propeller parameter based on RC8--YC6 vectors

	structure	RNA-Ba(1)						RNA-Ba(2)	unliganded	RNA-Sr						
	chain ID	AB	CD	EF	GH	เม	KL	AB	AB	AB	CD	EF	GH	IJ	KL	MN
No. base																
pair																
1	A-U	-13.91	-26.05	-13.34	-10.88	-21.36	-22.39	-9.76	-9.70	-0.52	-12.53	-14.02	-7.96	-12.00	-11.54	-8.11
2	U-A	-16.81	-13.58	-19.82	-14.46	-19.65	-21.05	-16.23	-15.49	-14.03	-16.63	-17.66	-12.90	-19.68	-22.43	-20.75
3	G-C	-18.79	-22.28	-19.40	-17.11	-18.91	-34.17	-23.50	-15.59	-19.73	-20.38	-13.44	-17.20	-22.39	-23.32	-18.50
4	U-G	-14.88	-18.12	-15.61	-17.52	-7.61	-32.53	-15.20	-10.06	-14.20	-14.38	-14.88	-16.57	-16.32	-16.06	-13.97
5	G-G	-17.15	-22.22	-21.18	-20.39	-20.30	-25.02	-21.40	-11.77	-13.07	-16.71	-23.85	-15.75	-14.87	-18.25	-17.83
6	G-U	-18.44	-19.86	-15.63	-16.39	-14.32	-15.40	-13.78	-13.73	-12.87	-13.81	-12.12	-14.04	-14.43	-13.69	-15.37
7	C-G	-23.65	-20.15	-23.71	-19.20	-22.15	-20.57	-21.39	-21.43	-18.76	-17.95	-17.09	-22.53	-19.25	-18.38	-15.55
8	A-U	-29.95	-6.73	-17.69	-20.61	-15.85	-22.20	-18.68	-16.94	-25.52	-13.55	-18.63	-14.18	-20.01	-17.21	-19.12
9	U-A	-11.39	-14.96	-18.75	-15.28	-17.88	-13.86	-12.34	-11.38	-13.83	-5.98	-9.19	-12.00	-5.72	-10.20	-15.40
	average value	-18.33	-18.22	-18.35	-16.87	-17.56	-23.02	-16.92	-14.01	-14.73	-14.66	-15.65	-14.79	-16.07	-16.79	-16.07
	s.d.	5.55	5.75	3.17	3.10	4.49	6.82	4.64	3.78	6.78	4.09	4.25	4.01	5.08	4.48	3.69

Figure S6. The representative absorbance curves, as a function of temperature (°C), for the AUGUGGCAU oligomer measured in different buffers.

Table S6. The melting temperature Tm of the AUGUGGCAU oligomer calculated for each cycle of DSC measurement and corresponding normalized DSC curves.

Buffer	Run number	RNA concen- tration (μM)	Tm1 (°C)	Tm2 (°C)	Tm3 (°C)	DSC curves
	1	298	24.58	69.19	-	Find Das Per
	2	<298	25.16	-	-	2
0.1M NaCl	3	<<298	24.89	-	-	-3054799(1)
	4	<<<298	24.76	-	-	1.25-
	5	<<<<298	24.72	-	-	
	6	<<<<298	24.46	-	-	0.5- 0.25- 0- 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 99 95 100 Temperature (°C)
1M NaCl	1	221	36.02	62.23	-	Рлеб Das Ret Ст 2 т — ПИД, 1, ИМИС-1004/7
	2	<221	35.55	-	-	09411
	3	<<221	35.24	-	-	094411 1.5
	4	<<<221	34.91	-	-	
	5	<<<<221	34.39	-	-	0.25- 0.25- 0- 0- 0- 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Temperature (°C)

