

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

The efficacy of probiotics in the management of halitosis: A systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-060753
Article Type:	Original research
Date Submitted by the Author:	04-Jan-2022
Complete List of Authors:	li, jinjin; Sichuan University, Huang, Nengwen; Sichuan University, Department of Head and Neck Oncology Qiao, Xianghe; Sichuan University, Department of Head and Neck Oncology Wu, Yongzhi; Sichuan University, Department of Head and Neck Oncology Liu, Yunkun; Sichuan University, Department of Head and Neck Oncology Wu, chenzhou; Sichuan University West China Hospital of Stomatology Li, Longjiang; Sichuan University, Department of Head and Neck Oncology
Keywords:	Microbiology < PATHOLOGY, Infectious diseases & infestations < DERMATOLOGY, Public health < INFECTIOUS DISEASES

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 Title page

 2 Title: The efficacy of probiotics in the management of halitosis: A systematic review and meta-3 analysis

- 4 Jinjin Li¹ Nengwen Huang¹ Xianghe Qiao¹ Yongzhi Wu¹ Yunkun Liu¹ Chenzhou Wu¹ Longjiang Li^{1*}
- 5 ¹State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases,
- 6 Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University,
- 7 Chengdu, China
- ¹⁵ 8 *Corresponding author:
- 17 9 Prof. Longjiang Li
- 18 10 E-mail: <u>muzili63@163.com</u>
 - *Running title:* Probiotic treatment of halitosis

22 12 ABSTRACT

Objectives Halitosis is defined as a foul odor emitted from the oral cavity. Many interventions have
 been used to control halitosis from mouthwashes to chewing gums. Probiotics have been reported as
 an alternative method to alleviate halitosis. The present study aimed to investigate the effect of
 probiotics on halitosis.

17 Design and methods This is a meta-analysis study. A search was performed in indexed databases up
 18 to February 2021. Randomized controlled trials were included that compared probiotics and placebo
 19 concerning primary outcomes of organoleptic scores and volatile sulfur compounds levels. Data
 20 extraction and quality assessment were conducted independently by two reviewers.

- Results Standardized mean difference (SMD) and 95% confidence interval (CI) were calculated to synthesize data. The data were sub-grouped and analyzed in the short term (≤ 4 weeks) and long term (>4 weeks) based on the follow-up time. Seven articles were included in this review. For primary outcomes in the short term (<4 weeks), organoleptic scores [SMD= -0.58; 95%CI (-0.87, -0.30), p<0.0001] and volatile sulfur compounds levels [SMD= -0.26; 95%CI (-0.51, -0.01), p=0.04] significantly decreased in the probiotics group compared with the placebo group. However, a significant reduction was observed only in organoleptic scores [SMD= -0.45; 95%CI (-0.85, -0.04), p=0.03] in the long term (>4 weeks). No significant differences were observed in secondary outcomes (tongue coating scores and plaque index).
- **Conclusions** According to the results of this meta-analysis, it seems that probiotics can be used to 48 31 relieve halitosis in the short term (≤ 4 weeks). The results of bias assessment and limited data might 49 32 reduce the reliability of the conclusions.
- **33** Strengths and limitations of this study
 - **34** This study included larger RCTs involved in halitosis and probiotics.
 - **35** • The results were rationally analyzed from the follow-up time perspective.
 - **36** The included studies had limited patients.
 - Some studies reported the outcomes with different forms, increasing the heterogeneity of the
 results.

39 INTRODUCTION

Halitosis, also known as "oral malodor," is typically defined as an unpleasant odor emanating from the oral cavity.¹ As a cause of patients' referral to the dentist, halitosis is the third most common disease, only ranking behind dental caries and periodontal disease.² According to an epidemiological study, the prevalence of halitosis is approximately 27.5% in the Chinese population.³ People have a higher demand for social interactions and attach more importance to their personal image in today's society. Halitosis has a significant impact on both patients' daily work and social activities and may even results in frequent psychological problems such as anxiety, depression, and social isolation.⁴ Clinically, halitosis is categorized into genuine halitosis, pseudo-halitosis, and halitophobia.⁵ The latter two types are related to psychological conditions. Only genuine halitosis is caused by pathological and physiological factors. It includes intraoral halitosis (IOH) and extraoral halitosis, with the former accounting for 80-90% of the cases.⁶

The main etiologic factor of genuine halitosis is the volatile sulfur compounds (VSCs) produced by oral bacteria via complex microbe-substrate and microbe-microbe interactions and putrefaction of organic substrates in the oral cavity, associated with poor oral hygiene, tongue coating, and periodontal disease.⁷⁻¹⁰ In particular, hydrogen sulfide (H₂S), methyl mercaptan (CH₃SH), and dimethyl sulphide (C₂H₆S) are considered significant parameters and markers of halitosis.¹¹ Some microorganisms, such as Fusobacterium. nucleatum, Porphyromonas. gingivalis, Prevotella. intermedia, Prevotella. nigrescens, and Treponema. denticola not only do participate in periodontal diseases, but they also may facilitate the production of VSC metabolism.¹² Some studies using16S rRNA amplicon sequencing and GC-MS-based metabolite profiling found that the bacterial composition, diversity and metabolites of the halitosis group were different from those of the control group.^{13,14} Therefore, anaerobic microbiota might play an important role in the development of halitosis. Consequently, regulating the balance of the oral microbiome to reduce VSC levels is an important method to treat oral malodor.

According to some previous reports, the current treatments for halitosis include mechanical cleaning (scaling and tongue scraping) and chemical therapy (antibiotics, mouthwashes, and other agents).^{15, 16} However, mechanical therapy is often uncomfortable, even if carried out by the dentist. In addition, although chemical therapy is generally effective for a short time, it is always associated with various side effects, including the emergence of dysbacteriosis and staining of the tongue and tooth.¹⁷⁻ ²⁰ Consequently, new methods with fewer side-effect are constantly suggested to inhibit oral malodor.

As live microorganisms, probiotics confer benefits for the host when administered in appropriate amounts.²¹ The beneficial effects of these probiotics are primarily related to regulating the local microenvironment.^{22, 23} Recently, probiotics have been widely used in the oral field.²⁴ There is a growing body of evidence that the administration of probiotics might affect the composition of oral biofilms. They have also been investigated in the treatment of periodontal ^{25, 26} and peri-implant diseases ^{27, 28}, caries ²⁹, and oral candidiasis.^{30, 31} Meanwhile, probiotics have also been reported as an alternative strategy to relieve oral malodor.³²⁻³⁶ At present, the most common strains of probiotics in clinical studies are Lactobacillus salivarius and Bifidobacterium.³⁷ To date, numerous articles have reported the beneficial effects of probiotics on the treatment of halitosis.³⁸⁻⁴⁰ However, a previous systematic review showed that probiotic therapy for oral malodor is associated with insufficient evidence for its recommendation.⁴¹ In this review, only three included articles published during 2012-2016 and the diversity of observation time might affect the reliability and quality of the results. Furthermore,

82 several new studies on the efficacy of probiotics in the management of halitosis were published in 2020.

83 Thus, it is necessary to carry out a focused analysis of the therapeutic effects of probiotics in the treatment84 of halitosis.

85 Therefore, this meta-analysis was undertaken to investigate the effect of probiotics on managing
86 halitosis from a time perspective. The results could provide some evidence for the administration of
87 probiotics in this field.

88 METHODS

89 Patient and public involvement

90 This is a meta-analysis based on the data in the literature. It is not appropriate to involve patient and the91 public in our study design and outcome measures.

92 Study design

This systematic review was based on the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and registered in the PROSPERO (CRD42021227504).⁴² According to the PICOS principle, the following focused question was structured: What is the clinical efficacy of probiotics in patients with halitosis when compared with placebo treatment? The populations were patients diagnosed with halitosis. The intervention was probiotic therapy, representing the test group. The test group was compared with placebo treatment. The considered outcomes were halitosis parameters and other indexes before and after treatment. All study designs were RCTs.

35 101 Search strategy 36

A critical electronic search was conducted in the bibliographic databases, mainly including PubMed, EMBASE, Web of Science, Cochrane Central Register of Controlled Trials up to and including February 2021 to select the published literature. Additionally, gray literature was searched in the database System for Information on Gray literature in European and Google Scholar. The reference lists of the included articles and some related Chinese journals were also searched manually. There was no language restriction.

An initial search strategy was conducted in the PubMed with the combination of Medical Subject Headings (Mesh) terms identified by an asterisk symbol (*) and free text words as the follows:

48 110 Probiotic OR Probiotic* OR Probiotic therapy OR Probiotic effect OR Probiotic treatment

- 111 AND
- halitosis OR halitosis * OR malodor OR oral malodor OR malodour OR bad breath OR fetor oris.

Endnote X7 was used for electronic title management. First, primary screening was performed
independently by two reviewers (JJL and NWH) based on the titles and abstracts. Then, the full-text
articles were used to assess the eligibility further. Any disagreement was solved by consulting a third
reviewer.

Inclusion criteria

Studies meeting the following conditions were considered eligible for this review: 1) study types: randomized controlled clinical trials or randomized controlled cross-over studies; 2) participants: systemically healthy patients diagnosed with halitosis via accepted standards (the organoleptic score and or the concentration of volatile sulfur compounds); 3) interventions: evaluating the efficacy of probiotics with placebo, regardless of the probiotics species and the consumption method; 4) control interventions: placebo treatment; if the control interventions included other measures, the study was not included (e.g., studies comparing tongue scraping plus chlorhexidine plus probiotics and tongue scraping plus chlorhexidine were excluded);³³ 5) clinical data: the measurement values, including halitosis parameters and other indexes before and after treatment.

Risk of bias

The included studies underwent a quality assessment with the Revised Cochrane risk of bias tool for randomized trials (RoB2).⁴³ This tool assesses the risk of bias in five domain areas, including randomization process, deviations from intended interventions, missing outcome data, measurement of outcome, and selection of the reported result. Each domain assessed bias following several signaling questions. The overall bias was classified as a high risk of bias, some concerns, or a low of risk of bias determined by a validated algorithm. After screening the articles, two reviewers (JJL and NWH) conducted the assessment independently to reach an agreement.

Data extraction

Data were extracted with a researcher-designed data form with the following information: 1) basic information of the included studies (first author's name and the year of publication); 2) study type (RCT); 3) diagnostic criteria for halitosis; 4) characteristics of the participants (sample volume, the age range); 5) treatment (probiotic administration, including the type of bacteria, vehicles, doses, and frequencies); 6) clinical parameters (including the primary and secondary outcomes of final participants); 7) significance and follow-up periods.

Of all these variables, the follow-up periods referred to the duration of probiotic use. If probiotic treatment ceased during the observation period, only the data before ceasing treatment were included. Concerning clinical parameters, organoleptic (OLP) scores and VSC concentrations were considered the primary outcomes, which were directly associated with oral malodor. The secondary outcomes in this review included tongue coating scores (TCS) and plaque index (PI) because they are commonly regarded as halitosis causes.

Statistical analysis

The statistical analysis was performed with Review Manager 5.3. All the data were group-analyzed according to the follow-up time. The time ≤ 4 weeks was considered the short-term period, and time >4 weeks was considered the long-term period. In one study with three observation periods, the values of 4 weeks were analyzed in the short term to keep consistent with other studies.⁴⁴ Study heterogeneity was evaluated using Q statistics and the I² test. P-value <0.10 was treated as the standard test. When I²>50% or p<0.10, there was significant heterogeneity between the studies.

BMJ Open

Subgroup or meta-regression was necessary to analyze the sources of heterogeneity. The continuous data on the halitosis parameters of the present studies were expressed with the standardized mean difference (SMD) and 95% CI (confidence interval). A random-effect model was used for analysis. Therefore, the mean difference and standard deviation had to be acquired. If the original text did not provide the related data, the mean difference could be calculated, and the standard deviation was obtained with the formula $(r_d = \text{sqrt} (r_1^2/n_1 + r_2^2/n_2))$. The excel sheets in the articles were used to convert the values when provided with median and interquartile.^{45, 46}

RESULTS

Study selection

In total, 238 articles were potentially identified by electronic and manual searches. After eliminating the duplicates, 14 articles were included by screening the titles and abstracts. Then, these studies were evaluated by reading the full texts, and seven articles met the final inclusion criteria.^{40, 44, 47-51} Figure 1 presents the whole process and reasons for exclusion.

Study characteristics

Table 1 presents the main characteristics of the included studies. In this review, all the studies were randomized control trials. The number of participants in the studies ranged between 23 and 68, with an age range of 19 to 70. Halitosis was diagnosed with OLP scores and or VSC concentrations. The probiotics and placebo groups were compared, and the follow-up periods varied from two weeks to 12 weeks.

Study	Туре	Halitosis criterion	Subjects Age	Clinical parameters	Probiotics Administration (Vehicle, strains and frequency)	Follow-up
Mousquer et al. (2020)	RCT Placebo-double masked, parallel	OLP score≥1	29 ≥18	OLP VSC TCS	A gum including 1 billion colony forming units (CFU) Lactobacillus salivarius G60 taken twice per day	Baseline 2 weeks
Lee et al. (2020)	RCT Placebo-double blind parallel	VSC≥1.5ng/10 mL	68 20-39	OLP VSC (H ₂ S, CH ₃ S, C ₂ H ₆ S)	An 800-mg tablet contained 1.0×10 ⁸ CFU/g Weissella cibaria taken once per day	Baseline 4 weeks 8weeks
He et al. (2020)	RCT Placebo-double blind parallel	$\begin{array}{l} OLP \mbox{ score } \geq 2 \\ VSC \geq 150 ppb \end{array}$	28 23-44	OLP VSC TCS PI	A tablet containing 1×10^9 CFU Streptococcus salivarius K12 taken twice per day	Baseline 4 weeks
Keller et al. (2012)	RCT Placebo-double blind cross-over	OLP score>1	25 19-25	OLP VSC	A chewing gum containing Lactobacillus reuteri DSM 17938 and Lactobacillus reuteri ATCC PTA 5289 -both with a concentration of 1×10^8 CFU taken twice per day	Baseline 2 weeks
Suzuki et al. (2014)	RCT Double-blind placebo- controlled Cross-over	OLP score≥1.5	23 22-67	OLP VSC (H ₂ S, CH ₃ S, C ₂ H ₆ S) PI TCS	A tablet containing 6.7×10^8 CFU Lactobacillus salivarius WB21 and 280mg xylitol taken 3 times per day	Baseline 2 weeks

 Table 1 Characteristics of the included studies.

2 3 4 5 6 7 8	Penala et al. (2016)	RCT Placebo-double blind parallel	OLP score > 2	29 25-59	OLP PI	A capsule mixture included Lactobacillus salivarius (2×10^9 CFU) and Lactobacillus reuteri (2×10^9 CFU) dissolved into 10ml distilled water to rinse for 1min, daily twice	Baseline 4 weeks 12 weeks
9 10 11 12	Kim et al. (2020)	RCT Placebo-double blind parallel	OLP score≥2 VSC≥0.15ng/ ml	58 20-70	VSC (H ₂ S, CH ₃ S, C ₂ H ₆ S) OLP	A bag of powder mixture included Weissella. cibaria CMU (1.0×10^8 CFU) melted in the mouth once per day	Baseline 2 weeks 4 weeks 8weeks

*RCT: randomized controlled trials; OLP: organoleptic; VSC: volatile sulfur compounds; TCS: tongue coating scores; CFU:

colony forming units; H₂S: hydrogen sulfide; CH₃S: methyl mercaptan; C₂H₆S: methanthiol; PI: plaque index

Risk of bias

The bias estimation results showed that one study had a low risk of bias, one had a high risk, and five showed some concerns. The reason for a high risk of bias was the incomplete outcome data of the OLP scores. Five articles were identified as some concerns because there were many uncertain factors in their full texts. There were only seven studies in our review; thus, a funnel plot was not performed. Figure 2 presents the concrete data on the risk of bias.

Primary outcomes

Concerning OLP, all the included studies detected the parameter with the 0-5 organoleptic scale by one or two trained and calibrated judges, and five studies contained complete data.^{40, 48-51} Studies by Keller et al. (2012) and Penala et al. (2016) reported a significant decrease in OLP in the probiotic group compared to the placebo group after treatment (p < 0.05). In the study by Lee et al. (2020) involving different follow-up periods, OLP scores decreased significantly in the test groups at four weeks (p = 0.002) but not eight weeks (p = 0.188) compared to the baseline. Additionally, the results of the other four studies indicated that the OLP scores did not differ between the two groups.

Concerning VSC, six articles determined VSC concentrations, with three studies detecting the values of VSC and subgroups (H₂S, CH₃SH, and C₂H₆S).^{40, 44, 50} According to the results, only two studies^{40, 50} reported a significant improvement in VSC levels in experimental groups versus placebo groups.

Secondary outcomes

Concerning TCS, three studies evaluated the changes between the probiotic and placebo groups at four weeks ^{40, 49, 51}. Although a reduced tendency was observed after treatment compared with baseline values, there was no significant difference between the two groups.

Concerning PI, in the three studies involved,^{40, 48, 49} only one study showed a significant reduction in PI in the experimental group compared with the controlled group at 12 weeks.⁴⁸

Quantitative synthesis

A meta-analysis was performed including studies with similar clinical parameters of OLP, VSC, TCS, and PI, according to the follow-up time. Although the detection methods of VSC were different, both of the devices exhibited similar sensitivity and specificity in the detecting of halitosis.⁵² Therefore, we

analyzed these values together. Considering the limitations of the included studies and follow-up time,the pooled estimation of TCS and PI was only performed in the short term.

In the short term, the OLP scores significantly decreased in the probiotic group compared to the control group [SMD = -0.58; 95% CI (-0.87, -0.30), p < 0.0001] (Figure 3). A similar result was observed in VSC [SMD = -0.26; 95% CI (-0.51, -0.01), p = 0.04] and H₂S levels [SMD = -0.73; 95% CI (-1.36, -0.10), p = 0.02] (Figure 3 and Figure 5). Other items (TCS, PI, CH₃S, and C₂H₆S) were not significantly different between the experimental and control groups. The heterogeneity of each outcome was low (I² < 50%) except for H₂S levels (I² = 75%).

In the long term, there was a significant improvement in OLP scores in the experimental group [SMD = -0.45; 95% CI (-0.85, -0.04), p = 0.03] (Figure 4). The results failed to show a significant difference in VSC concentrations and their subgroups levels (Figure 4 and Figure 6). The heterogeneity of VSC concentrations was substantial ($I^2 = 58\%$).

217 DISCUSSION

Halitosis is a universal phenomenon with a negative impact on people of all ages. Most causes are related to oral health, particularly periodontal diseases and tongue coating.^{8, 53} Clinically, organoleptic test and detection of VSC concentrations are two commonly used methods to diagnose and monitor halitosis. Considering VSC generation, the use of probiotics to improve halitosis might be useful by modifying the composition of bacteria. Therefore, this review investigated the efficacy of probiotics in treating halitosis based on symptoms and causes.

This meta-analysis demonstrated that probiotics significantly reduced the OLP scores compared with the placebo group regardless of the duration of observation, confirming the benefits of probiotics for halitosis treatment. The probiotics group exhibited a significant reduction in VSC concentrations in the short term (≤ 4 weeks), with no noticeable difference in the long term (≥ 4 weeks). Meta-analyses were also performed in the subgroups of H₂S, CH₃SH, C₂H₆S to assess the concrete difference in VSC levels. The results showed that only H₂S levels reduced noticeably in the short term when the probiotic treatment was administered. As for TCS and PI, the meta-analysis estimated the difference based on the data of three included studies, whose observation times were all within four weeks. The results showed no significant differences between the experimental and placebo groups.

Concerning primary outcomes, OLP scores reflecting subjective perception were often treated as the gold standard for diagnosing halitosis clinically and in the research.^{54, 55} In the present article, six studies included the identified halitosis criteria of subjects with OLP scores.^{40, 44, 47-49, 51} The pooled estimation of this value was in favor of probiotic therapy rather than placebo. The VSC concentration measurement is an objective method, usually using a Halimeter or OralChroma with no significant difference. However, compared with organoleptic evaluation, VSC measurement is a quantitative variable with high sensitivity and reproducibility.56-58 The short-term results of VSC showed a significant improvement in the probiotic group compared to the placebo groups. These findings mean that probiotics might have a potential beneficial effect on relieving oral malodor symptoms in the short term. The possible mechanism is thought to be related to the oral cavity microbiome. According to some previous studies, odorous compounds are derived from the decomposition of amino acids and proteins by anaerobic bacteria.^{7, 59} The principle of probiotic therapy is the competitive inhibition of oral anaerobic bacteria to maintain balance. Based on studies on VSC and bacteria, the significantly lower VSC levels in the short term in the probiotic period might indicate the reduced activity of

BMJ Open

anaerobic bacteria. This finding is different from a previous study. One possible reason is the difference in the number of included articles. Besides, the group analysis of the follow-up time might also play a crucial role in assessing the outcomes. Meanwhile, we found that the short-term outcome of H₂S concentration change other than CH₃SH, C₂H₆S was consistent with the total VSC. This might be attributed to the differences in bacterial number and species related to each VSC reduction and mechanism of probiotics ^{12, 34, 60}. Additionally, the regular VSCs measurement device was reported to be more sensitive towards H_2S than CH_3SH and C_2H_6S ,⁵⁸ which is also a possible reason for the above result. Because lower sensitivity would have a significant effect on the accurate measurement of the relatively low VSC. However, this specific mechanism is not clear and the high heterogeneity of the assessment reduced the reliability of the findings (p=0.04 and $I^2=75\%$).

Regarding the secondary outcomes, based on the present meta-analysis, there was no significant difference between the experimental and placebo groups during the observation time. The possible reason was the short observation time in the included studies because one study included in the analysis showed a significant improvement in PI at 12 weeks.⁴⁸ Tongue coating and periodontitis are often regarded as the leading causes of halitosis^{49, 61}. In the original articles, the TCS and PI showed a pronounced decline after using probiotics compared with the baseline, with no decrease in the placebo group. This phenomenon might be related to the type of probiotics, some of which were reported to boost salivary flow by interacting with the oral microbiome.

Considering the inconsistency in the results of organoleptic scores and VSC concentrations in the long term, time is likely to be the primary reason due to its significant effect on community diversity. Additionally, it is also associated with the interaction of probiotics and anaerobic bacteria related to VSC. In the present review, four articles used probiotics consisting of Lactobacillus salivarius as the intervention treatment, while two articles selected Weissella cibaria, a bacterium isolated from Lactobacillus, and one article with Streptococcus. The bacterial species related to VSC production mainly included Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Treponema denticola.^{53, 62-64} Lactobacillus salivarius reduces the production of VSC mainly by inhibiting the growth of Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum. However, Streptococcus has been reported to inhibit various bacteria, including Streptococcus mutans, Actinomyces naeslundii, and Rothia mucilaginosa.³⁴ When oral bacteria vary over time, the efficacy of probiotics, especially VSC concentrations, changes based on the number of anaerobic bacteria. Moreover, along with VSCs, various other malodor gases are often present in bad mouth air, such as indoles, skatole, pyridine, picolines and polyamines. The oral microbiota included not only VSCs-producing bacteria, but also other bacteria being able to produce malodor compounds.⁶⁵ Therefore, the long-term results may attribute to the inhibition effect of probiotics on other bacteria. Therefore, the data about microorganisms changing in different periods are significant for the evaluation of probiotic effects. However, only three included articles mentioned microorganism detection. The differences in detection methods and bacterial species and insufficient data in the included studies limited the microorganism statistical analysis in this review.

There were several limitations in the present study throughout the whole review process. First, although both electronic and hand searches were conducted in four primary databases, it was impossible to retrieve all the relevant studies. Second, the number of eligible studies and included subjects was small. Third, the interventions in all the included studies included probiotics, but the strains were different. Moreover, the doses used, frequencies, and administration periods varied greatly. A subgroup analysis was necessary to evaluate the source of efficacy concerning the probiotic

BMJ Open

species, but the small size of the included articles prevented further analysis. All these factors would inevitably affect the accuracy of outcomes. Fourth, the detection methods of VSC were different. Although there is not significant difference between them, the combined analysis might still affect the reliability of the results. Fifth, in some included studies, the primary outcomes were presented in different forms, such as percentages or range inter-quartiles. Finally, some important parameters, including the microorganism species and changes, were not presented completely in some articles. The absence of partial original data or the differences caused by data conversion equally impaired the final results though many methods were tried to reduce the bias.

CONCLUSION

The present systematic review and meta-analysis indicated that probiotics might decrease the severity of halitosis in the short term without eliminating pathogens. Considering the heterogeneity and limitations of the study, more high-quality random clinical trials are required in the future to verify the results.

Contributors

JJL collected and analyzed data, and drafted the manuscript; NWH and XHQ helped the literature searching and statistical analysis; YZW and CZW provided help in the literature searching and figure revises; XHQ and YKL critically reviewed the manuscript. LJL designed the experiment and critically reviewed the manuscript; All authors agree to be accountable for the study.

iezony

Declaration of competing Interest

The authors declare no conflict of interest

Ethics approval statement

- This study does not involve human participants.
- Funding
 - This work was supported by the National Natural Science Foundation of China, China (Grant No. 81972538)
- Data availability statement

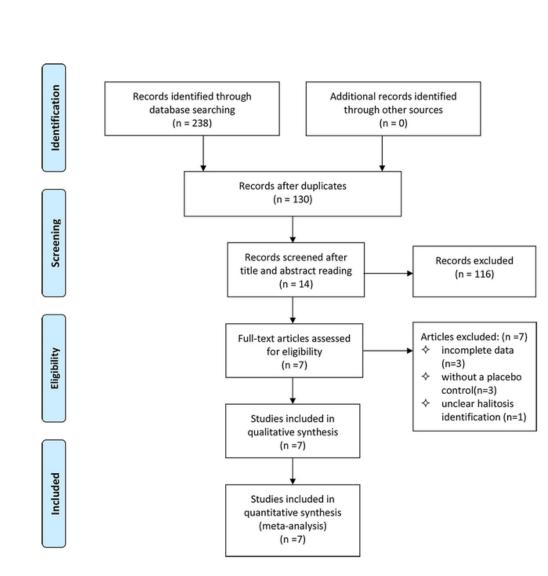
The data supporting the findings of this study are available from the corresponding author, Longjiang Li, upon reasonable request.

1 2		
3 4	320	References
5 6	321	1 Porter SR, Scully C Oral malodour (halitosis). <i>BMJ</i> 2006;333:632-635.
7	322	2 Rayman S, Almas K Halitosis among racially diverse populations: An update. Int J Dent Hyg 2008;6:2-7.
8 9	323	3 Liu XN, Shinada K, Chen XC, et al. Oral malodor-related parameters in the Chinese general population. J
10	324	Clin Periodontol 2006;33:31-36.
11	325	4 Sanz M, Roldan S, Herrera D Fundamentals of breath malodour. J Contemp Dent Pract 2001;2:1-17.
12 13	326	5 Yaegaki K, Coil JM Examination, classification, and treatment of halitosis; Clinical perspectives. J Can
13 14	327	Dent Assoc 2000;66:257-261.
15	328	6 Madhushankari GS, Yamunadevi A, Selvamani M, et al. Halitosis - an overview: Part-I - Classification,
16	329	etiology, and pathophysiology of halitosis. J Pharm Bioallied Sci 2015;7:S339-S343.
17 18	330	7 Scully C, Porter S, Greenman J What to do about halitosis. <i>BMJ</i> 1994;308:217-218.
19	331	8 Silva MF, Cademartori MG, Leite F, et al. Is periodontitis associated with halitosis? A systematic review
20	332	and meta-regression analysis. J Clin Periodontol 2017;44:1003-1009.
21 22	333	9 Quirynen M, Dadamio J, Van den Velde S, et al. Characteristics of 2000 patients who visited a halitosis
22	334	clinic. J Clin Periodontol 2009;36:970-975.
24	335	10 Stephen AS, Dhadwal N, Nagala V, et al. Interdental and subgingival microbiota may affect the tongue
25	336	microbial ecology and oral malodour in health, gingivitis and periodontitis. <i>J Periodontal Res</i> 2021.
26 27	337	11 Tonzetich J Production and origin of oral malodor: A review of mechanisms and methods of analysis. J
28	338	Periodontol 1977;48:13-20.
29	339	12 Foo LH, Balan P, Pang LM, <i>et al.</i> Role of the oral microbiome, metabolic pathways, and novel diagnostic
30 31	340	tools in intra-oral halitosis: A comprehensive update. <i>Crit Rev Microbiol</i> 2021;47:359-375.
31	341	13 Ye W, Zhang Y, He M, <i>et al.</i> Relationship of tongue coating microbiome on volatile sulfur compounds in
33	342	healthy and halitosis adults. J Breath Res 2019;14:16005.
34	343	14 Jo JK, Seo SH, Park SE, <i>et al.</i> Identification of salivary microorganisms and metabolites associated with
35 36	344	halitosis. <i>Metabolites</i> 2021;11.
37	345	15 Loesche WJ, Kazor C Microbiology and treatment of halitosis. <i>Periodontol 2000</i> 2002;28:256-279.
38	346	16 Pham TA, Ueno M, Zaitsu T, <i>et al.</i> Clinical trial of oral malodor treatment in patients with periodontal
39	347	diseases. J Periodontal Res 2011;46:722-729.
40 41	348	17 Costalonga M, Herzberg MC The oral microbiome and the immunobiology of periodontal disease and
42	349	caries. Immunol Lett 2014;162:22-38.
43	350	 18 Fedorowicz Z, Aljufairi H, Nasser M, <i>et al.</i> Mouthrinses for the treatment of halitosis. <i>Cochrane Database</i>
44 45	351	Syst Rev 2008:D6701.
46	352	19 Scully C, Greenman J Halitology (breath odour: Actiopathogenesis and management). Oral Dis
47	353	2012;18:333-345.
48 40	354	 2012,18.353-545. 20 van Steenberghe D, Avontroodt P, Peeters W, <i>et al.</i> Effect of different mouthrinses on morning breath. J
49 50	355	<i>Periodontol</i> 2001;72:1183-1191.
51	356	21 Guarner F, Perdigon G, Corthier G, <i>et al.</i> Should yoghurt cultures be considered probiotic? <i>Br J Nutr</i>
52	357	2005;93:783-786.
53 54	358	
55	358 359	22 Cosseau C, Devine DA, Dullaghan E, <i>et al.</i> The commensal Streptococcus salivarius K12 downregulates
56		the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. <i>Infect Immun</i> 2008;76:4162,4175
57 58	360 361	2008;76:4163-4175.
58 59	361 262	23 Devine DA, Marsh PD Prospects for the development of probiotics and prebiotics for oral applications. J
60	362	Oral Microbiol 2009;1.
		10

BMJ Open

2		
3	363	24 Gungor OE, Kirzioglu Z, Kivanc M Probiotics: Can they be used to improve oral health? Benef Microbes
4 5	364	2015;6:647-656.
6	365	25 Vicario M, Santos A, Violant D, et al. Clinical changes in periodontal subjects with the probiotic
7	366	Lactobacillus reuteri Prodentis: A preliminary randomized clinical trial. Acta Odontol Scand 2013;71:813-819.
8	367	26 Vivekananda MR, Vandana KL, Bhat KG Effect of the probiotic Lactobacilli reuteri (Prodentis) in the
9 10	368	management of periodontal disease: A preliminary randomized clinical trial. <i>J Oral Microbiol</i> 2010;2.
11	369	27 Flichy-Fernandez AJ, Ata-Ali J, Alegre-Domingo T, <i>et al.</i> The effect of orally administered probiotic
12	370	Lactobacillus reuteri-containing tablets in peri-implant mucositis: A double-blind randomized controlled trial. J
13	371	Periodontal Res 2015;50:775-785.
14 15	372	28 Alqahtani F, AlShaikh M, Mehmood A, <i>et al.</i> Efficacy of antibiotic versus probiotics as adjuncts to
16	373	mechanical debridement for managing peri-implant mucositis. J Oral Implantol 2021.
17	373 374	
18		29 Laleman I, Detailleur V, Slot DE, <i>et al.</i> Probiotics reduce mutans streptococci counts in humans: A
19 20	375	systematic review and meta-analysis. <i>Clin Oral Investig</i> 2014;18:1539-1552.
21	376	30 Mendonca FH, Santos SS, Faria IS, <i>et al.</i> Effects of probiotic bacteria on Candida presence and IgA anti-
22	377	Candida in the oral cavity of elderly. <i>Braz Dent J</i> 2012;23:534-538.
23	378	31 Li D, Li Q, Liu C, <i>et al.</i> Efficacy and safety of probiotics in the treatment of Candida-associated stomatitis.
24 25	379	<i>Mycoses</i> 2014;57:141-146.
26	380	32 Burton JP, Chilcott CN, Moore CJ, et al. A preliminary study of the effect of probiotic Streptococcus
27	381	salivarius K12 on oral malodour parameters. J Appl Microbiol 2006;100:754-764.
28 29	382	33 Jamali Z, Aminabadi NA, Samiei M, et al. Impact of chlorhexidine pretreatment followed by probiotic
30	383	streptococcus salivarius strain k12 on halitosis in children: A randomised controlled clinical trial. Oral Health
31	384	Prev Dent 2016;14:305-313.
32	385	34 Benic GZ, Farella M, Morgan XC, et al. Oral probiotics reduce halitosis in patients wearing orthodontic
33 34	386	braces: A randomized, triple-blind, placebo-controlled trial. J Breath Res 2019;13:36010.
35	387	35 Gurpinar B, Yildirim G, Kumral TL, et al. A simple method to reduce halitosis; Tongue scraping with
36	388	probiotics. J Breath Res 2019;14:16008.
37	389	36 Yoo HJ, Jwa SK, Kim DH, et al. Inhibitory effect of Streptococcus salivarius K12 and M18 on halitosis in
38 39	390	vitro. Clin Exp Dent Res 2020;6:207-214.
40	391	Allaker RP, Stephen AS Use of probiotics and oral health. <i>Curr Oral Health Rep</i> 2017;4:309-318.
41	392	38 Henker J, Schuster F, Nissler K Successful treatment of gut-caused halitosis with a suspension of living
42	393	non-pathogenic Escherichia coli bacteriaa case report. Eur J Pediatr 2001;160:592-594.
43 44	394	39 Masdea L, Kulik EM, Hauser-Gerspach I, et al. Antimicrobial activity of Streptococcus salivarius K12 on
45	395	bacteria involved in oral malodour. Arch Oral Biol 2012;57:1041-1047.
46	396	40 Suzuki N, Yoneda M, Tanabe K, et al. Lactobacillus salivarius WB21 - containing tablets for the treatment
47 48	397	of oral malodor: A double-blind, randomized, placebo-controlled crossover trial. Oral Surgery, Oral Medicine,
40 49	398	Oral Pathology and Oral Radiology 2014;117:462-470.
50	399	41 Yoo JI, Shin IS, Jeon JG, <i>et al.</i> The effect of probiotics on halitosis: A systematic review and meta-analysis.
51	400	Probiotics Antimicrob Proteins 2019;11:150-157.
52 53	401	42 Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses:
54	402	The PRISMA statement. <i>BMJ</i> 2009;339:b2535.
55	403	43 Sterne J, Savovic J, Page MJ, et al. RoB 2: A revised tool for assessing risk of bias in randomised trials.
56	404	<i>BMJ</i> 2019;366:14898.
57 58	405	44 Kim D, Kang M, Yeu J, <i>et al.</i> Inhibitory effect of the probiotic bacteria, Weissella cibaria CMU on
59	406	halitosis: A randomized placebo-controlled study. <i>Journal of Korean Academy of Oral Health</i> 2020;44:246-252.
60		
		11

Page 13 of 22


1 2

BMJ Open

3	407	45 Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample size,
4 5	408	median, range and/or interquartile range. Bmc Med Res Methodol 2014;14:135.
6	409	46 Luo D, Wan X, Liu J, et al. Optimally estimating the sample mean from the sample size, median, mid-
7	410	range, and/or mid-quartile range. Stat Methods Med Res 2018;27:1785-1805.
8 9	411	47 Keller MK, Bardow A, Jensdottir T, et al. Effect of chewing gums containing the probiotic bacterium
10	412	Lactobacillus reuteri on oral malodour. Acta Odontol Scand 2012;70:246-250.
11	413	48 Penala S, Kalakonda B, Pathakota K, et al. Efficacy of local use of probiotics as an adjunct to scaling and
12 13	414	root planing in chronic periodontitis and halitosis: A randomized controlled trial. Journal of Research in
13	415	Pharmacy Practice 2016;5:86.
15	416	49 He L, Yang H, Chen Z, et al. The Effect of Streptococcus salivarius K12 on Halitosis: A Double-Blind,
16	417	Randomized, Placebo-Controlled Trial. Probiotics Antimicro 2020;12:1321-1329.
17 18	418	50 Lee DS, Lee SA, Kim M, et al. Reduction of halitosis by a tablet containing weissella cibaria CMU: A
19	419	randomized, Double-Blind, Placebo-Controlled study. J Med Food 2020;23:649-657.
20	420	51 Mousquer CR, Della BA, Milani DC, et al. Are Lactobacillus salivarius G60 and inulin more efficacious to
21 22	421	treat patients with oral halitosis and tongue coating than the probiotic alone and placebo? A randomized clinical
22	422	trial. J Periodontol 2020;91:775-783.
24	423	52 Vandekerckhove B, Van den Velde S, De Smit M, et al. Clinical reliability of non-organoleptic oral
25	424	malodour measurements. J Clin Periodontol 2009;36:964-969.
26 27	425	53 Seerangaiyan K, Juch F, Winkel EG Tongue coating: Its characteristics and role in intra-oral halitosis and
28	426	general health-a review. J Breath Res 2018;12:34001.
29	427	54 Bollen CM, Beikler T Halitosis: The multidisciplinary approach. <i>Int J Oral Sci</i> 2012;4:55-63.
30 31	428	55 Erovic AS, Lingstrom P, Winkel E, et al. Comparison of different treatment modalities for oral halitosis.
32	429	Acta Odontol Scand 2012;70:224-233.
33	430	56 Rosenberg M, Kulkarni GV, Bosy A, et al. Reproducibility and sensitivity of oral malodor measurements
34 35	431	with a portable sulphide monitor. J Dent Res 1991;70:1436-1440.
36	432	57 Seemann R, Duarte DCM, Filippi A, et al. [Halitosis management by the general dental practitioner-
37	433	results of an International Consensus Workshop*]. Swiss Dent J 2014;124:1205-1211.
38 39	434	58 Rosenberg M, Septon I, Eli I, et al. Halitosis measurement by an industrial sulphide monitor. J Periodontol
40	435	1991;62:487-489.
41	436	59 Suzuki N, Yoneda M, Takeshita T, et al. Induction and inhibition of oral malodor. Mol Oral Microbiol
42 43	437	2019;34:85-96.
43 44	438	60 Kleinberg I, Westbay G Oral malodor. Crit Rev Oral Biol Med 1990;1:247-259.
45	439	61 Iatropoulos A, Panis V, Mela E, et al. Changes of volatile sulphur compounds during therapy of a case
46	440	series of patients with chronic periodontitis and halitosis. J Clin Periodontol 2016;43:359-365.
47 48	441	62 Iwamoto T, Suzuki N, Tanabe K, et al. Effects of probiotic Lactobacillus salivarius WB21 on halitosis and
49	442	oral health: An open-label pilot trial. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:201-208.
50	443	63 Yang F, Huang S, He T, et al. Microbial basis of oral malodor development in humans. J Dent Res
51 52	444	2013;92:1106-1112.
53	445	64 Kang MS, Kim BG, Chung J, et al. Inhibitory effect of Weissella cibaria isolates on the production of
54	446	volatile sulphur compounds. J Clin Periodontol 2006;33:226-232.
55 56	447	65 Takeshita T, Suzuki N, Nakano Y, et al. Discrimination of the oral microbiota associated with high
50 57	448	hydrogen sulfide and methyl mercaptan production. Sci Rep-Uk 2012;2.
58	449	
59 60		
00		12

Figure legends

- Figure 1: Flow diagram of literature search and inclusion.
- Figure 2: Quality assessment of the selected studies (the Revised Cochrane risk of bias tool for
- randomized trials (RoB2)). Green represents low risk of bias, yellow represents some concerns and red represent high risk of bias.
- Figure 3: Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC
- concentrations; (C) TCS; (D) PI.
- Figure 4: Forest plot of halitosis parameters in long-term (>4 weeks): (A) OLP scores; (B) VSC concentrations.
- Figure 5: Forest plot of VSC subgroups in short-term (≤ 4 weeks): (A) H₂S; (B) CH₃S; (C) C₂H₆S. f VSC of VSC subgroup.
- Figure 6: Forest plot of VSC subgroups in long-term (>4 weeks): (A) H₂S; (B) CH₃S; (C) C₂H₆S.

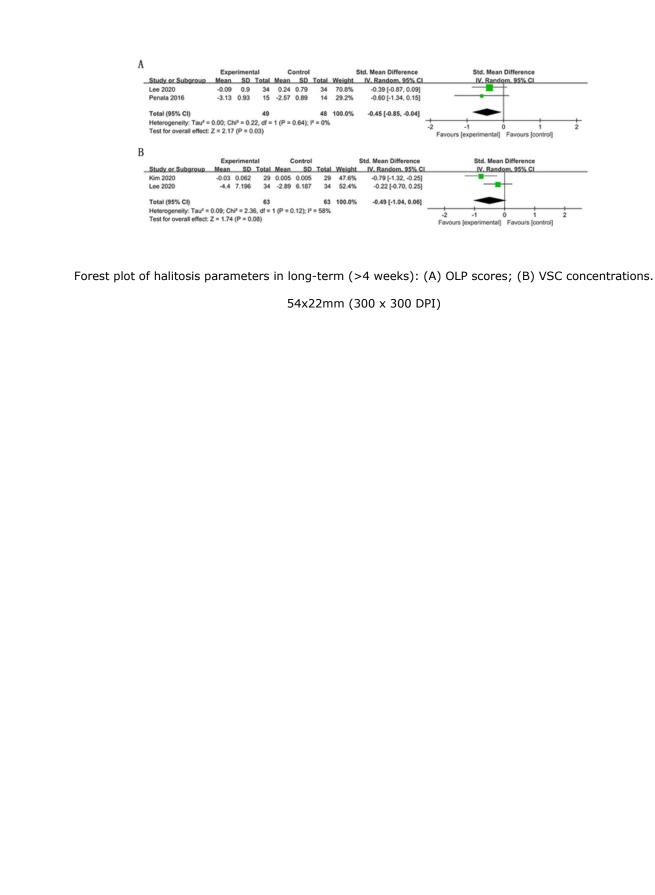
Flow diagram of literature search and inclusion.

54x58mm (300 x 300 DPI)

Page 16 of 22

BMJ Open

1	
2 3	
4	
5 6	
7 8	
9	
10 11	
12	
13 14	
15 16	
17	
18 19	
20	
21 22 23	
23 24	
25	
26 27	
28 29	
30	
31 32	
33	
34 35 36 37	
36 37	
38	
39 40	
41 42	
43	
44 45	
46 47	
48	
49 50	
51 52	
53	
54 55	
56	
57 58	
59	


60

Quality assessment of the selected studies (the Revised Cochrane risk of bias tool for randomized trials (RoB2)). Green represents low risk of bias, yellow represents some concerns and red represent high risk of bias.

166x93mm (300 x 300 DPI)

1	
1 2	
3	
4	
5	
6	
7	Α
8	Experimental Control Std. Mean Difference Std. Mean Difference
9	He 2020 -1.47 0.86 13 -1.07 1.35 15 14.4% -0.34 [-1.09, 0.41]
10	Mousquer 2020 -1.4 0.74 15 -1.2 0.89 14 15.1% -0.24 [-0.97, 0.49]
11	Penala 2016 -3.6 0.81 15 -3.22 0.77 14 14.8% -0.47 [-1.21, 0.27] Suzuki 2014 -0.92 0.64 23 -0.42 0.55 23 22.2% -0.82 [-1.43, -0.22]
12	Total (95% Cl) 100 100.0% -0.58 [-0.87, -0.30] Heterogeneity: Tau ^a = 0.00; Chi ^a = 2.37, df = 4 (P = 0.67); l ^a = 0.%
13	Test for overall effect: Z = 4.03 (P < 0.0001)
14	В
15	Experimental Control Std. Mean Difference Std. Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random. 95% CI IV. Random. 95% CI
16	He 2020 -152 143.1 13 -85 161.5 15 10.9% -0.42 [-1.18, 0.33] Keller 2012 32 95.35 13 -5 76.49 12 9.8% 0.41 [-0.38, 1.21]
17	Kim 2020 -0.014 0.118 29 0.014 0.191 29 23.2% -0.17 [-0.69, 0.34] Lee 2020 -4.8 7.031 34 -2.82 6.122 34 27.0% -0.30 [-0.78, 0.18]
18	Mousquer 2020 -72 125.6 15 -38 125.2 14 11.5% -0.26 [-1.00, 0.47] Suzuki 2014 -4.45 4.174 23 -1.45 5.968 23 17.7% -0.57 [-1.16, 0.02]
19 20	Total (95% Cl) 127 127 100.0% -0.26 [-0.51, -0.01]
20 21	Heterogeneity: Tau ² = 0.00; Chi ² = 4.14, df = 5 (P = 0.53); l ² = 0% Test for overall effect: Z = 2.04 (P = 0.04) Favours [experimental]
21	С
23	Experimental Control Std. Mean Difference Std. Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random. 95% CI IV. Random. 95% CI
24	He 2020 -1.08 1.679 13 -1 1.665 15 28.2% -0.05 [-0.79, 0.70] Mousquer 2020 -0.4 0.63 15 -0.6 0.684 14 28.9% 0.30 [-0.44, 1.03]
25	Suzuki 2014 -0.35 0.694 23 -0.043 0.75 23 42.9% -0.42 [-1.00, 0.17]
26	Total (95% CI) 51 52 100.0% -0.11 [-0.52, 0.31] Heterogeneity: Tau ² = 0.02; Chi ² = 2.27, df = 2 (P = 0.32); l ² = 12%
27	Test for overall effect: z = 0.50 (P = 0.62) Favours [experimental] Favours [control]
28	D Experimental Control Std. Mean Difference Std. Mean Difference
29	Study or Subgroup Mean SD Total Weight IV. Random. 95% CI IV. Random. 95% CI He 2020 -0.08 0.145 13 0.03 0.292 15 29.9% -0.45 [-1.21, 0.30] Image: Comparison of the c
30	Penala 2016 -1.5 0.412 15 -1.71 0.312 14 30.3% 0.56 [-0.19, 1.30]
31	Total (95% Cl) 51 52 100.0% 0.01 [-0.51, 0.54]
32	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); l ² = 44% Test for overall effect: Z = 0.05 (P = 0.96) Favours [experimental] Favours [control]
33	
34	
35	Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C)
36	TCS; (D) PI.
37 38	53x48mm (300 x 300 DPI)
39	55x4811111 (500 x 500 DP1)
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

A

В

С

Study or Sub

Suzuki 2014

Total (95% CI)

Total (95% CI)

Study or Subgroup

Kim 2020 Lee 2020 Suzuki 2014 Total (95% CI)

Kim 2020 Lee 2020

Std. Mean Difference

IV. Random, 95% CI -1.38 [-1.95, -0.80]

-0.34 [-0.81, 0.14]

-0.50 [-1.09, 0.09]

-0.73 [-1.36, -0.10]

-0.19 [-0.49, 0.11]

-0.11 [-0.62, 0.41] -0.09 [-0.56, 0.39] 0.10 [-0.47, 0.68]

-0.04 [-0.34, 0.26]

Std. Mean Difference

IV. Random, 95% CI

Std. Mean Difference IV. Random. 95% CI

Std. Mean Differ IV. Random, 95% Cl

0.5

0.5

Favours (control)

-1 Favours [experimental] Favours [control]

-0.5 Favours [experimental] Favours [control]

-0.5

Favours [experimental]

-1

-1

Control

86 100.0%

86 100.0%

86 100.0%

Forest plot of VSC subgroups in short-term (\leq 4 weeks): (A) H2S; (B) CH3S; (C) C2H6S.