0.1M NaCl	1	211	32.72	63.57	-	
$+ 5 \text{mM CaCl}_2$	2	<211	-	-	-	Freed Data Port
	3	<<211	-	-	-	
	4	<<<211	-	-	-	1.5-
	5	<<<<211	_	_	_	1.25- 0.75- 0.25- 0.25- 0.5- 0.25- 0.5- 0.25- 0.5- 0.5- 0.25- 0.5- 0.5- 0.5- 0.5- 0.5- 0.5- 0.5- 0.
0.1M NaCl	1	291	34.06	49.23	67,78	
+ 5mM SrCl ₂	2	<291	32.89	-	-	Prince Total Prior
	3	<<291	31.30	-	_	1.5- 1.2-
	4	<<<291	28.87	-	-	(yuu 1 1 4 6 0.75-
	5	<<<<291	28.31	-	-	0.3 0.3 0 0 0 5 10 12 20 25 20 20 20 20 20 20 20 20 20 20

0.1M NaCl	1	160	21.80	71.81	-	
+ 5mM $CdCl_2$	2	<160	-	-	-	Preed Data Poet
	3	<<160	-	-	-	1.75-
	4	<<<160	-	-	-	1.5-
	5	<<<<160	-	-	_	1.25 0.75 0.5 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0
0.1M NaCl	1	251	23.55	65.61	_	
+ 5mM CsCl	2	<251	23.92	-	-	Fitted Data Rot
	3	<<251	23.68	-	-	- 22
	4	<<<251	23.37	-	-	
	5	<<<251	23.26	_	_	1.25 0.75 0.5 0.25 0 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Temperature (°C)

PDB code	Primary Citation	DOI
1KD4	The Crystal Structure of r(GGUCACAGCCC)2, Barium form Kacer, V., Scaringe, S.A., Scarsdale, J.N., Rife, J.P. Acta Crystallogr.,Sect.D 59 423-432 (2003)	10.1107/S0907444902021911
6H0R	X-ray structure of SRS2 fragment of Rgs4 3' UTR Heber, S., Gaspar, I., Tants, J.N., Gunther, J., Moya, S.M.F., Janowski, R., Ephrussi, A., Sattler, M., Niessing, D. Nat Commun 10 1659-1659 (2019)	10.1038/s41467-019-09655-3
6CK5	PRPP riboswitch from T. mathranii bound to PRPP Knappenberger, A.J., Reiss, C.W., Strobel, S.A. Elife 7 (2018)	10.7554/eLife.36381
6CB3	Crystal structure of the L.Lactis YkoY riboswitch bound to cadmium Bachas, S.T., Ferre-D'Amare, A.R. Cell Chem Biol 25 962-973.e5 (2018)	10.1016/j.chembiol.2018.04.016
3F2W	Crystal structure of the FMn riboswitch bound to FMN, Ba2+ soak. Serganov, A., Huang, L., Patel, D.J. Nature 458 233-237 (2009)	10.1038/nature07642
30XJ	Crystal structure of glycine riboswitch, soaked in Ba2+ Huang, L., Serganov, A., Patel, D.J. Mol.Cell 40 774-786 (2010)	10.1016/j.molcel.2010.11.026
4AOB	SAM-I riboswitch containing the T. solenopsae Kt-23 in complex with S- adenosyl methionine Schroeder, K.T., Daldrop, P., Mcphee, S.A., Lilley, D.M.J. RNA 18 (2012)	10.1261/RNA.032409.112
4Y1I	Lactococcus lactis yybP-ykoY Mn riboswitch bound to Mn2+ Price, I.R., Gaballa, A., Ding, F., Helmann, J.D., Ke, A. Mol.Cell 57 1110-1123 (2015)	10.1016/j.molcel.2015.02.016
5FJC	SAM-I riboswitch bearing the H. marismortui Kt-7 variant C-2bU Huang, L., Wang, J., Lilley, D.M.J. Nucleic Acids Res. 44 (2016)	10.1093/NAR/GKW201
70UO	Crystal structure of RNA duplex [UCGUGCGA]2 in complex with Ba2+ cation Ruszkowska, A., Zheng, Y.Y., Mao, S., Ruszkowski, M., Sheng, J. Front Mol Biosci 8 762786-762786 (2021)	10.3389/fmolb.2021.762786
4B5R	SAM-I riboswitch bearing the H. marismortui K-t-7 Daldrop, P., Lilley, D.M.J. RNA 19 (2013)	10.1261/RNA.036657.112

Table S7. Crystals structures of models containing $G \cdot U$ pairs with bound Ba^{2+} ions.