53x36mm (300 x 300 DPI)

Experimental Control Std. Mean Difference Mean SD Total Mean SD Total Weight IV. Random, 95% Cl

 Mean
 SD
 Total
 Mean
 SD
 Total
 Weight

 -0.002
 0.049
 29
 0.1
 0.091
 29
 32.5%

 -3.45
 4.73
 34
 -1.94
 4.16
 34
 35.4%

 -2.77
 2.6
 23
 -1.04
 4.06
 23
 32.1%

 Experimental
 Control
 Std. Mean Difference

 _Study or Subgroup
 Mean
 SD
 Total
 Mean
 SD
 Total
 Weight
 IV. Random. 25% CI

 Kim 2020
 0.009
 0.009
 29
 0.015
 0.066
 29
 33.9%
 -0.11 [-0.62, 0.46]

 Lee 2020
 -1.36
 2.388
 34 - 1.05
 2.759
 34
 39.8%
 -0.02 [-0.59, 0.36]

 Suzuki 2014
 -1.22
 1.031
 23
 -0.62
 1.7485
 23
 26.3%
 -0.41 [-1.00, 0.17]

 -0.021
 0.082
 29
 -0.011
 0.104
 29
 33.7%

 0.01
 1.17
 34
 0.17
 2.22
 34
 39.5%

 -0.36
 0.489
 23
 -0.42
 0.6338
 23
 26.7%

86

86

86

Experimental

Heterogeneity: Tau² = 0.23; Chi² = 7.97, df = 2 (P = 0.02); l² = 75% Test for overall effect: Z = 2.26 (P = 0.02)

Heterogeneity: Tau² = 0.00; Chi² = 0.73, df = 2 (P = 0.69); I² = 0% Test for overall effect: Z = 1.26 (P = 0.21)

Heterogeneity: Tau² = 0.00; Chi² = 0.34, df = 2 (P = 0.84); l² = 0% Test for overall effect: Z = 0.28 (P = 0.78)

1 2 3		
2 3 4 5 6 7 8 9		
10 11 12		
13 14 15 16 17		
17 18 19 20 21 22		
23 24 25 26		
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36		
32 33 34 35 36		
37 38 39 40		
41 42 43 44 45		
46 47 48 49		
50 51 52 53 54		
55 56 57 58		

59

	BMJ Open
1	A
	Experimental Control Study or Subgroup Mean Std Mean Difference Std. Mean Difference Std. Mean Difference Kim 2020 -0.019 0.038 29 -0.011 0.056 29 -0.014 Nelsons Figure 10
	Total (95% Cl) 63 63 100.0% -0.24 [-0.59, 0.11] Heterogeneity: Tau ² = 0.00; Chi ^a = 0.16, df = 1 (P = 0.69); l ^a = 0% -1 -0.5 0 0.5 1 Test for overall effect: Z = 1.35 (P = 0.18) Favours (experimental) Favours (control) Favours (experimental) Favours (control)
I	Experimental Control Std. Mean Difference Std. Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random. 95% CI IV. Random. 95% CI
	Kim 2020 0.006 0.045 29 0.029 0.07 29 46.4% -0.39 (-0.91, 0.13) Lee 2020 -1.15 2.37499474 34 -1.19 2.69551479 34 53.6% 0.02 (-0.46, 0.49) Image: Control of the state of
(Heterogeneity: Tau ¹ = 0.02; Chi ² = 1.25, df = 1 (P = 0.26); l ² = 20% Test for overall effect: Z = 0.85 (P = 0.39) Favours [experimental] Favours [control]
	Experimental Control Stud. Mean Difference Stud. Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random. 35% CI IV. Random. 35% CI Kim 2020 -0.017 0.055 29 -0.013 0.069 29 40.05% -0.06 [-0.57, 0.46]
	Lee 2020 0.1 1.06 34 0.25 2.22 34 54.0% -0.09 [-0.56, 0.39] Total (95% CI) 63 63 100.0% -0.07 [-0.42, 0.28] Heterogeneity: Tau ² = 0.00; Ch ² = 0.01, df = 1 (P = 0.93); l ² = 0%
	Test for overall effect: Z = 0.40 (P = 0.69)
	53x30mm (300 x 300 DPI)

MogoEdit

CERTIFICATE OF ENGLISH EDITING

This is to certify that the manuscript entitled <u>The efficacy of probiotics in the management of halitosis: A systematic</u> <u>review and meta-analysis</u>

commissioned to us has been carefully edited by a native English-speaking editor of MogoEdit, and the grammar, spelling, and punctuation have been verified and corrected where needed. Based on this review, we believe that the language in this paper meets academic journal requirements. Please contact us with any questions.

Gang Zhang

Dr. Gang Zhang Founder & CEO of MogoEdit

> Date of Issue November 9, 2021

Disclaimer: The changes in the document may be accepted or rejected by the authors in their sole discretion after our editing. However, MogoEdit is not responsible for revisions made to the document after our edit on **November 9, 2021**.

MogoEdit is a professional English editing company who provides English language editing, translation, and publication support services to individuals and corporate customers worldwide. As a company invested by the affiliate fund of Chinese Academy of Science, MogoEdit is one of the leading language editing service providers in China, whose clients come from more than 1000 universities and research institutes. MogoEdit Website: <u>http://en.mogoedit.com/</u>

500+ native English editors: <u>http://en.mogoedit.com/editors</u>

Mogo Internet Technology Co., LTD. No. 57, 3rd Keji Road, Xi'an 710075, PR China +86 02988317483 supp

support@mogoedit.com

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

PRISMA 2020 Checklist

Page 22 of 22

Section and Topic	ltem #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	2
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	2,3
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	3
METHODS			
5 Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	4
5 Information 7 sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	3
³ Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	3
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	4
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	4
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	4
3	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	4
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	4
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	4
2 Synthesis 3 methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	4
4 5	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	4
5	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	4
7	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	4
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	4
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	4
2 Reporting bias 3 assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	5
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	5

Page 23 of 22

PRISMA 2020 Checklist

BMJ Open	

Section and Topic	and Item # Checklist item					
RESULTS			5			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included the review, ideally using a flow diagram.				
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	5			
Study characteristics	17	Cite each included study and present its characteristics.	5			
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	5			
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	5			
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	6			
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	6			
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	6			
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	6			
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	6			
Certainty of evidence	22	2 Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.				
DISCUSSION						
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	7			
	23b	Discuss any limitations of the evidence included in the review.	7,8			
	23c	Discuss any limitations of the review processes used.	7,8			
	23d	Discuss implications of the results for practice, policy, and future research.	8			
OTHER INFORMAT						
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	3			
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	3			
Support	24c	Describe and explain any amendments to information provided at registration or in the protocol.	3 2			
Support			2			
interests	ompeting 26 Declare any competing interests of review authors. terests 26		2			
Availability of data, code and other materials	27	27 Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.				

 44 From:
 Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

 45
 For peer For ion or point of the initial state of the initial

BMJ Open

BMJ Open

The efficacy of probiotics in the management of halitosis: A systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-060753.R1
Article Type:	Original research
Date Submitted by the Author:	21-Sep-2022
Complete List of Authors:	Huang, Nengwen; Sichuan University, Department of Head and Neck Oncology Li, Jinjin; Sichuan University, Department of Head and Neck Oncology Qiao, Xianghe; Sichuan University, Department of Head and Neck Oncology Wu, Yongzhi; Sichuan University, Department of Head and Neck Oncology Liu, Yunkun; Sichuan University, Department of Head and Neck Oncology Wu, chenzhou; Sichuan University West China Hospital of Stomatology Li, Longjiang; Sichuan University, Department of Head and Neck Oncology
Primary Subject Heading :	Dentistry and oral medicine
Secondary Subject Heading:	Dentistry and oral medicine
Keywords:	Microbiology < PATHOLOGY, Infectious diseases & infestations < DERMATOLOGY, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title page

- Title: The efficacy of probiotics in the management of halitosis: A systematic review and meta-analysis Nengwen Huang^{1*} Jinjin Li^{1*} Xianghe Qiao¹ Yongzhi Wu¹ Yunkun Liu¹ Chenzhou Wu¹ Longjiang Li¹ ¹State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University,
- Chengdu, China
 - * Nengwen Huang and Jinjin Li contributed equally to this paper.
- **Corresponding author:**
- Prof. Longjiang Li
- E-mail: muzili63@163.com
- **Running title:** Probiotic treatment of halitosis

ABSTRACT

Background Halitosis is defined as a foul odor emitted from the oral cavity. Many interventions have

been used to control halitosis from mouthwashes to chewing gums. Probiotics have been reported as an alternative method to alleviate halitosis.

Objective The present study aimed to investigate the effect of probiotics on halitosis from a time perspective.

Design and methods This is a meta-analysis study performed in indexed databases up to February 2021. Randomized controlled trials were included that compared probiotics and placebo concerning primary outcomes [organoleptic (OLP) scores and volatile sulfur compounds (VSC) levels)] and secondary outcomes [tongue coating scores (TCS) and plaque index (PI)]. Data extraction and quality assessment were conducted independently by two reviewers. Publication bias and leave-one-out analyses were performed.

- Results Standardized mean difference (SMD) and 95% confidence interval (CI) were calculated to synthesize data. The data were sub-grouped and analyzed in the short term (≤ 4 weeks) and long term (>4 weeks) based on the follow-up time. Seven articles were included in this meta-analysis. Primary outcomes, both OLP scores [SMD =-0.58; 95%CI (-0.87, -0.30), p <0.0001] and VSC levels [SMD =-
- 0.26; 95%CI (-0.51, -0.01), p =0.04], significantly decreased in the probiotics group compared with the placebo group in the short term. However, a significant reduction was observed only in OLP scores [SMD = -0.45; 95%CI (-0.85, -0.04), p = 0.03] in the long term. No significant differences were observed in secondary outcomes. There was no risk of publication bias. The leave-one-out analysis confirmed the consistency of the findings.
- Conclusions According to the results of this work, it seems that probiotics (e.g., Lactobacillus salivarius, Lactobacillus reuteri, Streptococcus salivarius, and Weissella cibaria) may relieve halitosis in the short term (≤ 4 weeks). The results of the biased assessment, limited data, and heterogeneity of clinical trials included might reduce the reliability of the conclusions.
- Strengths and limitations of this study

39 • This study included larger RCTs involved in halitosis and probiotics.

40 • The results were rationally analyzed from the follow-up time perspective.

41 • Subgroup analysis was done to identify the sources of heterogeneity based on the component of VSC.

- The included studies had limited patients.
- ► Some studies reported the outcomes with different forms, increasing the heterogeneity of the results.

44 INTRODUCTION

Halitosis, also known as "oral malodor," is typically defined as an unpleasant odor emanating from the oral cavity.¹ As a cause of patient's referral to the dentist, halitosis is the third most common disease, only ranking behind dental caries and periodontal disease.² According to an epidemiological study, the prevalence of halitosis is approximately 27.5% in the Chinese population.³ People have a higher demand for social interactions and attach more importance to their personal image in today's society. Halitosis has a significant impact on both patients' daily work and social activities and may even result in frequent psychological problems such as anxiety, depression, and social isolation.⁴ Clinically, halitosis is categorized into genuine halitosis, pseudo-halitosis, and halitophobia.⁵ The latter two types are related to psychological conditions. Only genuine halitosis is caused by pathological and physiological factors. It includes intraoral halitosis (IOH) and extraoral halitosis, with the former accounting for 80-90% of the cases.⁶

The main etiologic factor of genuine halitosis is the volatile sulfur compounds (VSC) produced by oral bacteria via complex microbe-substrate and microbe-microbe interactions and putrefaction of organic substrates in the oral cavity, associated with poor oral hygiene, tongue coating, and periodontal disease.⁷⁻¹⁰ In particular, hydrogen sulfide (H₂S), methyl mercaptan (CH₃SH), and dimethyl sulphide (C₂H₆S) are considered significant parameters and markers of halitosis.¹¹ Some microorganisms, such as Fusobacterium. nucleatum, Porphyromonas. gingivalis, Prevotella. intermedia, Prevotella. nigrescens, and Treponema. Denticola, not only do participate in periodontal diseases, but they also may facilitate the production of VSC metabolism.¹² Some studies using 16S rRNA amplicon sequencing and GC-MS-based metabolite profiling found that the bacterial composition, diversity, and metabolites of the halitosis group were different from those of the control group.¹³¹⁴ Therefore, the anaerobic oral condition might play an important role in the development of halitosis. Consequently, regulating the balance of the oral microbiota to reduce VSC levels is an important method to manage oral malodor.

The current treatments for halitosis include mechanical cleaning (scaling and tongue scraping) and chemical therapy (antibiotics, mouthwashes, and other agents).^{15 16} However, mechanical therapy is often uncomfortable, even if carried out by the dentist. In addition, although chemical therapy is generally effective for a short time, it is always associated with various side effects, including the emergence of dysbacteriosis and staining of the tongue and tooth.¹⁷⁻²⁰ Consequently, new methods with fewer side effects are constantly suggested to inhibit oral malodor.

As live microorganisms, probiotics confer benefits to the host when administered in appropriate amounts.²¹ Their beneficial effects are primarily related to regulating the local microenvironment through the prevention of adhesion of pathogens and inhibition of growth of pathogens through the production of bacteriocins.^{22 23} Recently, probiotics like Lactobacillus reuteri and Bifidobacteria have been widely used in the oral field.²⁴ There is a growing body of evidence that the administration of probiotics might affect the composition of oral biofilms. They have also been investigated in the treatment of

periodontal^{25 26} and peri-implant diseases,^{27 28} caries,²⁹ oral candidiasis^{30 31}, and oral mucositis induced by chemo-radiotherapy.³² Meanwhile, probiotics have also been reported as an alternative strategy to relieve oral malodor.³³⁻³⁷ However, a previous systematic review showed that probiotic therapy for oral malodor is associated with insufficient evidence for its recommendation.³⁸ Thus, it is necessary to carry out a focused analysis of the therapeutic effects of probiotics in the treatment of halitosis.

Therefore, this systematic review and meta-analysis was undertaken to investigate the effect of probiotics on managing halitosis from a time perspective to provide some evidence for the administration of probiotics in this field.

88 METHODS

89 Patient and public involvement

90 No patient was involved in the study.

92 Study design

93 This systematic review was based on the recommendations of the Preferred Reporting Items for 94 Systematic Reviews and Meta-Analyses (PRISMA) guidelines and registered in the PROSPERO 95 (CRD42021227504).³⁹ According to the PICOS principle, the following focused question was 96 structured: What is the clinical efficacy of probiotics in patients with halitosis when compared with 97 placebo treatment? To answer our research question, we selected clinical trials according to the 98 following study inclusion and exclusion criteria.

99 Search strategy

A critical electronic search was conducted in the bibliographic databases, mainly including PubMed, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials up to and including February 2021 to select the published literature. Additionally, gray literature was searched in the database System for Information on Gray literature in European and Google Scholar. The reference lists of the included articles and some related Chinese journals were also searched manually. There was no language restriction.

An initial search strategy was conducted in PubMed with the combination of Medical Subject Headings (Mesh) terms identified by an asterisk symbol (*) and free text words as follows: Probiotic OR Probiotic* OR Probiotic therapy OR Probiotic effect OR Probiotic treatment AND halitosis OR halitosis * OR malodor OR oral malodor OR malodour OR bad breath OR fetor oris. The detailed search strategy for each database is mentioned in supplemental file 1. Endnote X7 was used for electronic title management. First, primary screening was performed independently by two reviewers (NWH and JJL) based on the titles and abstracts. Then, the full-text articles were used to assess the eligibility further. Any disagreement was solved by consulting a third reviewer.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Study inclusion and exclusion criteria

The populations were patients diagnosed with halitosis. The intervention was probiotic therapy, representing the experiment group. The control group was done with a placebo treatment. The considered outcomes were halitosis parameters and other indexes before and after treatment. During the first stage of the study selection, studies meeting the following conditions were considered eligible for this review: 1) study types: randomized controlled clinical trials (RCTs) or randomized controlled cross-over studies; 2) participants: systemically healthy patients diagnosed with halitosis via accepted standards (the organoleptic scores and/or the concentrations of VSC); 3) interventions: evaluating the efficacy of probiotics with placebo, regardless of the probiotics species and the consumption method; 4) control interventions: placebo treatment; 5) clinical data: the measurement values, including halitosis parameters and other indexes before and after treatment. At the second stage of the selection, eligible studies acquired in the first stage were identified according to the following exclusion criteria: 1) in vitro and animal studies, letter to the editor, review articles, interviews, meta-analysis; 2) unclear halitosis identification; 3) studies with no completed data obtained even by contacting the authors. 4) interventions included other measures (e.g., studies comparing tongue scraping plus chlorhexidine plus probiotics and tongue scraping plus chlorhexidine).³⁴

Halitosis assessment

The primary outcomes were evaluated for organoleptic (OLP) scores and the VSC concentration levels. OLP scores reflecting subjective perception were often treated as the gold standard for diagnosing halitosis clinically and in research.^{40 41} The OLP scores were estimated by two or three evaluators (with training and experience in calibrating tests). Subjects closed their mouth for 1 min and then exhaled slowly from their mouth into the evaluator's nose at a distance of 10 cm. The score was evaluated according to a six-point '0–5' scale (Rosenberg scale).⁴²

The VSC concentrations measurement is an objective method through using the Halimeter or Oral Chroma with no significant difference.⁴³ Compared with organoleptic evaluation, VSC measurement is a quantitative variable with high sensitivity and reproducibility.⁴⁴⁻⁴⁶ Subjects had to keep their mouth closed and stop talking for 5 min before measurements. Halimeter: a beverage straw (fixed and attached to the device) was inserted into the subject's mouth, located at the back of the tongue dorsum. Subjects should keep their mouth slightly open and breathe through the nose. Oral Chroma: Subjects were asked to keep their mouths closed for 30 s with an air-tight syringe. Then, 1 mL of mouth air was extracted from the subject and injected into Oral Chroma to measure the VSC concentration.⁴⁷ Then the mean of the results given by the evaluators or machines was used.

Risk of bias

The included studies underwent a quality assessment with the Revised Cochrane risk of bias tool for randomized trials (RoB2).⁴⁸ This tool assesses the risk of bias in five domain areas, including randomization process, deviations from intended interventions, missing outcome data, measurement of outcome, and selection of the reported result. Each domain assessed bias following several signaling questions. The overall bias was classified as a high risk of bias, some concerns, or a low risk of bias determined by a validated algorithm. After screening the articles, two reviewers (NWH and JJL) conducted the assessment independently to reach an agreement.

Data extraction

Data were extracted with a researcher-designed data form with the following information: 1) basic information of the included studies (first author's name and the year of publication); 2) study type (RCT); 3) diagnostic criteria for halitosis; 4) characteristics of the participants (sample volume, the age range); 5) treatment (probiotic administration, including the type of bacteria, vehicles, doses, and frequencies); 6) clinical parameters (including the primary and secondary outcomes of final participants); 7) significance and follow-up periods.

Of all these variables, the follow-up periods referred to the duration of probiotic use. If probiotic treatment ceased during the observation period, only the data before ceasing treatment were included. Concerning clinical parameters, OLP scores and VSC concentrations were considered the primary outcomes, directly associated with oral malodor. The secondary outcomes in this review included tongue coating scores (TCS) and plaque index (PI) because they are commonly regarded as halitosis causes.

Statistical analysis

The statistical analysis was performed with Review Manager 5.3 and Stata 12.0. All the data were group-analyzed according to the follow-up time. The time ≤ 4 weeks was considered the short-term period and the time >4 weeks was considered the long-term period. In one study with three observation periods, the values of 4 weeks were analyzed in the short term to keep consistent with other studies.⁴⁹ Study heterogeneity was evaluated using O statistics and the I² test. P value <0.10 was treated as the standard test. When $I^2 > 50\%$ or p value <0.10, there was significant heterogeneity between the studies.⁵⁰⁻ ⁵² Then, subgroup analysis and sensitivity analysis were performed to analyze the sources of heterogeneity. The continuous data on the halitosis parameters of the present studies were expressed with the standardized mean difference (SMD) and 95% CI (confidence interval). A random-effect model was used for analysis. Therefore, the mean difference and standard deviation had to be acquired. If the original text did not provide the related data, the mean difference could be calculated, and the standard deviation was obtained with the formula $(r_d = \operatorname{sqrt} (r_1^2/n_1 + r_2^2/n_2))$. The excel sheets in the articles were used to convert the values when provided with median and interquartile.^{53 54} Publication bias was performed subjectively by funnel plots and objectively by Egger's tests. In Egger's test, p value <0.05 indicates the presence of publication bias.⁵⁵ Sensitivity analysis (leave-one-out method) was conducted to evaluate the consistency of outcomes by sequential omission of individual studies.⁵⁶

RESULTS

Study selection

In total, 238 articles were potentially identified by electronic and manual searches. After eliminating the duplicates, 14 articles were included by screening the titles and abstracts. Then, these studies were evaluated by reading the full texts, and seven articles met the final inclusion criteria (Figure 1).42 49 57-61

Study characteristics

Table 1 presents the main characteristics of the included studies. In this review, all the studies were randomized control trials. The number of participants in the studies ranged between 23 and 68, with an age range of 19 to 70. Halitosis was diagnosed with OLP scores and/or VSC concentrations. The probiotics and placebo groups were compared, and the follow-up periods varied from two weeks to 12 weeks.

Table 1 Characteristics of the included studies.

Study	Туре	Halitosis criterion	Subjects Age	Clinical parameters	Probiotics Administration (Vehicle, strains and frequency)	Follow-u
Mousquer et al. (2020)	RCT Placebo-double masked, parallel	OLP score≥1	29 ≥18	OLP VSC TCS	A gum including 1 billion colony forming units (CFU) Lactobacillus salivarius G60 taken twice per day	Baseline 2 weeks
Lee et al. (2020)	RCT Placebo-double blind parallel	VSC≥1.5ng/10 mL	68 20-39	OLP VSC (H ₂ S, CH ₃ S, C ₂ H ₆ S)	An 800-mg tablet contained 1.0×10^8 CFU/g Weissella cibaria taken once per day	Baseline 4 weeks 8weeks
He et al. (2020)	RCT Placebo-double blind parallel	OLP score ≥2 VSC ≥150ppb	28 23-44	OLP VSC TCS PI	A tablet containing 1×10^9 CFU Streptococcus salivarius K12 taken twice per day	Baseline 4 weeks
Keller et al. (2012)	RCT Placebo-double blind cross-over	OLP score>1	25 19-25	OLP VSC	A chewing gum containing Lactobacillus reuteri DSM 17938 and Lactobacillus reuteri ATCC PTA 5289 -both with a concentration of 1×10^8 CFU taken twice per day	Baseline 2 weeks
Suzuki et al. (2014)	RCT Double-blind placebo- controlled Cross-over	OLP score≥1.5	23 22-67	OLP VSC (H ₂ S, CH ₃ S, C ₂ H ₆ S) PI TCS	A tablet containing 6.7×10^8 CFU Lactobacillus salivarius WB21 and 280mg xylitol taken 3 times per day	Baseline 2 weeks
Penala et al. (2016)	RCT Placebo-double blind parallel	OLP score >2	29 25-59	OLP PI	A capsule mixture included Lactobacillus salivarius $(2 \times 10^9$ CFU) and Lactobacillus reuteri $(2 \times 10^9$ CFU) dissolved into 10ml distilled water to rinse for 1min, daily twice	Baseline 4 weeks 12 weeks
Kim et al. (2020)	RCT Placebo-double blind parallel	OLP score≥2 VSC≥0.15ng/ ml	58 20-70	VSC (H ₂ S, CH ₃ S, C ₂ H ₆ S) OLP	A bag of powder mixture included Weissella. cibaria CMU $(1.0 \times 10^8 \text{ CFU})$ melted in the mouth once per day	Baseline 2 weeks 4 weeks 8weeks

colony forming units; H₂S: hydrogen sulfide; CH₃S: methyl mercaptan; C₂H₆S: methanethiol; PI: plaque index

Risk of bias

The bias estimation results showed that one study had a low risk of bias, one had a high risk, and five showed some concerns. The reason for a high risk of bias was the incomplete outcome data of the OLP scores. Five articles were identified as some concerns because there were many uncertain factors in their full texts. Figure 2 presents concrete data on the risk of bias.

204 Study outcomes

1 2 3

4 5

6 7

8

9

10

11 12

19

46

47 48

49

50

53 54

55

205 **Primary outcomes**

Concerning OLP, studies by Keller et al. (2012) and Penala et al. (2016) reported a significant decrease in the probiotic group compared to the placebo group after treatment (p < 0.05).^{58 59} In the study by Lee et al. (2020) involving different follow-up periods, OLP scores decreased significantly in the test groups at four weeks (p = 0.002) but not eight weeks (p = 0.188) compared to the baseline.⁶⁰ Additionally, the results of the other four studies indicated that the OLP scores did not differ between the two groups.

¹³ ¹⁴ 211 Concerning VSC, six articles determined VSC concentrations, with three studies detecting the p ¹⁵ 212 values of VSC and subgroups (H_2S , CH_3SH , and C_2H_6S).^{49 57 60} According to the results, only two ¹⁶ 213 studies^{57 60} reported a significant improvement in VSC levels in experimental groups versus placebo ¹⁷ 214 groups.

20 215 Secondary outcomes

21 216 Concerning TCS, three studies evaluated the changes between the probiotic and placebo groups at four
 217 weeks.^{42 57 61} Although a reduced tendency was observed after treatment compared with baseline p
 218 values, there was no significant difference between the two groups.

25 219 Concerning PI, in the three studies involved,^{42 57 59} only one study showed a significant reduction in
 26 27 20 PI in the experimental group compared with the controlled group at 12 weeks.⁵⁹

28 29 221 Quantitative synthesis 30

31 A meta-analysis was performed including studies with similar clinical parameters of OLP, VSC, TCS, 222 32 and PI, according to the follow-up time. Although the detection methods of VSC were different, both 223 33 of the devices exhibited similar sensitivity and specificity in the detection of halitosis.⁴³ Therefore, we 224 34 35 225 analyzed these values together. Considering the limitations of the included studies and follow-up time, 36 226 the pooled estimation of TCS and PI was only performed in the short term. 37

In the short term, the OLP scores significantly decreased in the probiotic group compared to the 227 38 control group [SMD =-0.58; 95% CI (-0.87, -0.30), p <0.0001] (Figure 3). A similar result was observed 39 228 40 in VSC [SMD =-0.26; 95% CI (-0.51, -0.01), p =0.04] and H₂S levels [SMD =-0.73; 95% CI (-1.36, -229 41 0.10), p =0.02]. Other items (TCS, PI, CH₃S, and C_2H_6S) were not significantly different between the 230 42 experimental and control groups. The heterogeneity of each outcome was low (I² <50%) except for H₂S 231 43 44 232 levels ($I^2 = 75\%$) (Figures 3 and 4). 45

In the long term, there was a significant improvement in OLP scores in the experimental group [SMD =-0.45; 95% CI (-0.85, -0.04), p =0.03] (Figure 5). The results failed to show a significant difference in VSC concentrations and their subgroups levels (Figures 5 and 6). The heterogeneity of VSC concentrations was substantial ($I^2=58\%$).

5152 237 Publication bias

In this systematic review and meta-analysis, we found no evidence of publication bias by the result of the funnel plots and Egger's tests (p > 0.05) (supplementary file 2-Figures S1-S5).

240 Sensitivity analysis

241 Sensitivity analysis (leave-one-out method) revealed no significant change in the pooled estimation 242 when excluding any individual study (supplementary file 2-Figures S6-S9).

DISCUSSION

Summary of the findings

This meta-analysis demonstrated that probiotics significantly reduced the OLP scores compared with the placebo group regardless of the duration of observation, confirming the benefits of probiotics for halitosis treatment. The probiotics group exhibited a significant reduction in VSC concentrations in the short term (≤ 4 weeks), with no noticeable difference in the long term (≥ 4 weeks). Meta-analyses were also performed in the subgroups of H₂S, CH₃SH, and C₂H₆S to assess the concrete difference in VSC levels. The results showed that only H₂S levels reduced noticeably in the short term when the probiotic treatment was administered. As for TCS and PI, the results showed no significant differences between the experimental and placebo groups in the short term. There was no risk of publication bias. The sensitivity analysis confirmed the consistency of the findings.

29 255 Outcomes comparison and possible mechanisms 30

Concerning the primary outcomes, in the included articles, the pooled estimation of OLP scores and VSC concentrations were in favor of probiotic therapy rather than placebo in the short term.^{42 49 57-59 61} The biological mechanisms may be related to the interaction between probiotics and oral microbiota. According to present studies, probiotic therapy reduces odorous compound levels by inhibiting the decomposition of amino acids and proteins by anaerobic bacteria.^{7 62} The significantly lower VSC levels under probiotic treatment in the short term might indicate a decrease in anaerobic bacteria activity. In contrast to our findings, a previous study indicated that it could not confirm the effect of probiotics on reducing VSC in the short term.³⁸ The number of included articles may result in this difference. However, when comes to the results in the long term, only OLP scores showed a significant reduction rather than VSC concentrations. Oral microbiota contains not only VSC-producing bacteria but also other bacteria capable of producing other oral malodor compounds (e.g., indoles, skatole, pyridine, picolines, and polyamines).⁶³ The underlying mechanisms of the difference may result from the variation and abundance of microbiota community over time, which in turn affects the efficacy of probiotics, especially VSC concentration levels.^{35 49 61} Therefore, the no significant effect on VSC concentrations in the long term may be due to probiotics' inhibition effect on those other bacteria. Therefore, the data about microorganisms changing in different periods are significant for the evaluation of probiotic effects. However, from the present studies, insufficient data in the included studies, the differences in detection methods, bacterial species, and heterogeneity of clinical trials limited the microorganism statistical analysis in this review.

⁵⁵ 275 Meanwhile, we found that the short-term outcome of H_2S concentration change other than CH_3SH , ⁵⁶ 276 and C_2H_6S was consistent with the total VSC. This might be related to differences in the function of ⁵⁸ 277 probiotics and in the number and species of bacteria associated with each VSC reduction.^{12 35 64}

Additionally, the regular VSC measurement device was reported to be more sensitive towards H_2S than CH₃SH and C₂H₆S,⁴⁶ which may also account for the above result.

Regarding the secondary outcomes, based on the present meta-analysis, there was no significant difference between the experimental and placebo groups on secondary outcomes during the observation time. The possible reason was the short observation time in the included studies, as one study included in the analysis showed a significant improvement in PI at 12 weeks. ⁵⁹ Tongue coating and periodontitis are often regarded as the leading causes of halitosis. ^{42 65} However, in an original article, the TCS and PI showed a pronounced decline after using probiotics compared with the baseline, with no decrease in the placebo group.⁶¹ This phenomenon might be related to the type of probiotics, some of which were reported to boost salivary flow by interacting with the oral microbiota.⁶⁶

From the current studies, there are two main types of studies on the effect of probiotics on halitosis, one is to observe the effect during continuous use of probiotics and the other is to observe the effect at follow-up after stopping the use of probiotics. A recently published study indicated that no significance of probiotic effect was found, different from ours. The reason for the difference may be that this study analyzed the collected follow-up data after stopping using probiotics for at least 2 weeks.⁶⁷ Therefore, more clinical and systematic studies are needed to explore and verify the probiotic effect on the management of halitosis in future research.

295 Limitation

There were several limitations in the present study throughout the whole review process. First, although both electronic and hand searches were conducted in four primary databases, it was impossible to retrieve all the relevant studies. Second, the number of eligible studies and included subjects was small. Third, all included interventions differed in the species of probiotics, the doses used, frequencies, and administration periods. A subgroup analysis was necessary to evaluate the source of efficacy concerning the probiotic species, but the small size of the included articles prevented further analysis. All these factors would inevitably affect the accuracy of outcomes. Fourth, the detection methods of VSC were different. Although there is no significant difference between them, the combined analysis might still affect the reliability of the results. Fifth, in some included studies, the primary outcomes were presented in different forms, such as percentages or range interquartile. Finally, some important parameters, including the microorganism species and changes, were not presented completely in some articles. The absence of partial original data or the differences caused by data conversion equally impaired the final results though many methods were tried to reduce the bias.

309 CONCLUSION

The present systematic review and meta-analysis indicated that probiotics (e.g., *Lactobacillus salivarius, Lactobacillus reuters, Streptococcus salivarius, and Weissella cibaria*) may ease halitosis by reducing the VSC concentration levels in the short term, but there is no significant effect on the major cause of halitosis such as plaque and tongue coating. Considering the heterogeneity of clinical trials included and the small sample size, more high-quality random clinical trials are required in the future to verify the results and to evidence the usefulness of probiotics in the management of halitosis.

Contributors

NWH and JJL collected and analyzed data, and drafted the manuscript; NWH and XHQ helped with the literature searching and statistical analysis; YZW and CZW provided help in the literature searching and figure revises; XHQ and YKL critically reviewed the manuscript. LJL designed the experiment and critically reviewed the manuscript. NWH and JJL contributed equally to this paper. All authors agree to be accountable for the study.

Competing interests

323 None declared.

Ethics approval statement

325 No applicable.

326 Funding

327 This work was supported by the National Natural Science Foundation of China, China (Grant No.328 81972538)

Data availability statement

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

48
49
333 1. Porter SR, Scully C. Oral malodour (halitosis). *Bmj* 2006;**333**(7569):632-5.
50
334 2. Rayman S, Almas K. Halitosis among racially diverse populations: an update. *Int J Dent Hyg* 2008;**6**(1):2-7.

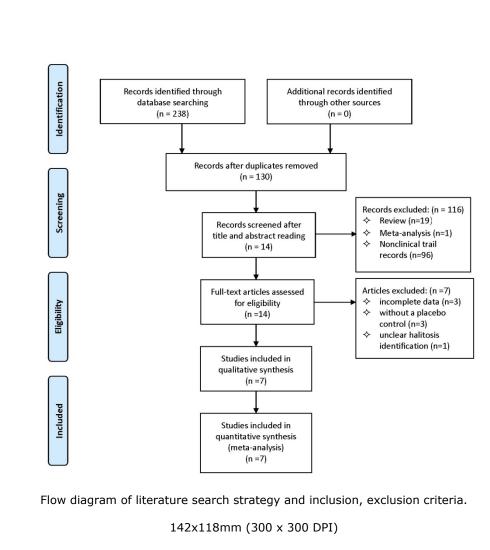
- 51 335 3. Liu XN, Shinada K, Chen XC, et al. Oral malodor-related parameters in the Chinese general population. *J Clin*
- *Periodontol* 2006;**33**(1):31-6.
- 4. Sanz M, Roldán S, Herrera D. Fundamentals of breath malodour. *J Contemp Dent Pract* 2001;2(4):1-17.
- 55 338 5. Yaegaki K, Coil JM. Examination, classification, and treatment of halitosis; clinical perspectives. *J Can Dent* 339 *Assoc* 2000;66(5):257-61.
- 57 58 50 Georgeo(c) and the formation of the for
- ⁶⁰ 342 7. Scully C, Porter S, Greenman J. What to do about halitosis. *Bmj* 1994;**308**(6923):217-8.

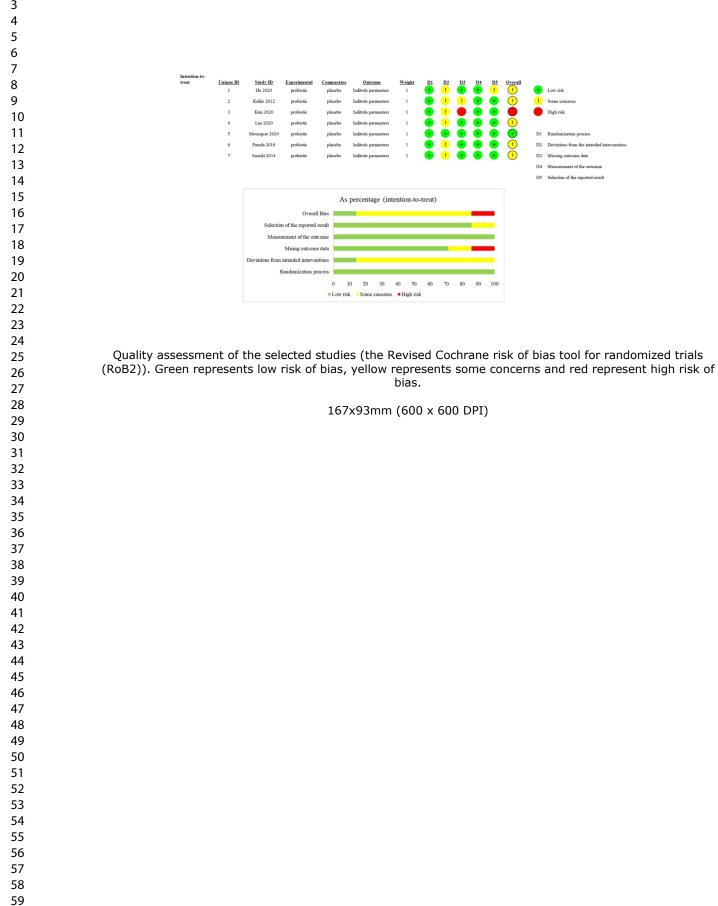
8. Silva MF, Cademartori MG, Leite FRM, et al. Is periodontitis associated with halitosis? A systematic review

4	545	o. Silva Mil, Cadematori Mo, Lette i Kivi, et al. is periodolititis associated with hantosis: A systematic review
5	344	and meta-regression analysis. J Clin Periodontol 2017;44(10):1003-09.
6	345	9. Quirynen M, Dadamio J, Van den Velde S, et al. Characteristics of 2000 patients who visited a halitosis clinic.
7	346	J Clin Periodontol 2009; 36 (11):970-5.
8 9	347	10. Stephen AS, Dhadwal N, Nagala V, et al. Interdental and subgingival microbiota may affect the tongue
, 10	348	microbial ecology and oral malodour in health, gingivitis and periodontitis. J Periodontal Res 2021;56(6):1174-
11	349	84.
12	350	11. Tonzetich J. Production and origin of oral malodor: a review of mechanisms and methods of analysis. J
13 14	351	<i>Periodontol</i> 1977; 48 (1):13-20.
15	352	12. Foo LH, Balan P, Pang LM, et al. Role of the oral microbiome, metabolic pathways, and novel diagnostic
16	353	tools in intra-oral halitosis: a comprehensive update. Crit Rev Microbiol 2021;47(3):359-75.
17 18	354	13. Ye W, Zhang Y, He M, et al. Relationship of tongue coating microbiome on volatile sulfur compounds in
19	355	healthy and halitosis adults. J Breath Res 2019;14(1):016005.
20	356	14. Jo JK, Seo SH, Park SE, et al. Identification of Salivary Microorganisms and Metabolites Associated with
21 22	357	Halitosis. <i>Metabolites</i> 2021;11(6).
22	358	15. Loesche WJ, Kazor C. Microbiology and treatment of halitosis. Periodontol 2000 2002;28:256-79.
24	359	16. Pham TA, Ueno M, Zaitsu T, et al. Clinical trial of oral malodor treatment in patients with periodontal diseases.
25	360	J Periodontal Res 2011;46(6):722-9.
26 27	361	17. Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries.
28	362	<i>Immunol Lett</i> 2014; 162 (2 Pt A):22-38.
29	363	18. Fedorowicz Z, Aljufairi H, Nasser M, et al. Mouthrinses for the treatment of halitosis. Cochrane Database
30 31	364	Syst Rev 2008(4):Cd006701.
32	365	19. Scully C, Greenman J. Halitology (breath odour: aetiopathogenesis and management). Oral Dis
33	366	2012;18(4):333-45.
34 35	367	20. van Steenberghe D, Avontroodt P, Peeters W, et al. Effect of different mouthrinses on morning breath. J
36	368	Periodontol 2001;72(9):1183-91.
37	369	21. Guarner F, Perdigon G, Corthier G, et al. Should yoghurt cultures be considered probiotic? Br J Nutr
38	370	2005; 93 (6):783-6.
39 40	371	22. Cosseau C, Devine DA, Dullaghan E, et al. The commensal Streptococcus salivarius K12 downregulates the
41	372	innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect Immun
42	373	2008;76(9):4163-75.
43 44	374	23. Devine DA, Marsh PD. Prospects for the development of probiotics and prebiotics for oral applications. J
45	375	Oral Microbiol 2009;1.
46	376	24. Gungor OE, Kirzioglu Z, Kivanc M. Probiotics: can they be used to improve oral health? Benef Microbes
47 48	377	2015;6(5):647-56.
49	378	25. Vicario M, Santos A, Violant D, et al. Clinical changes in periodontal subjects with the probiotic Lactobacillus
50	379	reuteri Prodentis: a preliminary randomized clinical trial. Acta Odontol Scand 2013;71(3-4):813-9.
51 52	380	26. Vivekananda MR, Vandana KL, Bhat KG. Effect of the probiotic Lactobacilli reuteri (Prodentis) in the
52 53	381	management of periodontal disease: a preliminary randomized clinical trial. J Oral Microbiol 2010;2.
54	382	27. Flichy-Fernández AJ, Ata-Ali J, Alegre-Domingo T, et al. The effect of orally administered probiotic
55 56	383	Lactobacillus reuteri-containing tablets in peri-implant mucositis: a double-blind randomized controlled trial. J
56 57	384	Periodontal Res 2015; 50 (6):775-85.
58	385	28. Alqahtani F, Alshaikh M, Mehmood A, et al. Efficacy of Antibiotic Versus Probiotics As Adjuncts to

Mechanical Debridement for the Treatment of Peri-Implant Mucositis. J Oral Implantol 2022;48(2):99-104.

Page 13 of 29

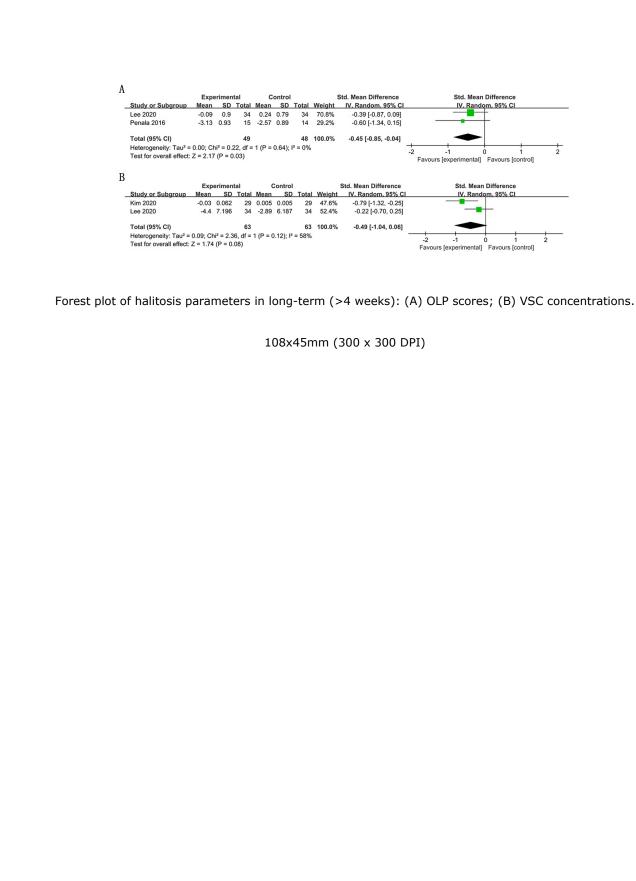

1


BMJ Open

2		
3	387	29. Laleman I, Detailleur V, Slot DE, et al. Probiotics reduce mutans streptococci counts in humans: a systematic
4 5	388	review and meta-analysis. Clin Oral Investig 2014;18(6):1539-52.
6	389	30. Mendonça FH, Santos SS, Faria Ida S, et al. Effects of probiotic bacteria on Candida presence and IgA anti-
7	390	Candida in the oral cavity of elderly. <i>Braz Dent J</i> 2012; 23 (5):534-8.
8	391	31. Li D, Li Q, Liu C, et al. Efficacy and safety of probiotics in the treatment of Candida-associated stomatitis.
9 10	392	<i>Mycoses</i> 2014; 57 (3):141-6.
11	393	32. Xia C, Jiang C, Li W, et al. A Phase II Randomized Clinical Trial and Mechanistic Studies Using Improved
12	394	Probiotics to Prevent Oral Mucositis Induced by Concurrent Radiotherapy and Chemotherapy in Nasopharyngeal
13 14	395	Carcinoma. <i>Front Immunol</i> 2021; 12 :618150.
15	396	33. Burton JP, Chilcott CN, Moore CJ, et al. A preliminary study of the effect of probiotic Streptococcus salivarius
16	397	K12 on oral malodour parameters. <i>J Appl Microbiol</i> 2006; 100 (4):754-64.
17	398	34. Jamali Z, Aminabadi NA, Samiei M, et al. Impact of Chlorhexidine Pretreatment Followed by Probiotic
18 19	399	Streptococcus salivarius Strain K12 on Halitosis in Children: A Randomised Controlled Clinical Trial. Oral
20	400	Health Prev Dent 2016;14(4):305-13.
21	401	35. Benic GZ, Farella M, Morgan XC, et al. Oral probiotics reduce halitosis in patients wearing orthodontic braces:
22	401	a randomized, triple-blind, placebo-controlled trial. <i>J Breath Res</i> 2019; 13 (3):036010.
23 24	402	36. Gurpinar B, Yildirim G, Kumral TL, et al. A simple method to reduce halitosis; tongue scraping with probiotics.
25	403	
26		J Breath Res 2019;14(1):016008.
27 28	405	37. Yoo HJ, Jwa SK, Kim DH, et al. Inhibitory effect of Streptococcus salivarius K12 and M18 on halitosis in
28 29	406	vitro. <i>Clin Exp Dent Res</i> 2020; 6 (2):207-14.
30	407	38. Yoo JI, Shin IS, Jeon JG, et al. The Effect of Probiotics on Halitosis: a Systematic Review and Meta-analysis.
31	408	Probiotics Antimicrob Proteins 2019;11(1):150-57.
32	409	39. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the
33 34	410	PRISMA statement. <i>PLoS Med</i> 2009; 6 (7):e1000097.
35	411	40. Bollen CM, Beikler T. Halitosis: the multidisciplinary approach. Int J Oral Sci 2012;4(2):55-63.
36	412	41. Erovic Ademovski S, Lingström P, Winkel E, et al. Comparison of different treatment modalities for oral
37	413	halitosis. Acta Odontol Scand 2012;70(3):224-33.
38 39	414	42. He L, Yang H, Chen Z, et al. The Effect of Streptococcus salivarius K12 on Halitosis: a Double-Blind,
40	415	Randomized, Placebo-Controlled Trial. Probiotics Antimicrob Proteins 2020;12(4):1321-29.
41	416	43. Vandekerckhove B, Van den Velde S, De Smit M, et al. Clinical reliability of non-organoleptic oral malodour
42 43	417	measurements. J Clin Periodontol 2009;36(11):964-9.
43 44	418	44. Rosenberg M, Kulkarni GV, Bosy A, et al. Reproducibility and sensitivity of oral malodor measurements with
45	419	a portable sulphide monitor. J Dent Res 1991;70(11):1436-40.
46	420	45. Seemann R, Duarte da Conceicao M, Filippi A, et al. [Halitosis management by the general dental practitioner-
47 48	421	results of an International Consensus Workshop*]. Swiss Dent J 2014;124(11):1205-11.
49	422	46. Rosenberg M, Septon I, Eli I, et al. Halitosis measurement by an industrial sulphide monitor. J Periodontol
50	423	1991; 62 (8):487-9.
51	424	47. Laleman I, Dadamio J, De Geest S, et al. Instrumental assessment of halitosis for the general dental practitioner.
52 53	425	J Breath Res 2014;8(1):017103.
54	426	48. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials.
55	427	<i>Bmj</i> 2019; 366 :14898.
56 57	428	49. Kim D-H, Kang M-S, Yeu J-E, et al. Inhibitory effect of the probiotic bacteria, Weissella cibaria CMU on
57 58	429	halitosis: a randomized placebo-controlled study. <i>Journal of Korean Academy of Oral Health</i> 2020; 44 (4):246-52.
59	430	50. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. <i>Stat Med</i> 2002; 21 (11):1539-58.
60		

2		
3	431	51. Hedges LV, Vevea JL. Fixed- and random-effects models in meta-analysis. Psychological Methods
4 5	432	1998; 3 (4):486-504.
6	433	52. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7(3):177-88.
7	434	53. Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample size,
8	435	median, range and/or interquartile range. BMC Med Res Methodol 2014;14:135.
9 10	436	54. Luo D, Wan X, Liu J, et al. Optimally estimating the sample mean from the sample size, median, mid-range,
11	437	and/or mid-quartile range. <i>Stat Methods Med Res</i> 2018; 27 (6):1785-805.
12	438	55. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. <i>Bmj</i>
13 14	439	1997; 315 (7109):629-34.
14	440	56. Patsopoulos NA, Evangelou E, Ioannidis JP. Sensitivity of between-study heterogeneity in meta-analysis:
16	441	proposed metrics and empirical evaluation. <i>Int J Epidemiol</i> 2008; 37 (5):1148-57.
17	442	57. Suzuki N, Yoneda M, Tanabe K, et al. Lactobacillus salivarius WB21containing tablets for the treatment of
18 19	443	oral malodor: a double-blind, randomized, placebo-controlled crossover trial. Oral Surg Oral Med Oral Pathol
20	444	Oral Radiol 2014;117(4):462-70.
21	445	58. Keller MK, Bardow A, Jensdottir T, et al. Effect of chewing gums containing the probiotic bacterium
22	446	Lactobacillus reuteri on oral malodour. <i>Acta Odontol Scand</i> 2012; 70 (3):246-50.
23 24	440 447	59. Penala S, Kalakonda B, Pathakota KR, et al. Efficacy of local use of probiotics as an adjunct to scaling and
25		
26	448	root planing in chronic periodontitis and halitosis: A randomized controlled trial. <i>J Res Pharm Pract</i> 2016; 5 (2):86-
27	449	
28 29	450	60. Lee DS, Lee SA, Kim M, et al. Reduction of Halitosis by a Tablet Containing Weissella cibaria CMU: A
30	451	Randomized, Double-Blind, Placebo-Controlled Study. <i>J Med Food</i> 2020; 23 (6):649-57.
31	452	61. Mousquer CR, Della Bona A, Milani DC, et al. Are Lactobacillus salivarius G60 and inulin more efficacious
32 33	453	to treat patients with oral halitosis and tongue coating than the probiotic alone and placebo? A randomized clinical
34	454	trial. J Periodontol 2020;91(6):775-83.
35	455	62. Suzuki N, Yoneda M, Takeshita T, et al. Induction and inhibition of oral malodor. Mol Oral Microbiol
36	456	2019; 34 (3):85-96.
37 38	457	63. Takeshita T, Suzuki N, Nakano Y, et al. Discrimination of the oral microbiota associated with high hydrogen
39	458	sulfide and methyl mercaptan production. <i>Sci Rep</i> 2012; 2 :215.
40	459	64. Kleinberg I, Westbay G. Oral malodor. Crit Rev Oral Biol Med 1990;1(4):247-59.
41	460	65. Iatropoulos A, Panis V, Mela E, et al. Changes of volatile sulphur compounds during therapy of a case series
42 43	461	of patients with chronic periodontitis and halitosis. <i>J Clin Periodontol</i> 2016; 43 (4):359-65.
44	462	66. Ferrer MD, López-López A, Nicolescu T, et al. Topic Application of the Probiotic Streptococcus dentisani
45	463	Improves Clinical and Microbiological Parameters Associated With Oral Health. Front Cell Infect Microbiol
46 47	464	2020; 10 :465.
47 48	465	67. López-Valverde N, López-Valverde A, Macedo de Sousa B, et al. Role of Probiotics in Halitosis of Oral
49	466	Origin: A Systematic Review and Meta-Analysis of Randomized Clinical Studies. Front Nutr 2021;8:787908.
50		
51 52	467	Figure legends
53		
54	468	Figure 1: Flow diagram of literature search strategy and inclusion, exclusion criteria.
55	469	Figure 2: Quality assessment of the selected studies (the Revised Cochrane risk of bias tool for
56 57	470	randomized trials (RoB2)). Green represents low risk of bias, yellow represents some concerns and red
58	471	represents a high risk of bias.
59	472	Figure 3: Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC
60	172	There is a rolest plot of humous parameters in short term (_+ weeks). (A) old secres, (b) vise
		13

1		
2 3	472	concentration of (C) TCS, (D) DI
4	473	concentrations; (C) TCS; (D) PI. Figure 4: Forest plot of VSC subgroups in short term (C4 weeks); (A) H S; (B) CH S; (C) C H S
5 6	474 475	Figure 4: Forest plot of VSC subgroups in short-term (≤ 4 weeks): (A) H ₂ S; (B) CH ₃ S; (C) C ₂ H ₆ S. Figure 5: Forest plot of halitosis parameters in long-term (>4 weeks): (A) OLP scores; (B) VSC
7	475	concentrations.
8	477	Figure 6: Forest plot of VSC subgroups in long-term (>4 weeks): (A) H_2S ; (B) CH_3S ; (C) C_2H_6S .
9 10	478	Figure S1: Funnel plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC
11	479	concentrations; (C) TCS; (D) PI.
12 13	480	Figure S2: Funnel plot of halitosis parameters in long-term (>4 weeks): (A) OLP scores; (B) VSC
14	481	concentrations.
15	482	Figure S3: Funnel plot of VSC subgroups in short-term (≤ 4 weeks): (A) H ₂ S; (B) CH ₃ S; (C) C ₂ H ₆ S.
16 17	483	Figure S4: Funnel plot of VSC subgroups in long-term (>4 weeks): (A) H ₂ S; (B) CH ₃ S; (C) C ₂ H ₆ S.
18	484	Figure S5: The result of Egger's test in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations;
19	485	(C) TCS; (D) PI; (E) H_2S ; (F) CH_3S ; (G) C_2H_6S .
20 21	486	Figure S6: Sensitivity analysis of halitosis parameters in short-term (≤4 weeks): (A) OLP scores; (B)
22	487	VSC concentrations; (C) TCS; (D) PI.
23	488	Figure S7: Sensitivity analysis of halitosis parameters in long-term (>4 weeks): (A) OLP scores; (B)
24 25	489	VSC concentrations.
26	490	Figure S8: Sensitivity analysis of VSC subgroups in short-term (≤ 4 weeks): (A) H ₂ S; (B) CH ₃ S; (C)
27	491	C ₂ H ₆ S.
28 29	492	Figure S9: Sensitivity analysis of VSC subgroups in long-term (>4 weeks): (A) H ₂ S; (B) CH ₃ S; (C)
30	493	$C_2H_6S.$
31	494	
32 33		
34		
35		
36 37		
38		
39		
40 41		
42		
43		
44 45		
46		
47		
48 49		
50		
51		
52 53		
55 54		
55		
56 57		
58		



2	
3	
4	
5	
6	
7	Α
8	Experimental Control Std. Mean Difference Std. Mean Difference
9	<u>Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random, 95% Cl IV. Random, 95% Cl</u> He 2020 -1.47 0.86 13 -1.07 1.35 15 14.4% -0.34 [-1.09, 0.41]
10	Lee 2020 0.09 0.88 34 0.7 0.74 34 33.4% -0.74 [-1.23, -0.25] Mousquer 2020 -1.4 0.74 15 -1.2 0.89 14 15.1% -0.24 [-0.97, 0.49]
11	Penala 2016 -3.6 0.81 15 -3.22 0.77 14 14.8% -0.47 [-1.21, 0.27] Suzuki 2014 -0.92 0.64 23 -0.42 0.55 23 22.2% -0.82 [-1.43, -0.22] =
12	Total (95% CI) 100 100 100 100 0.58 [-0.57, -0.30]
13	Heterogeneity: Tau ² = 0.00; Chi ² = 2.37, df = 4 (P = 0.67); l ² = 0%
	Test for overall effect: Z = 4.03 (P < 0.0001) Favours [experimental] Favours [control]
14	В
15	Experimental Control Std. Mean Difference Std. Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random, 95% Cl IV. Random, 95% Cl
16	He 2020 -152 143.1 13 -85 161.5 15 10.9% -0.42 [-1.18, 0.33] Keller 2012 32 95.35 13 -5 76.49 12 9.8% 0.41 [-0.38, 1.21]
17	Kim 2020 -0.014 0.118 29 0.014 0.191 29 23.2% -0.17 [-0.69, 0.34] Lee 2020 -4.8 7.031 34 -2.82 6.122 34 27.0% -0.30 [-0.78, 0.18]
18	Mousquer 2020 -72 125.6 15 -38 125.2 14 11.5% -0.26 [-1.00, 0.47]
19	Suzuki 2014 -4.45 4.174 23 -1.45 5.968 23 17.7% -0.57 [-1.16, 0.02]
20	Total (95% CI) 127 127 100.0% -0.26 [-0.51, -0.01] Heterogeneity: Tau ² = 0.00; Chi ² = 4.14, df = 5 (P = 0.53); l ² = 0%
21	Test for overall effect: Z = 2.04 (P = 0.04) Favours [experimental] Favours [control]
22	C
23	Experimental Control Std. Mean Difference Std. Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random, 95% Cl IV. Random, 95% Cl
24	He 2020 -1.08 1.679 13 -1 1.665 15 28.2% -0.05 [-0.79, 0.70] Mousquer 2020 -0.4 0.63 15 -0.6 0.684 14 28.9% 0.30 [-0.44, 1.03]
25	Suzuki 2014 -0.35 0.694 23 -0.043 0.75 23 42.9% -0.42 [-1.00, 0.17]
	Total (95% CI) 51 52 100.0% -0.11 [-0.52, 0.31]
26	Heterogeneity: Tau ² = 0.02; Chi ² = 2.27, df = 2 (P = 0.32); l ² = 12% Test for overall effect: Z = 0.50 (P = 0.62) Favours [experimental] Favours [control]
27	D
28	Experimental Control Std. Mean Difference Std. Mean Difference
29	Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random. 95% Cl IV. Random. 95% Cl He 2020 -0.08 0.145 13 0.03 0.292 15 29.9% -0.45 [-1.21, 0.30]
30	Penala 2016 -1.5 0.412 15 -1.71 0.312 14 30.3% 0.56 [-0.19, 1.30] Suzuki 2014 -0.07 0.209 23 -0.06 0.209 23 39.8% -0.05 [-0.63, 0.53]
31	Total (95% CI) 51 52 100.0% 0.01 [-0.51, 0.54]
32	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); l ² = 44%
	Heterogeneity: Tau? = 0.10: Chi2 = 3.55. df = 2 (P = 0.17): l2 = 44%
33	Heterogeneity: $Tay^2 = 0.05$; $Ch^2 = 3.55$, $df = 2 (P = 0.17)$; $P = 44\%$ Test feroment offset 7 = 0.05 (P = 0.05) -2 = 1 = 0 = 1 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2
33 34	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); l ² = 44% Test for overall effect: Z = 0.05 (P = 0.96) Favours [experimental] Favours [control]
33 34 35	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); I ² = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C)
33 34 35 36	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); l ² = 44% Test for overall effect: Z = 0.05 (P = 0.96) Favours [experimental] Favours [control]
33 34 35 36 37	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
33 34 35 36 37 38	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); I ² = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C)
33 34 35 36 37 38 39	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
33 34 35 36 37 38 39 40	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
33 34 35 36 37 38 39 40 41	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.

								BMJ	Open	
A		Exp	eriment	al		Control			Std. Mean Difference	Std. Mean Difference
	Study or Subgroup	Mean			Mean			Weight	IV. Random, 95% CI	IV. Random. 95% Cl
	Kim 2020 Lee 2020	-0.002		29	0.1		29	32.5%	-1.38 [-1.95, -0.80]	
	Suzuki 2014	-3.45		34 23	-1.94 -1.04	4.16 4.06	34 23	35.4% 32.1%	-0.34 [-0.81, 0.14] -0.50 [-1.09, 0.09]	
	Total (95% CI)			86			86	100.0%	-0.73 [-1.36, -0.10]	
	Heterogeneity: Tau ² = 0 Test for overall effect: 2				2 (P = 0	.02); I ² =	75%			-2 -1 0 1 2
	est for overall effect. 2	2 = 2.20	(P = 0.0	2)						Favours [experimental] Favours [control]
В										
D		Exp	erimenta	al	(Control			Std. Mean Difference	Std. Mean Difference
	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
	Kim 2020	0.009			0.015	0.066	29		-0.11 [-0.62, 0.41]	
	Lee 2020 Suzuki 2014		2.388 1.031		-1.05	2.759 1.7485	34 23	39.8% 26.3%	-0.12 [-0.59, 0.36] -0.41 [-1.00, 0.17]	
	3020KI 2014	-1.22	1.031	23	-0.02	1.7400	23	20.3%	-0.41 [-1.00, 0.17]	
	Total (95% CI)			86				100.0%	-0.19 [-0.49, 0.11]	
	Heterogeneity: Tau ² = 0				2 (P = 0	.69); I ² =	0%			-1 -0.5 0 0.5 1
	Test for overall effect: 2	Z = 1.26	(P = 0.2	1)						Favours [experimental] Favours [control]
C									Ctd Maan Difference	Chi Maan Difference
С		Eve	orimont	al		Control				
	Study or Subgroup	Exp Mean	erimenta SD		Mean	Control SD	Tota	I Weight	Std. Mean Difference IV, Random, 95% CI	Std. Mean Difference IV, Random, 95% CI
	Study or Subgroup Kim 2020	Mean				SD				
	Kim 2020 Lee 2020	Mean -0.021 0.01	SD 0.082 1.17	<u>Total</u> 29 34	Mean -0.011 0.17	0.104 2.22	29 34	9 33.7% 39.5%	IV, Random, 95% CI -0.11 [-0.62, 0.41] -0.09 [-0.56, 0.39]	
	Kim 2020	Mean -0.021 0.01	SD 0.082	Total 29	Mean -0.011 0.17	0.104	29 34	9 33.7% 39.5%	IV, Random, 95% CI -0.11 [-0.62, 0.41]	
	Kim 2020 Lee 2020	Mean -0.021 0.01	SD 0.082 1.17	<u>Total</u> 29 34	Mean -0.011 0.17	0.104 2.22	29 34 23	9 33.7% 39.5%	IV, Random, 95% CI -0.11 [-0.62, 0.41] -0.09 [-0.56, 0.39]	
	Kim 2020 Lee 2020 Suzuki 2014	Mean -0.021 0.01 -0.36	SD 0.082 1.17 0.489	Total 29 34 23 86 , df = 2	Mean -0.011 0.17 -0.42	0.104 2.22 0.6338	29 34 23 86	33.7% 39.5% 26.7%	IV. Random, 95% CI -0.11 [-0.62, 0.41] -0.09 [-0.56, 0.39] 0.10 [-0.47, 0.68]	

Forest plot of VSC subgroups in short-term (≤4 weeks): (A) H2S; (B) CH3S; (C) C2H6S.

107x73mm (300 x 300 DPI)

1		
2		
3		
4		
5		
4 5 6 7 8		
7		
8		
9		
10		
11		
12		
13		
14 15		
16		
17		
18		
19		
20		
21		
22		
22 23		
24		
24 25		
26		
27		
28		
29		
30		
31		
32 33		
33 34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49 50		
50 51		
51 52		
52 53		
53 54		
54 55		
56		
57		
58		
50		

60

	Experimental Control		ontrol			Std.	Mean Difference	Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV	Random, 95% CI	IV, Random, 95% CI
Kim 2020	-0.019	0.038	29	-0.011	0.056	29	46.3%		-0.16 [-0.68, 0.35]	
Lee 2020	-3.35	4.774	34	-1.95	4.165	34	53.7%		-0.31 [-0.79, 0.17]	
Total (95% CI)			63			63	100.0%		0.24 [-0.59, 0.11]	
Heterogeneity: Tau ² :	= 0.00; Ch	i ² = 0.16	, df = 1	(P = 0.6)	9); l ² =	0%				
Test for overall effect	: Z = 1.35	(P = 0.1)	8)							-1 -0.5 0 0.5 Favours [experimental] Favours [control]
2010 CONTRACTOR CONTRA										Favours [experimental] Favours [control]
В										
	Exp	eriment	al		Cont	rol			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	S	D Tota	al Mean		SD	Total W	leight	IV. Random. 95% C	I IV. Random. 95% CI
Kim 2020	0.006	0.04	5 2	9 0.029		0.07	29 4	16.4%	-0.39 [-0.91, 0.13]	
Lee 2020	-1.15 2.	.3749947	4 3	4 -1.19	2.695	51479	34 5	53.6%	0.02 [-0.46, 0.49]	_
Total (95% CI)			6	3			63 10	00.0%	-0.17 [-0.56, 0.22]	
Heterogeneity: Tau ² =	0.02; Chi ²	= 1.25, d	f = 1 (P	= 0.26);	l ² = 20%	Ď				-1 -0.5 0 0.5
Test for overall effect:	Z = 0.85 (F	P = 0.39)								Favours [experimental] Favours [control]
С										
0	Exp	eriment	al	c	ontrol			Std.	Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV	Random, 95% CI	IV, Random, 95% CI
Kim 2020	-0.017	0.055	29	-0.013		29	46.0%		-0.06 [-0.57, 0.46]	
Lee 2020	0.1	1.06	34	0.25	2.22	34	54.0%		-0.09 [-0.56, 0.39]	
Total (95% CI)			63			63	100.0%		-0.07 [-0.42, 0.28]	
Heterogeneity: Tau ²	- 0.00. 01		-16 - 4	(D - 0 (2): 12 -	0.0/				

Forest plot of VSC subgroups in long-term (>4 weeks): (A) H2S; (B) CH3S; (C) C2H6S.

108x61mm (300 x 300 DPI)

Supplementary file 1

1. PubMed

Search	Query	Items found
#1	((((((Probiotic[Text Word]) OR (Probiotic[MeSH Terms])) OR	27215
	(Probiotic therapy[Text Word])) OR (Probiotic effect[Text Word]))	
	OR (Probiotic treatment[Text Word])))	
#2	(((((((halitosis[Text Word]) OR (halitosis[MeSH Terms])) OR	2788
	(malodor[Text Word])) OR (oral malodor[Text Word])) OR	
	(malodour[Text Word])) OR (bad breath[Text Word])) OR (fetor	
	oris[Text Word])))	
#3	#1 and #2	68

2. Web of science

Search	Query	Items found
#1	(((TS=(Probiotic)) OR TS=(Probiotic therapy)) OR	28458
	TS=(Probiotic effect)) OR TS=(Probiotic treatment)	
#2	(((((TS=(halitosis)) OR TS=(malodor)) OR TS=(oral malodor))	3018
	OR TS=(malodour)) OR TS=(bad breath)) OR TS=(fetor oris)	
#3	#1 and #2	42

3. Embase ovid search strategy

Search	Query	Items found
#1	((Probiotic or Probiotic or Probiotic therapy or Probiotic effect	119
	or Probiotic treatment) and (halitosis or halitosis or malodor or	
	oral malodor or malodour or bad breath or fetor oris)).af.	

4. Cochrane Central Register of Controlled Trials (CENTRAL) search strategy

Search	Query	Items found
#1	MeSH descriptor: [Halitosis] explode all trees	236
#2	(halitosis):ti,ab,kw (Word variations have been searched)	573
#3	(malodor):ti,ab,kw (Word variations have been searched)	399
#4	(oral malodor):ti,ab,kw (Word variations have been searched)	300
#5	(malodour):ti,ab,kw (Word variations have been searched)	399
#6	(bad breath):ti,ab,kw (Word variations have been searched)	258
#7	(fetor oris):ti,ab,kw (Word variations have been searched)	0
#8	#1 or #2 or #3 or #4 or #5 or #6 or #7	996
#9	MeSH descriptor: [Probiotics] explode all trees	2571

1	
2	
3	
Δ	
т 5	
ر د	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 25 26 7 8 9 10 11 20 21 22 23 24 25 26 7 8 9 30 31 23 34 35 33 34 35 37 8 9 30 31 23 34 35 37 8 9 30 31 23 31 32 33 34 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
27	
5Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

#10	(Probiotic):ti,ab,kw (Word variations have been searched)	8519
#11	(Probiotic therapy):ti,ab,kw (Word variations have been searched)	3834
#12	(Probiotic effect):ti,ab,kw (Word variations have been searched)	6398
#13	(Probiotic treatment):ti,ab,kw (Word variations have been searched)	4579
#14	#9 or #10 or #11 or #12 or #13	8603
#15	#8 and #14	8

5. Gray literature in European and Google Scholar

Search	Query	Items found
#1	Probiotic OR Probiotic therapy OR Probiotic effect OR	1
	Probiotic treatment AND halitosis OR malodor OR oral malodor	
	OR malodour OR bad breath OR fetor oris	

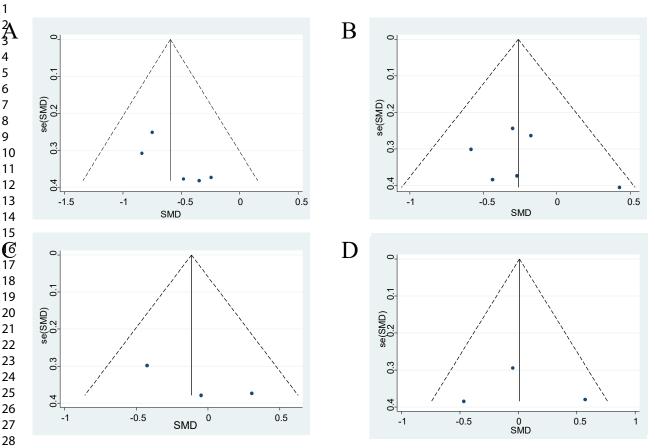


Figure S1: Funnel plot of halitosis parameters in short-term (≤4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.

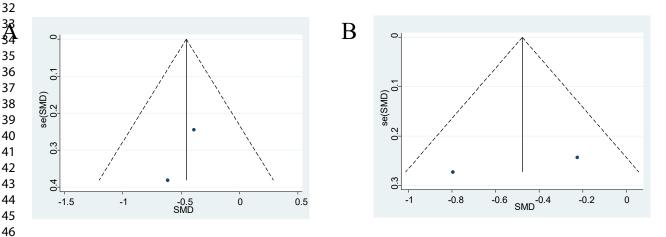


Figure S2: Funnel plot of halitosis parameters in long-term (>4 weeks): (A) OLP scores; (B) VSC concentrations.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

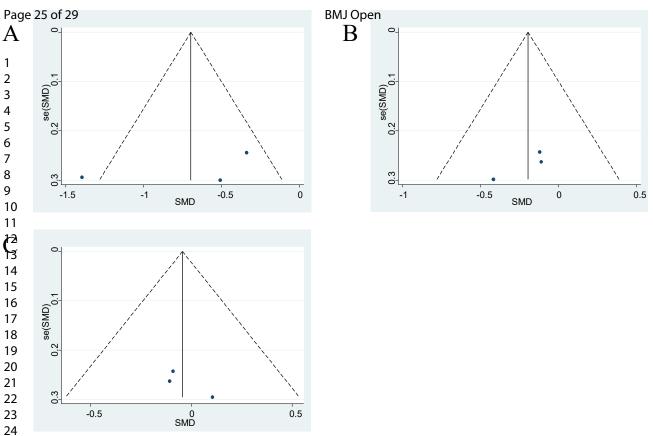


Figure S3: Funnel plot of VSC subgroups in short-term (≤4 weeks): (A) H₂S; (B) CH₃S; (C) $C_2H_6S.$

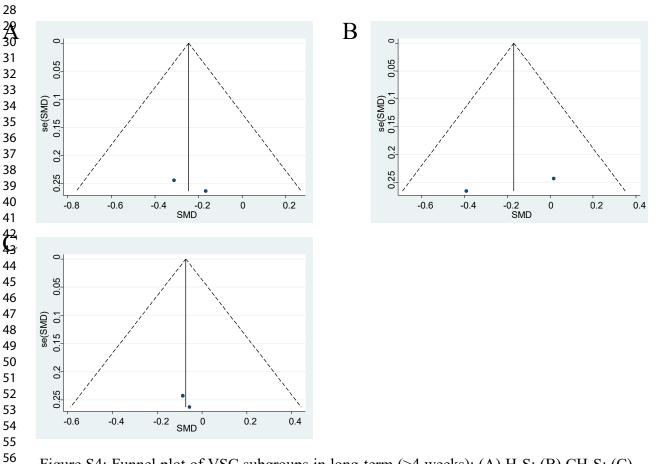


Figure S4: Funnel plot of VSC subgroups in long-term (>4 weeks): (A) H₂S; (B) CH₃S; (C) $C_2H_6S.$

BMJ	Open
	ъ

A							В						
Egger's test							Egger's test						
Std_Eff	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval]	Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
slope bias	-1.654658 3.312431	.4354301 1.341309	-3.80 2.47	0.032 0.090	-3.04039 9562116	2689248 7.581074	slope bias	6982326 1.432804	. 6453982 2.079837	-1.08 0.69	0.340 0.529	-2.490145 -4.341748	1.09368 7.207357
С							D						
Egger's test							Egger's test						
Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]	Std_Eff	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval
slope bias	-2.485861 6.934603	1.282746 3.728761	-1.94 1.86	0.303 0.314	-18.7847 -40.4438	13.81297 54.313	slope bias	2878511 .8711259	3.056969 8.860095	-0.09 0.10	0.940 0.938	-39.13033 -111.7071	38.5546 113.449
E							F						
Egger's test							Egger's test						
Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
slope bias	2.223943 -10.63929	3.837093 13.91572	0.58 -0.76	0.666 0.584	-46.53094 -187.4552	50.97883 166.1766	slope bias	1.252312 -5.480127	.6648476 2.507946	1.88 -2.19	0.311 0.273	-7.195378 -37.3466	9.700003 26.38635
G													
Egger's test													
Std_Eff	Coef.	Std. Err.	t	₽> t	[95% Conf	. Interval]							
slope bias	-1.041425	.5483955	-1.90	0.309	-8.00945	5.926601							

Figure S5: The result of Egger's test in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI; (E) H₂S; (F) CH₃S; (G) C₂H₆S.

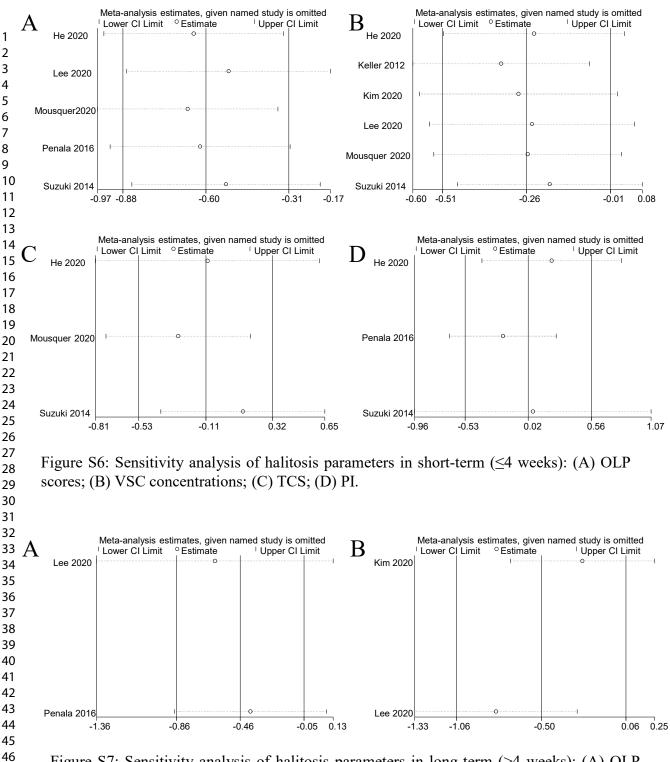
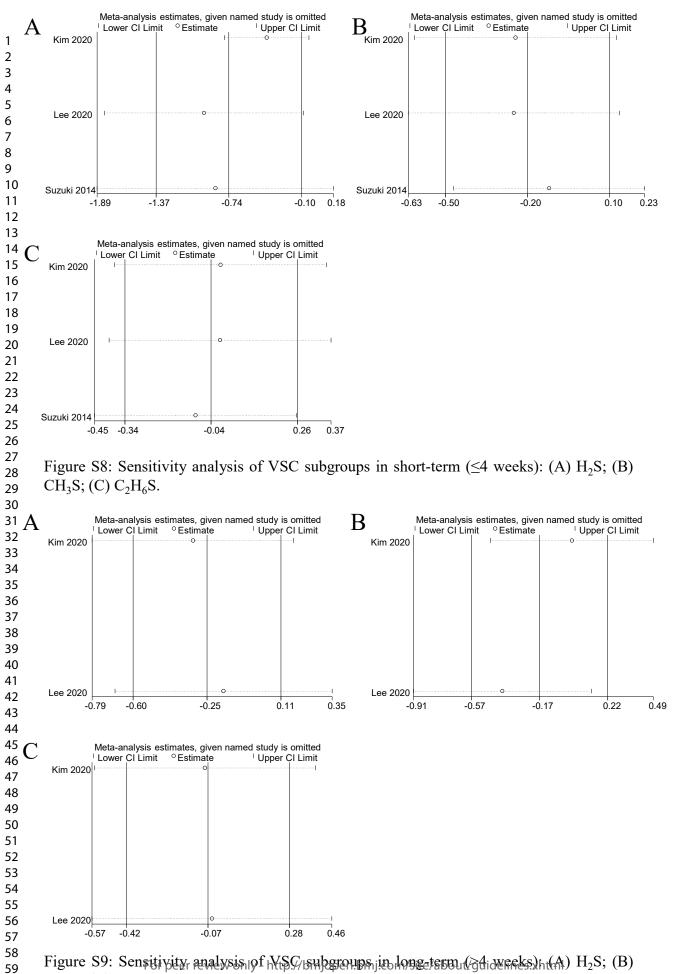



Figure S7: Sensitivity analysis of halitosis parameters in long-term (>4 weeks): (A) OLP scores; (B) VSC concentrations.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 $_{60}^{55}$ CH₃S; (C) C₂H₆S.

Pag	ge 29 of 29							
1 2	PRIS	MA 20	020 Checklist					
3 4 5	Section and Topic	ltem #	Checklist item					
6	TITLE		-					
7	Title	1	Identify the report as a systematic review.					
8	ABSTRACT	1	F					
9	Abstract	2	See the PRISMA 2020 for Abstracts checklist.					
10 11	INTRODUCTION	1						
12	Rationale	3	Describe the rationale for the review in the context of					
13	Objectives	4	Provide an explicit statement of the objective(s) or que					
14	METHODS							
15	Eligibility criteria	5	Specify the inclusion and exclusion criteria for the rev					
16 17	Information sources	6	Specify all databases, registers, websites, organisation date when each source was last searched or consulter					
18	Search strategy	7	Present the full search strategies for all databases, re					
19 20 21	Selection process	8	Specify the methods used to decide whether a study r and each report retrieved, whether they worked indep					
22 23	Data collection process	9	Specify the methods used to collect data from reports independently, any processes for obtaining or confirm process.					
24 25 26	Data items	10a	List and define all outcomes for which data were soug study were sought (e.g. for all measures, time points,					
20 27 28		10b	List and define all other variables for which data were assumptions made about any missing or unclear infor					
29 30	Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the study and whether they worked independently, and if					
31	Effect measures	12	Specify for each outcome the effect measure(s) (e.g.					
32 33	Synthesis methods	13a	Describe the processes used to decide which studies comparing against the planned groups for each synthe					
34		13b	Describe any methods required to prepare the data for					

Section and Topic	ltem #	Checklist item	where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	2,3
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	3
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	4
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	3
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	3
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	4
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	4
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	4
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	4
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	4
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	4
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	4
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	4
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	4
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	4
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	4
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	4
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	5
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	5
<u> </u>			

BMJ Open

Location

PRISMA 2020 Checklist

Section and Topic	ltem #	Checklist item	Location where iter is reporte
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	5
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	5
Study characteristics	17	Cite each included study and present its characteristics.	5
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	5
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	5
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	6
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	6
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	6
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	6
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	6
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	6
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	7
	23b	Discuss any limitations of the evidence included in the review.	7,8
	23c	Discuss any limitations of the review processes used.	7,8
	23d	Discuss implications of the results for practice, policy, and future research.	8
OTHER INFORMAT			
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	3
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	3
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	3
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	2
Competing interests	26	Declare any competing interests of review authors.	2
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	4

 44 From:
 Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

 45
 For peer For every hybring by the patter of the

BMJ Open

The efficacy of probiotics in the management of halitosis: A systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-060753.R2
Article Type:	Original research
Date Submitted by the Author:	20-Oct-2022
Complete List of Authors:	Huang, Nengwen; Sichuan University, Department of Head and Neck Oncology Li, Jinjin; Sichuan University, Department of Head and Neck Oncology Qiao, Xianghe; Sichuan University, Department of Head and Neck Oncology Wu, Yongzhi; Sichuan University, Department of Head and Neck Oncology Liu, Yunkun; Sichuan University, Department of Head and Neck Oncology Wu, chenzhou; Sichuan University West China Hospital of Stomatology Li, Longjiang; Sichuan University, Department of Head and Neck Oncology
Primary Subject Heading :	Dentistry and oral medicine
Secondary Subject Heading:	Dentistry and oral medicine
Keywords:	Microbiology < PATHOLOGY, Infectious diseases & infestations < DERMATOLOGY, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title page

- Title: The efficacy of probiotics in the management of halitosis: A systematic review and meta-analysis Nengwen Huang^{1*} Jinjin Li^{1*} Xianghe Qiao¹ Yongzhi Wu¹ Yunkun Liu¹ Chenzhou Wu¹ Longjiang Li¹ ¹State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University,
- Chengdu, China
 - * Nengwen Huang and Jinjin Li contributed equally to this paper.
- **Corresponding author:**
- Prof. Longjiang Li
- E-mail: muzili63@163.com
- **Running title:** Probiotic treatment of halitosis

ABSTRACT

Background Halitosis is defined as a foul odor emitted from the oral cavity. Many interventions have

been used to control halitosis from mouthwashes to chewing gums. Probiotics have been reported as an alternative method to alleviate halitosis.

Objective The present study aimed to investigate the effect of probiotics on halitosis from a time perspective.

Design and methods This is a meta-analysis study performed in indexed databases up to February 2021. Randomized controlled trials were included that compared probiotics and placebo concerning primary outcomes [organoleptic (OLP) scores and volatile sulfur compounds (VSC) levels)] and secondary outcomes [tongue coating scores (TCS) and plaque index (PI)]. Data extraction and quality assessment were conducted independently by two reviewers. Publication bias and leave-one-out analyses were performed.

- Results Standardized mean difference (SMD) and 95% confidence interval (CI) were calculated to synthesize data. The data was sub-grouped and analyzed in the short term (≤ 4 weeks) and long term (>4 weeks) based on the follow-up time. Seven articles were included in this meta-analysis. Primary outcomes, both OLP scores [SMD =-0.58; 95%CI (-0.87, -0.30), p <0.0001] and VSC levels [SMD =-0.26; 95%CI (-0.51, -0.01), p =0.04], significantly decreased in the probiotics group compared with the placebo group in the short term. However, a significant reduction was observed only in OLP scores [SMD = -0.45; 95%CI (-0.85, -0.04), p = 0.03] in the long term. No significant differences were observed
- in secondary outcomes. There was no evidence of publication bias. The leave-one-out analysis confirmed that the pooled estimate was stable.
- Conclusions According to the results of this work, it seems that probiotics (e.g., Lactobacillus salivarius, Lactobacillus reuteri, Streptococcus salivarius, and Weissella cibaria) may relieve halitosis in the short term (≤ 4 weeks). The results of the biased assessment, limited data, and heterogeneity of clinical trials included might reduce the reliability of the conclusions.
- Strengths and limitations of this study

39 • This study included larger RCTs involved in halitosis and probiotics.

40 • The results were rationally analyzed from the follow-up time perspective.

41 • Subgroup analysis was done to identify the sources of heterogeneity based on the component of VSC.

- The included studies had limited patients.
- ► Some studies reported the outcomes with different forms, increasing the heterogeneity of the results.

44 INTRODUCTION

Halitosis, also known as "oral malodor," is typically defined as an unpleasant odor emanating from the oral cavity.¹ As a cause of patient's referral to the dentist, halitosis is the third most common disease, only ranking behind dental caries and periodontal disease.² According to an epidemiological study, the prevalence of halitosis is approximately 27.5% in the Chinese population.³ People have a higher demand for social interactions and attach more importance to their personal image in today's society. Halitosis has a significant impact on both patients' daily work and social activities and may even result in frequent psychological problems such as anxiety, depression, and social isolation.⁴ Clinically, halitosis is categorized into genuine halitosis, pseudo-halitosis, and halitophobia.⁵ The latter two types are related to psychological conditions. Only genuine halitosis is caused by pathological and physiological factors. It includes intraoral halitosis (IOH) and extraoral halitosis, with the former accounting for 80-90% of the cases.⁶

The main etiologic factor of genuine halitosis is the volatile sulfur compounds (VSC) produced by oral bacteria via complex microbe-substrate and microbe-microbe interactions and putrefaction of organic substrates in the oral cavity, associated with poor oral hygiene, tongue coating, and periodontal disease.⁷⁻¹⁰ In particular, hydrogen sulfide (H₂S), methyl mercaptan (CH₃SH), and dimethyl sulphide (C₂H₆S) are considered significant parameters and markers of halitosis.¹¹ Some microorganisms, such as Fusobacterium. nucleatum, Porphyromonas. gingivalis, Prevotella. intermedia, Prevotella. nigrescens, and Treponema. Denticola, not only do participate in periodontal diseases, but they also may facilitate the production of VSC metabolism.¹² Some studies using 16S rRNA amplicon sequencing and GC-MS-based metabolite profiling found that the bacterial composition, diversity, and metabolites of the halitosis group were different from those of the control group.¹³¹⁴ Therefore, the anaerobic oral condition might play an important role in the development of halitosis. Consequently, regulating the balance of the oral microbiota to reduce VSC levels is an important method to manage oral malodor.

The current treatments for halitosis include mechanical cleaning (scaling and tongue scraping) and chemical therapy (antibiotics, mouthwashes, and other agents).^{15 16} However, mechanical therapy is often uncomfortable, even if carried out by the dentist. In addition, although chemical therapy is generally effective for a short time, it is always associated with various side effects, including the emergence of dysbacteriosis and staining of the tongue and tooth.¹⁷⁻²⁰ Consequently, new methods with fewer side effects are constantly suggested to inhibit oral malodor.

As live microorganisms, probiotics confer benefits to the host when administered in appropriate amounts.²¹ Their beneficial effects are primarily related to regulating the local microenvironment through the prevention of adhesion of pathogens and inhibition of growth of pathogens through the production of bacteriocins.^{22 23} Recently, probiotics like Lactobacillus reuteri and Bifidobacteria have been widely used in the oral field.²⁴ There is a growing body of evidence that the administration of probiotics might affect the composition of oral biofilms. They have also been investigated in the treatment of

periodontal^{25 26} and peri-implant diseases,^{27 28} caries,²⁹ oral candidiasis^{30 31}, and oral mucositis induced by chemo-radiotherapy.³² Meanwhile, probiotics have also been reported as an alternative strategy to relieve oral malodor.³³⁻³⁷ However, a previous systematic review showed that probiotic therapy for oral malodor is associated with insufficient evidence for its recommendation.³⁸ Thus, it is necessary to carry out a focused analysis of the therapeutic effects of probiotics in the treatment of halitosis.

Therefore, this systematic review and meta-analysis was undertaken to investigate the effect of probiotics in managing halitosis from a time perspective to provide some evidence for the administration of probiotics in this field.

METHODS

Patient and public involvement

No patient was involved in the study.

Study design

This systematic review was based on the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and registered in the PROSPERO (CRD42021227504).³⁹ According to the PICOS principle, the following focused question was structured: What is the clinical efficacy of probiotics in patients with halitosis when compared with placebo treatment? To answer our research question, we selected clinical trials according to the following study inclusion and exclusion criteria.

Search strategy

A critical electronic search was conducted in the bibliographic databases, mainly including PubMed, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials up to and including February 2021 to select the published literature. Additionally, gray literature was searched in the database System for Information on Gray literature in European and Google Scholar. The reference lists of the included articles and some related Chinese journals (the Chinese Journal of Stomatology, West China Journal of Stomatology, Journal of Oral Science Research, Journal of Practical Stomatology) were also searched manually. There was no language restriction.

An initial search strategy was conducted in PubMed with the combination of Medical Subject Headings (Mesh) terms identified by an asterisk symbol (*) and free text words as follows: Probiotic OR Probiotic* OR Probiotic therapy OR Probiotic effect OR Probiotic treatment AND halitosis OR halitosis * OR malodor OR oral malodor OR malodour OR bad breath OR fetor oris. The detailed search strategy for each database was mentioned in supplemental file 1. Endnote X7 was used for electronic title management. First, primary screening was performed independently by two reviewers (NWH and JJL) based on the titles and abstracts. Then, the full-text articles were used to assess the eligibility further. Any disagreement was solved by consulting a third reviewer.

Study inclusion and exclusion criteria

The populations were patients diagnosed with halitosis. The intervention was probiotic therapy, representing the experiment group. The control group was done with a placebo treatment. The considered outcomes were halitosis parameters and other indexes before and after treatment. During the first stage of the study selection, studies meeting the following conditions were considered eligible for this review: 1) study types: randomized controlled clinical trials (RCTs) or randomized controlled cross-over studies; 2) participants: systemically healthy patients diagnosed with halitosis via accepted standards (the organoleptic (OLP) scores and/or the concentrations of VSC); 3) interventions: evaluating the efficacy of probiotics with placebo, regardless of the probiotics species and the consumption method; 4) control interventions: placebo treatment; 5) clinical data: the measurement values, including halitosis parameters and other indexes before and after treatment. At the second stage of the selection, eligible studies acquired in the first stage were identified according to the following exclusion criteria: 1) in vitro and animal studies, letter to the editor, review articles, interviews, and meta-analyses; 2) unclear halitosis identification; 3) studies with no completed data obtained even by contacting the authors. 4) interventions included other measures (e.g., studies comparing tongue scraping plus chlorhexidine plus probiotics and tongue scraping plus chlorhexidine).³⁴

Halitosis assessment

The primary outcomes were evaluated for OLP scores and the VSC concentration levels. OLP scores reflecting subjective perception were often treated as the gold standard for diagnosing halitosis clinically and in research.^{40 41} The OLP scores were estimated by two or three evaluators (with training and experience in calibrating tests). Subjects closed their mouth for 1 min and then exhaled slowly from their mouth into the evaluator's nose at a distance of 10 cm. The score was evaluated according to a six-point '0–5' scale (Rosenberg scale).⁴²

The VSC concentrations measurement is an objective method through using the Halimeter or Oral Chroma with no significant difference.⁴³ Compared with organoleptic evaluation, VSC concentrations measurement is a quantitative variable with high sensitivity and reproducibility.⁴⁴⁻⁴⁶ Subjects had to keep their mouth closed and stop talking for 5 min before measurements. Halimeter: a beverage straw (fixed and attached to the device) was inserted into the subject's mouth, located at the back of the tongue dorsum. Subjects should keep their mouth slightly open and breathe through the nose. Oral Chroma: subjects were asked to keep their mouths closed for 30 s with an air-tight syringe. Then, 1 mL of mouth air was extracted from the subject and injected into Oral Chroma to measure the VSC concentration.⁴⁷ Then the mean of the results given by the evaluators or machines was used.

Risk of bias

The included studies underwent a quality assessment with the Revised Cochrane risk of bias tool for randomized trials (RoB2).⁴⁸ This tool assesses the risk of bias in five domain areas, including randomization process, deviations from intended interventions, missing outcome data, measurement of outcome, and selection of the reported result. Each domain assessed bias following several signaling questions. The overall bias was classified as a high risk of bias, some concerns, or a low risk of bias determined by a validated algorithm. After screening the articles, two reviewers (NWH and JJL) conducted the assessment independently to reach an agreement.

Data extraction

Data was extracted with a researcher-designed data form with the following information: 1) basic information of the included studies (first author's name and the year of publication); 2) study type (RCT); 3) diagnostic criteria for halitosis; 4) characteristics of the participants (sample volume, the age range); 5) treatment (probiotic administration, including the type of bacteria, vehicles, doses, and frequencies); 6) clinical parameters (including the primary and secondary outcomes of final participants); 7) significance and follow-up periods.

Of all these variables, the follow-up periods referred to the duration of probiotic use. If probiotic treatment ceased during the observation period, only the data before ceasing treatment was included. Concerning clinical parameters, OLP scores and VSC concentrations were considered the primary outcomes, directly associated with oral malodor. The secondary outcomes in this review included tongue coating scores (TCS) and plaque index (PI) because they are commonly regarded as halitosis causes.

Statistical analysis

The statistical analysis was performed with Review Manager 5.3 and Stata 12.0. All the data was group-analyzed according to the follow-up time. The time ≤ 4 weeks was considered the short-term period and the time >4 weeks was considered the long-term period. In one study with three observation periods, the values of 4 weeks were analyzed in the short term to keep consistent with other studies.⁴⁹ Study heterogeneity was evaluated using O statistics and the I^2 test. P value <0.10 was treated as the standard test. When $I^2 > 50\%$ or p value <0.10, there was significant heterogeneity between the studies.⁵⁰⁻⁵² Then, subgroup analysis and sensitivity analysis were performed to analyze the sources of heterogeneity. The continuous data on the halitosis parameters of the present studies were expressed with the standardized mean difference (SMD) and 95% CI (confidence interval). A random-effect model was used for analysis. Therefore, the mean difference and standard deviation had to be acquired. If the original text did not provide the related data, the mean difference could be calculated, and the standard deviation was obtained with the formula $(r_d = \operatorname{sqrt} (r_1^2/n_1 + r_2^2/n_2))$. The excel sheets in the articles were used to convert the values when provided with median and interguartile.⁵³ ⁵⁴ Publication bias was performed subjectively by funnel plots and objectively by Egger's tests. In Egger's test, p value <0.05 indicates the presence of publication bias.⁵⁵ Sensitivity analysis (leave-one-out method) was conducted to assess the alteration by sequential omission of individual studies.⁵⁶

RESULTS

Study selection

In total, 238 articles were potentially identified by electronic and manual searches. After eliminating the duplicates, 14 articles were included by screening the titles and abstracts. Then, these studies were evaluated by reading the full texts, and seven articles met the final inclusion criteria (Figure 1).42 49 57-61

190 Study characteristics

Table 1 presents the main characteristics of the included studies. In this review, all the studies were randomized control trials. The number of participants in the studies ranged between 23 and 68, with an age range of 19 to 70. Halitosis was diagnosed with OLP scores and/or VSC concentrations. The probiotics and placebo groups were compared, and the follow-up periods varied from two weeks to 12 weeks.

Table 1 Characteristics of the included studies.

Study	Туре	Halitosis criterion	Subjects Age	Clinical parameters	Probiotics Administration (Vehicle, strains and frequency)	Follow-u
Mousquer et al. (2020)	RCT Placebo-double masked, parallel	OLP score≥1	29 ≥18	OLP VSC TCS	A gum including 1 billion colony forming units (CFU) Lactobacillus salivarius G60 taken twice per day	Baseline 2 weeks
Lee et al. (2020)	RCT Placebo-double blind parallel	VSC≥1.5ng/10 mL	68 20-39	OLP VSC (H ₂ S, CH ₃ S, C ₂ H ₆ S)	An 800-mg tablet contained 1.0×10 ⁸ CFU/g Weissella cibaria taken once per day	Baseline 4 weeks 8weeks
He et al. (2020)	RCT Placebo-double blind parallel	OLP score ≥2 VSC ≥150ppb	28 23-44	OLP VSC TCS PI	A tablet containing 1×10^9 CFU Streptococcus salivarius K12 taken twice per day	Baseline 4 weeks
Keller et al. (2012)	RCT Placebo-double blind cross-over	OLP score>1	25 19-25	OLP VSC	A chewing gum containing Lactobacillus reuteri DSM 17938 and Lactobacillus reuteri ATCC PTA 5289 -both with a concentration of 1×10^8 CFU taken twice per day	Baseline 2 weeks
Suzuki et al. (2014)	RCT Double-blind placebo- controlled Cross-over	OLP score≥1.5	23 22-67	OLP VSC (H ₂ S, CH ₃ S, C ₂ H ₆ S) PI TCS	A tablet containing 6.7×10^8 CFU Lactobacillus salivarius WB21 and 280mg xylitol taken 3 times per day	Baseline 2 weeks
Penala et al. (2016)	RCT Placebo-double blind parallel	OLP score >2	29 25-59	OLP PI	A capsule mixture included Lactobacillus salivarius $(2 \times 10^9$ CFU) and Lactobacillus reuteri $(2 \times 10^9$ CFU) dissolved into 10ml distilled water to rinse for 1min, daily twice	Baseline 4 weeks 12 weeks
Kim et al. (2020)	RCT Placebo-double blind parallel	OLP score≥2 VSC≥0.15ng/ ml	58 20-70	VSC (H ₂ S, CH ₃ S, C ₂ H ₆ S) OLP	A bag of powder mixture included Weissella. cibaria CMU $(1.0 \times 10^8 \text{ CFU})$ melted in the mouth once per day	Baseline 2 weeks 4 weeks 8weeks

is a second seco

 $198 \qquad \text{colony forming units; } H_2S: \text{ hydrogen sulfide; } CH_3S: \text{ methyl mercaptan; } C_2H_6S: \text{ methanethiol; } PI: \text{ plaque index}$

199 Risk of bias

The bias estimation results showed that one study had a low risk of bias, one had a high risk, and five showed some concerns. The reason for a high risk of bias was the incomplete outcome data of the OLP scores. Five articles were identified as some concerns because there were many uncertain factors in their full texts. Figure 2 presents concrete data on the risk of bias.

205 Study outcomes

1 2 3

4 5

6 7

8

9

10

11 12

19

46

47 48

49

50

53 54

55

206 **Primary outcomes**

Concerning OLP, studies by Keller et al. (2012) and Penala et al. (2016) reported a significant decrease in the probiotic group compared to the placebo group after treatment (p < 0.05).^{58 59} In the study by Lee et al. (2020) involving different follow-up periods, OLP scores decreased significantly in the test groups at four weeks (p = 0.002) but not eight weeks (p = 0.188) compared to the baseline.⁶⁰ Additionally, the results of the other four studies indicated that the OLP scores did not differ between the two groups.

¹³ ¹⁴ ¹⁵ ¹³ ¹⁴ ¹⁵ ¹⁵ ¹⁶ ¹⁶ ¹⁷ ¹⁷ ¹⁸ ¹³ ¹³ ¹⁴ ¹⁵ ¹⁵ ¹⁵ ¹⁵ ¹⁵ ¹⁶ ¹⁷ ¹⁶ ¹⁷ ¹⁷ ¹⁷ ¹⁷ ¹⁸ ¹⁸ ¹⁹ ¹⁹

20 216 Secondary outcomes

21 217 Concerning TCS, three studies evaluated the changes between the probiotic and placebo groups at four
 218 weeks.^{42 57 61} Although a reduced tendency was observed after treatment compared with baseline p
 219 values, there was no significant difference between the two groups.

25 220 Concerning PI, in the three studies involved,^{42 57 59} only one study showed a significant reduction in
 26 221 PI in the experimental group compared with the controlled group at 12 weeks.⁵⁹

28 29 222 Quantitative synthesis 30

31 A meta-analysis was performed including studies with similar clinical parameters of OLP, VSC, TCS, 223 32 and PI, according to the follow-up time. Although the detection methods of VSC were different, both 224 33 of the devices exhibited similar sensitivity and specificity in the detection of halitosis.⁴³ Therefore, we 225 34 35 226 analyzed these values together. Considering the limitations of the included studies and follow-up time, 36 227 the pooled estimations of TCS and PI were only performed in the short term. 37

In the short term, the OLP scores significantly decreased in the probiotic group compared to the 228 38 control group [SMD =-0.58; 95% CI (-0.87, -0.30), p <0.0001] (Figure 3). A similar result was observed 39 229 40 in VSC [SMD =-0.26; 95% CI (-0.51, -0.01), p =0.04] and H₂S levels [SMD =-0.73; 95% CI (-1.36, -230 41 0.10), p =0.02]. Other items (TCS, PI, CH₃S, and C_2H_6S) were not significantly different between the 231 42 experimental and control groups. The heterogeneity of each outcome was low (I² <50%) except for H₂S 232 43 44 233 levels ($I^2 = 75\%$) (Figures 3 and 4). 45

In the long term, there was a significant improvement in OLP scores in the experimental group [SMD =-0.45; 95% CI (-0.85, -0.04), p =0.03] (Figure 5). The results failed to show a significant difference in VSC concentrations and their subgroups levels (Figures 5 and 6). The heterogeneity of VSC concentrations was substantial ($I^2=58\%$).

5152 238 Publication bias

In this systematic review and meta-analysis, we found no evidence of publication bias by the result of the funnel plots and Egger's tests (p > 0.05) (supplementary file 2-Figures S1-S5).

241 Sensitivity analysis

242 Sensitivity analysis (leave-one-out method) revealed no significant change in the pooled estimation 243 when excluding any individual study (supplementary file 2-Figures S6-S9).

DISCUSSION

Summary of the findings

This meta-analysis demonstrated that probiotics significantly reduced the OLP scores compared with the placebo group regardless of the duration of observation, confirming the benefits of probiotics for halitosis treatment. The probiotics group exhibited a significant reduction in VSC concentrations in the short term (≤ 4 weeks), with no noticeable difference in the long term (≥ 4 weeks). Meta-analyses were also performed in the subgroups of H₂S, CH₃SH, and C₂H₆S to assess the concrete difference in VSC levels. The results showed that only H₂S levels reduced noticeably in the short term when the probiotic treatment was administered. As for TCS and PI, the results showed no significant differences between the experimental and placebo groups in the short term. There was no evidence of publication bias. The sensitivity analysis confirmed that the pooled estimate was stable.

29 256 Outcomes comparison and possible mechanisms 30

Concerning the primary outcomes, in the included articles, the pooled estimation of OLP scores and VSC concentrations were in favor of probiotic therapy rather than placebo in the short term.^{42 49 57-59 61} The biological mechanisms may be related to the interaction between probiotics and oral microbiota. According to present studies, probiotic therapy reduces odorous compound levels by inhibiting the decomposition of amino acids and proteins by anaerobic bacteria.^{7 62} The significantly lower VSC levels under probiotic treatment in the short term might indicate a decrease in anaerobic bacteria activity. In contrast to our findings, a previous study indicated that it could not confirm the effect of probiotics on reducing VSC in the short term.³⁸ The number of included articles may result in this difference. However, when comes to the results in the long term, only OLP scores showed a significant reduction rather than VSC concentrations. Oral microbiota contains not only VSC-producing bacteria but also other bacteria capable of producing other oral malodor compounds (e.g., indoles, skatole, pyridine, picolines, and polyamines).⁶³ The underlying mechanisms of the difference may result from the variation and abundance of microbiota community over time, which in turn affects the efficacy of probiotics, especially VSC concentration levels.^{35 49 61} Therefore, no significant effect on VSC concentrations in the long term may be due to probiotics' inhibition effect on those other bacteria. Therefore, the data about microorganisms changing in different periods are significant for the evaluation of probiotic effects. However, from the present studies, insufficient data in the included studies, the differences in detection methods, bacterial species, and heterogeneity of clinical trials limited the microorganism statistical analysis in this review.

 $\begin{array}{cccc} 55 \\ 56 \\ 57 \\ 57 \\ 58 \end{array}$ $\begin{array}{cccc} 276 \\ 277 \\ 58 \end{array}$ $\begin{array}{cccc} Meanwhile, we found that the short-term outcome of H_2S concentration change other than CH_3SH, \\ and C_2H_6S was consistent with the total VSC levels. This might be related to differences in the function \\ of probiotics and in the number and species of bacteria associated with each VSC reduction. \\ 12 35 64 \end{array}$

 $\begin{array}{ccc} 3 \\ 4 \\ 5 \end{array} & \begin{array}{c} 279 \\ 280 \end{array} & \begin{array}{c} \text{Additionally, the regular VSC measurement device was reported to be more sensitive towards H_2S than} \\ \text{CH}_3\text{SH and C}_2\text{H}_6\text{S},^{46} \text{ which may also account for the above result.} \end{array}$

Regarding the secondary outcomes, based on the present meta-analysis, there was no significant difference between the experimental and placebo groups on secondary outcomes during the observation time. The possible reason was the short observation time in the included studies, as one study included in the analysis showed a significant improvement in PI at 12 weeks. ⁵⁹ Tongue coating and periodontitis are often regarded as the leading causes of halitosis. ^{42 65} However, in an original article, the TCS and PI showed a pronounced decline after using probiotics compared with the baseline, with no decrease in the placebo group.⁶¹ This phenomenon might be related to the type of probiotics, some of which were reported to boost salivary flow by interacting with the oral microbiota.⁶⁶

From the current studies, there are two main types of studies on the effect of probiotics on halitosis, one is to observe the effect during continuous use of probiotics and the other is to observe the effect at follow-up after stopping the use of probiotics. A recently published study indicated that no significance of probiotic effect was found, different from ours. The reason for the difference may be that this study analyzed the collected follow-up data after stopping using probiotics for at least 2 weeks.⁶⁷ In addition, OLP, as the gold standard, demonstrated the efficacy of probiotics in managing halitosis. However, the results of VSC concentration and subgroup analysis in the long term undermined this effect. These results with various different outcomes showed the inconsistency in this study. According to Bradford-Hill criteria, there would be less persuasive evidence for causation between the management of halitosis and probiotics⁶⁸. Therefore, more clinical and systematic studies are needed to explore and verify the probiotic effect on the management of halitosis in future research.

300 Limitations

There were several limitations in the present study throughout the whole review process. First, although both electronic and hand searches were conducted in four primary databases, it was impossible to retrieve all the relevant studies. Second, this study lacked persuasive evidence for causation between the management of halitosis and probiotics due to the inconsistency of the pooled results. Third, all included interventions differed in the species of probiotics, the doses and frequencies used, and administration periods. A subgroup analysis was necessary to evaluate the source of efficacy concerning the probiotic species, but the small size of the included articles prevented further analysis. All these factors would inevitably affect the accuracy of outcomes. Fourth, the detection methods of VSC were different. Although there is no significant difference between them, the combined analysis might still affect the reliability of the results. Fifth, in some included studies, the primary outcomes were presented in different forms, such as percentages or range interquartile. Finally, some important parameters, including the microorganism species and changes, were not presented completely in some articles. The absence of partial original data or the differences caused by data conversion equally impaired the final results though many methods were tried to reduce the bias.

315 CONCLUSION

The present systematic review and meta-analysis indicated that probiotics (e.g., *Lactobacillus salivarius*, *Lactobacillus reuters*, *Streptococcus salivarius*, *and Weissella cibaria*) may ease halitosis by reducing the VSC concentration levels in the short term, but there is no significant effect on the major cause of halitosis such as plaque and tongue coating. Considering the heterogeneity of clinical trials included

and the small sample size, more high-quality random clinical trials are required in the future to verifythe results and to evidence the efficacy of probiotics in the management of halitosis.

Contributors

NWH and JJL collected and analyzed data, and drafted the manuscript; NWH and XHQ helped with the literature searching and statistical analysis; YZW and CZW provided help in the literature searching and figure revises; XHQ and YKL critically reviewed the manuscript. LJL designed the experiment and critically reviewed the manuscript. NWH and JJL contributed equally to this paper. All authors agree to be accountable for the study.

- **Competing interests**
- 329 None declared.

330 Ethics approval statement

331 No applicable.

332 Funding

This work was supported by the National Natural Science Foundation of China, China (Grant No.81972538)

335 Data availability statement

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

4950338References

52
53 339 1. Porter SR, Scully C. Oral malodour (halitosis). *Bmj* 2006;**333**(7569):632-5.

- 54 340 2. Rayman S, Almas K. Halitosis among racially diverse populations: an update. *Int J Dent Hyg* 2008;6(1):2-7.
 - 3. Liu XN, Shinada K, Chen XC, et al. Oral malodor-related parameters in the Chinese general population. *J Clin Periodontol* 2006;**33**(1):31-6.
- 57 July and a second second
- 59 344 5. Yaegaki K, Coil JM. Examination, classification, and treatment of halitosis; clinical perspectives. *J Can Dent* 60

345

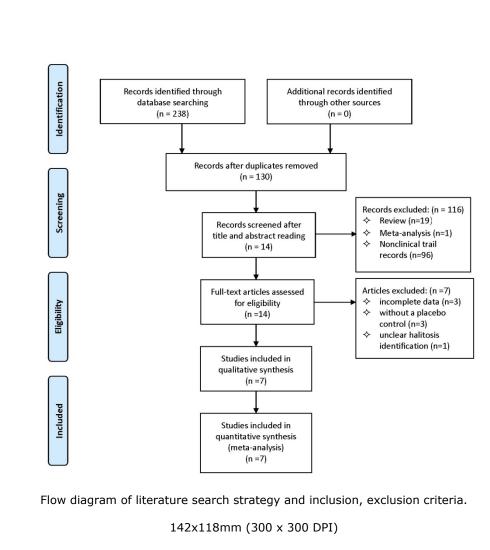
Assoc 2000;66(5):257-61.

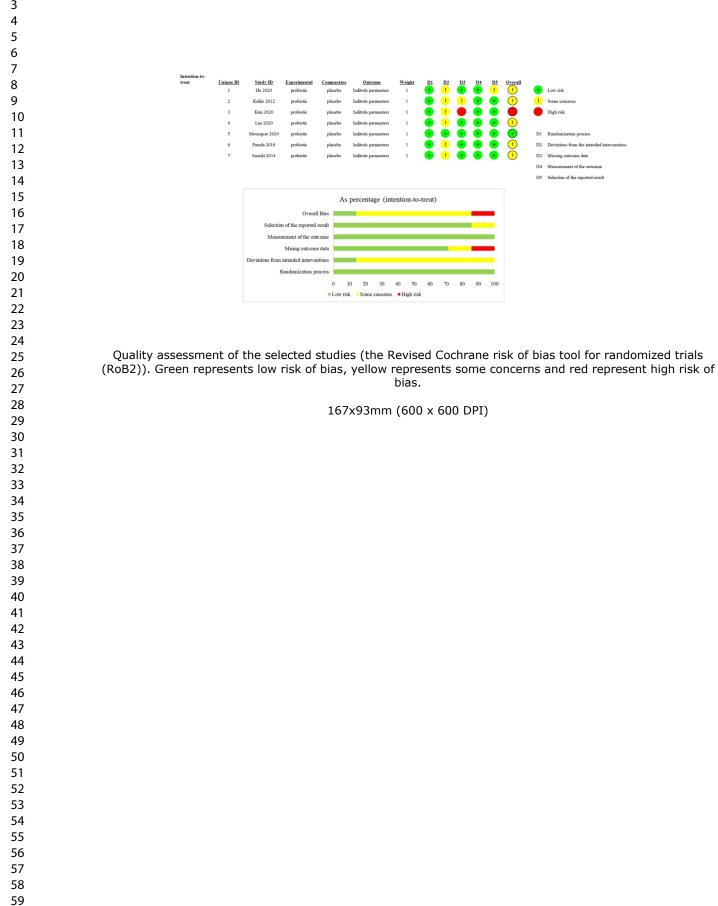
1	545	Assoc 2000, 00 (5).257-61.
4 5	346	6. Madhushankari GS, Yamunadevi A, Selvamani M, et al. Halitosis - An overview: Part-I - Classification,
6	347	etiology, and pathophysiology of halitosis. J Pharm Bioallied Sci 2015;7(Suppl 2):S339-43.
7	348	7. Scully C, Porter S, Greenman J. What to do about halitosis. Bmj 1994;308(6923):217-8.
8 9	349	8. Silva MF, Cademartori MG, Leite FRM, et al. Is periodontitis associated with halitosis? A systematic review
10	350	and meta-regression analysis. J Clin Periodontol 2017;44(10):1003-09.
11	351	9. Quirynen M, Dadamio J, Van den Velde S, et al. Characteristics of 2000 patients who visited a halitosis clinic.
12 13	352	J Clin Periodontol 2009; 36 (11):970-5.
13 14	353	10. Stephen AS, Dhadwal N, Nagala V, et al. Interdental and subgingival microbiota may affect the tongue
15	354	microbial ecology and oral malodour in health, gingivitis and periodontitis. J Periodontal Res 2021;56(6):1174-
16	355	84.
17 18	356	11. Tonzetich J. Production and origin of oral malodor: a review of mechanisms and methods of analysis. J
19	357	Periodontol 1977;48(1):13-20.
20	358	12. Foo LH, Balan P, Pang LM, et al. Role of the oral microbiome, metabolic pathways, and novel diagnostic
21 22	359	tools in intra-oral halitosis: a comprehensive update. Crit Rev Microbiol 2021;47(3):359-75.
22	360	13. Ye W, Zhang Y, He M, et al. Relationship of tongue coating microbiome on volatile sulfur compounds in
24	361	healthy and halitosis adults. J Breath Res 2019;14(1):016005.
25	362	14. Jo JK, Seo SH, Park SE, et al. Identification of Salivary Microorganisms and Metabolites Associated with
26 27	363	Halitosis. <i>Metabolites</i> 2021;11(6).
28	364	15. Loesche WJ, Kazor C. Microbiology and treatment of halitosis. Periodontol 2000 2002;28:256-79.
29	365	16. Pham TA, Ueno M, Zaitsu T, et al. Clinical trial of oral malodor treatment in patients with periodontal diseases.
30 31	366	J Periodontal Res 2011;46(6):722-9.
32	367	17. Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries.
33	368	Immunol Lett 2014; 162 (2 Pt A):22-38.
34 25	369	18. Fedorowicz Z, Aljufairi H, Nasser M, et al. Mouthrinses for the treatment of halitosis. Cochrane Database
35 36	370	Syst Rev 2008(4):Cd006701.
37	371	19. Scully C, Greenman J. Halitology (breath odour: aetiopathogenesis and management). Oral Dis
38	372	2012; 18 (4):333-45.
39 40	373	20. van Steenberghe D, Avontroodt P, Peeters W, et al. Effect of different mouthrinses on morning breath. J
40 41	374	Periodontol 2001; 72 (9):1183-91.
42	375	21. Guarner F, Perdigon G, Corthier G, et al. Should yoghurt cultures be considered probiotic? Br J Nutr
43	376	2005; 93 (6):783-6.
44 45	377	22. Cosseau C, Devine DA, Dullaghan E, et al. The commensal Streptococcus salivarius K12 downregulates the
46	378	innate immune responses of human epithelial cells and promotes host-microbe homeostasis. <i>Infect Immun</i>
47	379	2008; 76 (9):4163-75.
48 49	380	23. Devine DA, Marsh PD. Prospects for the development of probiotics and prebiotics for oral applications. J
50	381	Oral Microbiol 2009;1.
51	382	24. Gungor OE, Kirzioglu Z, Kivanc M. Probiotics: can they be used to improve oral health? <i>Benef Microbes</i>
52	383	2015; 6 (5):647-56.
53 54	384	25. Vicario M, Santos A, Violant D, et al. Clinical changes in periodontal subjects with the probiotic Lactobacillus
55	385	reuteri Prodentis: a preliminary randomized clinical trial. <i>Acta Odontol Scand</i> 2013; 71 (3-4):813-9.
56	386	26. Vivekananda MR, Vandana KL, Bhat KG. Effect of the probiotic Lactobacilli reuteri (Prodentis) in the
57 58	387	management of periodontal disease: a preliminary randomized clinical trial. J Oral Microbiol 2010;2.
59	388	27 Elichy-Fernández AI Ata-Ali I Alegre-Domingo T et al. The effect of orally administered probiotic

59 388 27. Flichy-Fernández AJ, Ata-Ali J, Alegre-Domingo T, et al. The effect of orally administered probiotic 60

11

Page 13 of 29

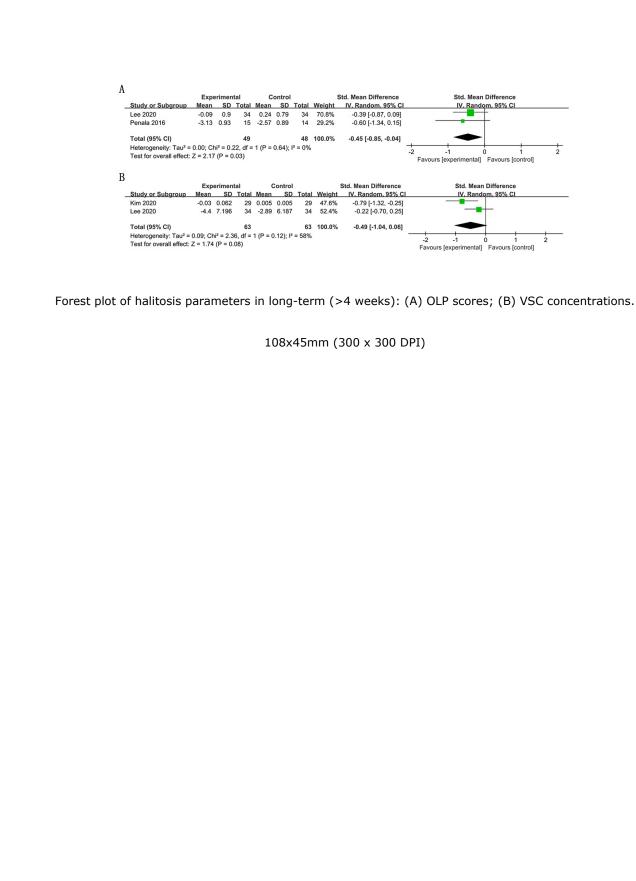

1 2


BMJ Open

3	389	Lactobacillus reuteri-containing tablets in peri-implant mucositis: a double-blind randomized controlled trial. J
4 5	390	Periodontal Res 2015;50(6):775-85.
6	391	28. Alqahtani F, Alshaikh M, Mehmood A, et al. Efficacy of Antibiotic Versus Probiotics As Adjuncts to
7	392	Mechanical Debridement for the Treatment of Peri-Implant Mucositis. J Oral Implantol 2022;48(2):99-104.
8 9	393	29. Laleman I, Detailleur V, Slot DE, et al. Probiotics reduce mutans streptococci counts in humans: a systematic
J0	394	review and meta-analysis. Clin Oral Investig 2014;18(6):1539-52.
11	395	30. Mendonça FH, Santos SS, Faria Ida S, et al. Effects of probiotic bacteria on Candida presence and IgA anti-
12	396	Candida in the oral cavity of elderly. Braz Dent J 2012;23(5):534-8.
13 14	397	31. Li D, Li Q, Liu C, et al. Efficacy and safety of probiotics in the treatment of Candida-associated stomatitis.
15	398	<i>Mycoses</i> 2014; 57 (3):141-6.
16	399	32. Xia C, Jiang C, Li W, et al. A Phase II Randomized Clinical Trial and Mechanistic Studies Using Improved
17 18	400	Probiotics to Prevent Oral Mucositis Induced by Concurrent Radiotherapy and Chemotherapy in Nasopharyngeal
19	401	Carcinoma. <i>Front Immunol</i> 2021; 12 :618150.
20	402	33. Burton JP, Chilcott CN, Moore CJ, et al. A preliminary study of the effect of probiotic Streptococcus salivarius
21	403	K12 on oral malodour parameters. J Appl Microbiol 2006;100(4):754-64.
22 23	404	34. Jamali Z, Aminabadi NA, Samiei M, et al. Impact of Chlorhexidine Pretreatment Followed by Probiotic
24	405	Streptococcus salivarius Strain K12 on Halitosis in Children: A Randomised Controlled Clinical Trial. Oral
25	406	Health Prev Dent 2016;14(4):305-13.
26 27	407	35. Benic GZ, Farella M, Morgan XC, et al. Oral probiotics reduce halitosis in patients wearing orthodontic braces:
27	408	a randomized, triple-blind, placebo-controlled trial. <i>J Breath Res</i> 2019; 13 (3):036010.
29	409	36. Gurpinar B, Yildirim G, Kumral TL, et al. A simple method to reduce halitosis; tongue scraping with probiotics.
30	410	<i>J Breath Res</i> 2019; 14 (1):016008.
31 32	411	37. Yoo HJ, Jwa SK, Kim DH, et al. Inhibitory effect of Streptococcus salivarius K12 and M18 on halitosis in
33	412	vitro. <i>Clin Exp Dent Res</i> 2020; 6 (2):207-14.
34	413	38. Yoo JI, Shin IS, Jeon JG, et al. The Effect of Probiotics on Halitosis: a Systematic Review and Meta-analysis.
35 36	414	Probiotics Antimicrob Proteins 2019;11(1):150-57.
37	415	39. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the
38	416	PRISMA statement. <i>PLoS Med</i> 2009;6(7):e1000097.
39 40	417	40. Bollen CM, Beikler T. Halitosis: the multidisciplinary approach. Int J Oral Sci 2012;4(2):55-63.
40	418	41. Erovic Ademovski S, Lingström P, Winkel E, et al. Comparison of different treatment modalities for oral
42	419	halitosis. Acta Odontol Scand 2012;70(3):224-33.
43 44	420	42. He L, Yang H, Chen Z, et al. The Effect of Streptococcus salivarius K12 on Halitosis: a Double-Blind,
44 45	421	Randomized, Placebo-Controlled Trial. <i>Probiotics Antimicrob Proteins</i> 2020; 12 (4):1321-29.
46	422	43. Vandekerckhove B, Van den Velde S, De Smit M, et al. Clinical reliability of non-organoleptic oral malodour
47	423	measurements. J Clin Periodontol 2009; 36 (11):964-9.
48 49	424	44. Rosenberg M, Kulkarni GV, Bosy A, et al. Reproducibility and sensitivity of oral malodor measurements with
50	425	a portable sulphide monitor. J Dent Res 1991; 70 (11):1436-40.
51	426	45. Seemann R, Duarte da Conceicao M, Filippi A, et al. [Halitosis management by the general dental practitioner-
52 53	427	results of an International Consensus Workshop*]. <i>Swiss Dent J</i> 2014; 124 (11):1205-11.
54	428	46. Rosenberg M, Septon I, Eli I, et al. Halitosis measurement by an industrial sulphide monitor. <i>J Periodontol</i>
55	429	1991; 62 (8):487-9.
56	430	47. Laleman I, Dadamio J, De Geest S, et al. Instrumental assessment of halitosis for the general dental practitioner.
57 58	431	J Breath Res 2014;8(1):017103.
59	432	48. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials.
60		

- Bmj 2019;366:14898. 49. Kim D-H, Kang M-S, Yeu J-E, et al. Inhibitory effect of the probiotic bacteria, Weissella cibaria CMU on halitosis: a randomized placebo-controlled study. Journal of Korean Academy of Oral Health 2020;44(4):246-52. 50. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21(11):1539-58. 51. Hedges LV, Vevea JL. Fixed- and random-effects models in meta-analysis. Psychological Methods 1998;3(4):486-504. 52. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7(3):177-88. 53. Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014;14:135. 54. Luo D, Wan X, Liu J, et al. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res 2018;27(6):1785-805. 55. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. Bmj 1997;315(7109):629-34. 56. Patsopoulos NA, Evangelou E, Ioannidis JP. Sensitivity of between-study heterogeneity in meta-analysis: proposed metrics and empirical evaluation. Int J Epidemiol 2008;37(5):1148-57. 57. Suzuki N, Yoneda M, Tanabe K, et al. Lactobacillus salivarius WB21--containing tablets for the treatment of oral malodor: a double-blind, randomized, placebo-controlled crossover trial. Oral Surg Oral Med Oral Pathol Oral Radiol 2014;117(4):462-70. 58. Keller MK, Bardow A, Jensdottir T, et al. Effect of chewing gums containing the probiotic bacterium Lactobacillus reuteri on oral malodour. Acta Odontol Scand 2012;70(3):246-50. 59. Penala S, Kalakonda B, Pathakota KR, et al. Efficacy of local use of probiotics as an adjunct to scaling and root planing in chronic periodontitis and halitosis: A randomized controlled trial. J Res Pharm Pract 2016;5(2):86-93. 60. Lee DS, Lee SA, Kim M, et al. Reduction of Halitosis by a Tablet Containing Weissella cibaria CMU: A Randomized, Double-Blind, Placebo-Controlled Study. J Med Food 2020;23(6):649-57. 61. Mousquer CR, Della Bona A, Milani DC, et al. Are Lactobacillus salivarius G60 and inulin more efficacious to treat patients with oral halitosis and tongue coating than the probiotic alone and placebo? A randomized clinical trial. J Periodontol 2020;91(6):775-83. 62. Suzuki N, Yoneda M, Takeshita T, et al. Induction and inhibition of oral malodor. Mol Oral Microbiol 2019;34(3):85-96. 63. Takeshita T, Suzuki N, Nakano Y, et al. Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production. Sci Rep 2012;2:215. 64. Kleinberg I, Westbay G. Oral malodor. Crit Rev Oral Biol Med 1990;1(4):247-59. 65. Iatropoulos A, Panis V, Mela E, et al. Changes of volatile sulphur compounds during therapy of a case series of patients with chronic periodontitis and halitosis. J Clin Periodontol 2016;43(4):359-65. 66. Ferrer MD, López-López A, Nicolescu T, et al. Topic Application of the Probiotic Streptococcus dentisani Improves Clinical and Microbiological Parameters Associated With Oral Health. Front Cell Infect Microbiol 2020;10:465. 67. López-Valverde N, López-Valverde A, Macedo de Sousa B, et al. Role of Probiotics in Halitosis of Oral Origin: A Systematic Review and Meta-Analysis of Randomized Clinical Studies. Front Nutr 2021;8:787908. 68. Hill AB. The environment and disease: association or causation? Proc R Soc Med 1965;58(5):295-300.

1		
2 3		
4	474	Figure legends
5		
6	475	Figure 1: Flow diagram of literature search strategy and inclusion, exclusion criteria.
7	476	Figure 2: Quality assessment of the selected studies (the Revised Cochrane risk of bias tool for
8 9	477	randomized trials (RoB2)). Green represents low risk of bias, yellow represents some concerns and red
10	478	represents a high risk of bias.
11	479	Figure 3: Forest plot of halitosis parameters in short-term (≤4 weeks): (A) OLP scores; (B) VSC
12	480	concentrations; (C) TCS; (D) PI.
13 14	481	Figure 4: Forest plot of VSC subgroups in short-term (\leq 4 weeks): (A) H ₂ S; (B) CH ₃ S; (C) C ₂ H ₆ S.
15	482	Figure 5: Forest plot of halitosis parameters in long-term (>4 weeks): (A) OLP scores; (B) VSC
16	483	concentrations.
17	484	Figure 6: Forest plot of VSC subgroups in long-term (>4 weeks): (A) H_2S ; (B) CH_3S ; (C) C_2H_6S .
18 19		
20	485	Figure S1: Funnel plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC
21	486	concentrations; (C) TCS; (D) PI.
22	487	Figure S2: Funnel plot of halitosis parameters in long-term (>4 weeks): (A) OLP scores; (B) VSC
23	488	concentrations.
24 25	489	Figure S3: Funnel plot of VSC subgroups in short-term (≤ 4 weeks): (A) H ₂ S; (B) CH ₃ S; (C) C ₂ H ₆ S.
26	490	Figure S4: Funnel plot of VSC subgroups in long-term (>4 weeks): (A) H ₂ S; (B) CH ₃ S; (C) C ₂ H ₆ S.
27	491	Figure S5: The result of Egger's test in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations;
28	492	(C) TCS; (D) PI; (E) H_2S ; (F) CH_3S ; (G) C_2H_6S .
29 30	493	Figure S6: Sensitivity analysis of halitosis parameters in short-term (≤4 weeks): (A) OLP scores; (B)
31	494	VSC concentrations; (C) TCS; (D) PI.
32	495	Figure S7: Sensitivity analysis of halitosis parameters in long-term (>4 weeks): (A) OLP scores; (B)
33	496	VSC concentrations.
34 35	497	Figure S8: Sensitivity analysis of VSC subgroups in short-term (≤4 weeks): (A) H ₂ S; (B) CH ₃ S; (C)
36	498	$C_2H_6S.$
37	499	Figure S9: Sensitivity analysis of VSC subgroups in long-term (>4 weeks): (A) H ₂ S; (B) CH ₃ S; (C)
38	500	$C_2H_6S.$
39 40	500	- ·
40 41	501	
42		
43		
44		
45 46		
47		
48		
49		
50 51		
52		
53		
54 57		
55 56		
57		
58		
59		
60		
		14



2	
3	
4	
5	
6	
7	Α
8	Experimental Control Std. Mean Difference Std. Mean Difference
9	<u>Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random, 95% Cl IV. Random, 95% Cl</u> He 2020 -1.47 0.86 13 -1.07 1.35 15 14.4% -0.34 [-1.09, 0.41]
10	Lee 2020 0.09 0.88 34 0.7 0.74 34 33.4% -0.74 [-1.23, -0.25] Mousquer 2020 -1.4 0.74 15 -1.2 0.89 14 15.1% -0.24 [-0.97, 0.49]
11	Penala 2016 -3.6 0.81 15 -3.22 0.77 14 14.8% -0.47 [-1.21, 0.27] Suzuki 2014 -0.92 0.64 23 -0.42 0.55 23 22.2% -0.82 [-1.43, -0.22] =
12	Total (95% CI) 100 100 100 100 0.58 [-0.57, -0.30]
13	Heterogeneity: Tau ² = 0.00; Chi ² = 2.37, df = 4 (P = 0.67); l ² = 0%
	Test for overall effect: Z = 4.03 (P < 0.0001) Favours [experimental] Favours [control]
14	В
15	Experimental Control Std. Mean Difference Std. Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random, 95% Cl IV. Random, 95% Cl
16	He 2020 -152 143.1 13 -85 161.5 15 10.9% -0.42 [-1.18, 0.33] Keller 2012 32 95.35 13 -5 76.49 12 9.8% 0.41 [-0.38, 1.21]
17	Kim 2020 -0.014 0.118 29 0.014 0.191 29 23.2% -0.17 [-0.69, 0.34] Lee 2020 -4.8 7.031 34 -2.82 6.122 34 27.0% -0.30 [-0.78, 0.18]
18	Mousquer 2020 -72 125.6 15 -38 125.2 14 11.5% -0.26 [-1.00, 0.47]
19	Suzuki 2014 -4.45 4.174 23 -1.45 5.968 23 17.7% -0.57 [-1.16, 0.02]
20	Total (95% CI) 127 127 100.0% -0.26 [-0.51, -0.01] Heterogeneity: Tau ² = 0.00; Chi ² = 4.14, df = 5 (P = 0.53); l ² = 0% -2 -1 0 1 2
21	Test for overall effect: Z = 2.04 (P = 0.04) Favours [experimental] Favours [control]
22	C
23	Experimental Control Std. Mean Difference Std. Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random, 95% Cl IV. Random, 95% Cl
24	He 2020 -1.08 1.679 13 -1 1.665 15 28.2% -0.05 [-0.79, 0.70] Mousquer 2020 -0.4 0.63 15 -0.6 0.684 14 28.9% 0.30 [-0.44, 1.03]
25	Suzuki 2014 -0.35 0.694 23 -0.043 0.75 23 42.9% -0.42 [-1.00, 0.17]
	Total (95% CI) 51 52 100.0% -0.11 [-0.52, 0.31]
26	Heterogeneity: Tau ² = 0.02; Chi ² = 2.27, df = 2 (P = 0.32); l ² = 12% Test for overall effect: Z = 0.50 (P = 0.62) Favours [experimental] Favours [control]
27	D
28	Experimental Control Std. Mean Difference Std. Mean Difference
29	Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random. 95% Cl IV. Random. 95% Cl He 2020 -0.08 0.145 13 0.03 0.292 15 29.9% -0.45 [-1.21, 0.30]
30	Penala 2016 -1.5 0.412 15 -1.71 0.312 14 30.3% 0.56 [-0.19, 1.30] Suzuki 2014 -0.07 0.209 23 -0.06 0.209 23 39.8% -0.05 [-0.63, 0.53]
31	Total (95% CI) 51 52 100.0% 0.01 [-0.51, 0.54]
32	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); l ² = 44%
	Heterogeneity: Tau? = 0.10: Chi2 = 3.55. df = 2 (P = 0.17): l2 = 44%
33	Heterogeneity: $Tay^2 = 0.05$; $Ch^2 = 3.55$, $df = 2 (P = 0.17)$; $P = 44\%$ Test feroment offset 7 = 0.05 (P = 0.05) -2 = 1 = 0 = 1 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2
33 34	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); l ² = 44% Test for overall effect: Z = 0.05 (P = 0.96) Favours [experimental] Favours [control]
33 34 35	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); I ² = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C)
33 34 35 36	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); l ² = 44% Test for overall effect: Z = 0.05 (P = 0.96) Favours [experimental] Favours [control]
33 34 35 36 37	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
33 34 35 36 37 38	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); I ² = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C)
33 34 35 36 37 38 39	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
33 34 35 36 37 38 39 40	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
33 34 35 36 37 38 39 40 41	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (\leq 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 	Heterogeneity: Tau ² = 0.10; Chi ² = 3.55, df = 2 (P = 0.17); P = 44% Test for overall effect: Z = 0.05 (P = 0.96) Forest plot of halitosis parameters in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.

								BMJ	Open	
A		Exp	eriment	al		Control			Std. Mean Difference	Std. Mean Difference
	Study or Subgroup	Mean			Mean			Weight	IV. Random, 95% CI	IV. Random. 95% Cl
	Kim 2020 Lee 2020	-0.002		29	0.1		29	32.5%	-1.38 [-1.95, -0.80]	
	Suzuki 2014	-3.45		34 23	-1.94 -1.04	4.16 4.06	34 23	35.4% 32.1%	-0.34 [-0.81, 0.14] -0.50 [-1.09, 0.09]	
	Total (95% CI)			86			86	100.0%	-0.73 [-1.36, -0.10]	
	Heterogeneity: Tau ² = 0 Test for overall effect: 2				2 (P = 0	.02); I ² =	75%			-2 -1 0 1 2
	est for overall effect. 2	2 = 2.20	(P = 0.0	2)						Favours [experimental] Favours [control]
В										
D		Exp	erimenta	al	(Control			Std. Mean Difference	Std. Mean Difference
	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
	Kim 2020	0.009			0.015	0.066	29		-0.11 [-0.62, 0.41]	
	Lee 2020 Suzuki 2014		2.388 1.031		-1.05	2.759 1.7485	34 23	39.8% 26.3%	-0.12 [-0.59, 0.36] -0.41 [-1.00, 0.17]	
	3020KI 2014	-1.22	1.031	23	-0.02	1.7400	23	20.3%	-0.41 [-1.00, 0.17]	
	Total (95% CI)			86				100.0%	-0.19 [-0.49, 0.11]	
	Heterogeneity: Tau ² = 0				2 (P = 0	.69); I ² =	0%			-1 -0.5 0 0.5 1
	Test for overall effect: 2	Z = 1.26	(P = 0.2	1)						Favours [experimental] Favours [control]
C									Ctd Maan Difference	Chi Maan Difference
С		Eve	orimont	al		Control				
	Study or Subgroup	Exp Mean	erimenta SD		Mean	Control SD	Tota	I Weight	Std. Mean Difference IV, Random, 95% CI	Std. Mean Difference IV, Random, 95% CI
	Study or Subgroup Kim 2020	Mean				SD				
	Kim 2020 Lee 2020	Mean -0.021 0.01	SD 0.082 1.17	<u>Total</u> 29 34	Mean -0.011 0.17	0.104 2.22	29 34	9 33.7% 39.5%	IV, Random, 95% CI -0.11 [-0.62, 0.41] -0.09 [-0.56, 0.39]	
	Kim 2020	Mean -0.021 0.01	SD 0.082	Total 29	Mean -0.011 0.17	0.104	29 34	9 33.7% 39.5%	IV, Random, 95% CI -0.11 [-0.62, 0.41]	
	Kim 2020 Lee 2020	Mean -0.021 0.01	SD 0.082 1.17	<u>Total</u> 29 34	Mean -0.011 0.17	0.104 2.22	29 34 23	9 33.7% 39.5%	IV, Random, 95% CI -0.11 [-0.62, 0.41] -0.09 [-0.56, 0.39]	
	Kim 2020 Lee 2020 Suzuki 2014	Mean -0.021 0.01 -0.36	SD 0.082 1.17 0.489	Total 29 34 23 86 , df = 2	Mean -0.011 0.17 -0.42	0.104 2.22 0.6338	29 34 23 86	33.7% 39.5% 26.7%	IV. Random, 95% CI -0.11 [-0.62, 0.41] -0.09 [-0.56, 0.39] 0.10 [-0.47, 0.68]	

Forest plot of VSC subgroups in short-term (≤4 weeks): (A) H2S; (B) CH3S; (C) C2H6S.

107x73mm (300 x 300 DPI)

1		
2		
3		
4		
5		
4 5 6 7 8		
7		
8		
9		
10		
11		
12		
13		
14 15		
16		
17		
18		
19		
20		
21		
22		
22 23		
24		
24 25		
26		
27		
28		
29		
30		
31		
32 33		
33 34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49 50		
50 51		
51 52		
52 53		
53 54		
54 55		
56		
57		
58		
50		

60

	Experimental Cont		ontrol			Std.	Mean Difference	Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV	Random, 95% CI	IV, Random, 95% CI
Kim 2020	-0.019	0.038	29	-0.011	0.056	29	46.3%		-0.16 [-0.68, 0.35]	
Lee 2020	-3.35	4.774	34	-1.95	4.165	34	53.7%		-0.31 [-0.79, 0.17]	
Total (95% CI)			63			63	100.0%		0.24 [-0.59, 0.11]	
Heterogeneity: Tau ² :	= 0.00; Ch	i ² = 0.16	, df = 1	(P = 0.6)	9); l ² =	0%			-	
Test for overall effect	: Z = 1.35	(P = 0.1)	8)							-1 -0.5 0 0.5 Favours [experimental] Favours [control]
2010 CONTRACTOR CONTRA										Favours [experimental] Favours [control]
В										
	Exp	eriment	al		Cont	rol			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	S	D Tota	al Mean		SD	Total W	leight	IV. Random. 95% C	I IV. Random. 95% CI
Kim 2020	0.006	0.04	5 2	9 0.029		0.07	29 4	16.4%	-0.39 [-0.91, 0.13]	
Lee 2020	-1.15 2.	.3749947	4 3	4 -1.19	2.695	51479	34 5	53.6%	0.02 [-0.46, 0.49]	_
Total (95% CI)			6	3			63 10	00.0%	-0.17 [-0.56, 0.22]	
Heterogeneity: Tau ² =	0.02; Chi ²	= 1.25, d	f = 1 (P	= 0.26);	l ² = 20%	Ď				-1 -0.5 0 0.5
Test for overall effect:	Z = 0.85 (F	P = 0.39)								Favours [experimental] Favours [control]
С										
0	Exp	eriment	al	c	ontrol			Std.	Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV	Random, 95% CI	IV, Random, 95% CI
Kim 2020	-0.017	0.055	29	-0.013		29	46.0%		-0.06 [-0.57, 0.46]	
Lee 2020	0.1	1.06	34	0.25	2.22	34	54.0%		-0.09 [-0.56, 0.39]	
Total (95% CI)			63			63	100.0%		-0.07 [-0.42, 0.28]	
Heterogeneity: Tau ²	- 0.00. 01		-16 - 4	(D - 0 (2): 12 -	0.0/				

Forest plot of VSC subgroups in long-term (>4 weeks): (A) H2S; (B) CH3S; (C) C2H6S.

108x61mm (300 x 300 DPI)

Supplementary file 1

1. PubMed

Search	Query	Items found
#1	((((((Probiotic[Text Word]) OR (Probiotic[MeSH Terms])) OR	27215
	(Probiotic therapy[Text Word])) OR (Probiotic effect[Text Word]))	
	OR (Probiotic treatment[Text Word])))	
#2	(((((((halitosis[Text Word]) OR (halitosis[MeSH Terms])) OR	2788
	(malodor[Text Word])) OR (oral malodor[Text Word])) OR	
	(malodour[Text Word])) OR (bad breath[Text Word])) OR (fetor	
	oris[Text Word])))	
#3	#1 and #2	68

2. Web of science

Search	Query	Items found
#1	(((TS=(Probiotic)) OR TS=(Probiotic therapy)) OR	28458
	TS=(Probiotic effect)) OR TS=(Probiotic treatment)	
#2	(((((TS=(halitosis)) OR TS=(malodor)) OR TS=(oral malodor))	3018
	OR TS=(malodour)) OR TS=(bad breath)) OR TS=(fetor oris)	
#3	#1 and #2	42

3. Embase ovid search strategy

Search	Query	Items found
#1	((Probiotic or Probiotic or Probiotic therapy or Probiotic effect	119
	or Probiotic treatment) and (halitosis or halitosis or malodor or	
	oral malodor or malodour or bad breath or fetor oris)).af.	

4. Cochrane Central Register of Controlled Trials (CENTRAL) search strategy

Search	Query	Items found
#1	MeSH descriptor: [Halitosis] explode all trees	236
#2	(halitosis):ti,ab,kw (Word variations have been searched)	573
#3	(malodor):ti,ab,kw (Word variations have been searched)	399
#4	(oral malodor):ti,ab,kw (Word variations have been searched)	300
#5	(malodour):ti,ab,kw (Word variations have been searched)	399
#6	(bad breath):ti,ab,kw (Word variations have been searched)	258
#7	(fetor oris):ti,ab,kw (Word variations have been searched)	0
#8	#1 or #2 or #3 or #4 or #5 or #6 or #7	996
#9	MeSH descriptor: [Probiotics] explode all trees	2571

1	
2	
3	
Δ	
т 5	
s c	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 25 26 7 8 9 10 11 20 21 22 23 24 25 26 7 8 9 30 31 23 34 35 33 34 35 37 8 9 30 31 23 34 35 37 8 9 30 31 23 31 32 33 34 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
27	
5Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

#10	(Probiotic):ti,ab,kw (Word variations have been searched)	8519
#11	(Probiotic therapy):ti,ab,kw (Word variations have been searched)	3834
#12	(Probiotic effect):ti,ab,kw (Word variations have been searched)	6398
#13	(Probiotic treatment):ti,ab,kw (Word variations have been searched)	4579
#14	#9 or #10 or #11 or #12 or #13	8603
#15	#8 and #14	8

5. Gray literature in European and Google Scholar

Search	Query	Items found
#1	Probiotic OR Probiotic therapy OR Probiotic effect OR	1
	Probiotic treatment AND halitosis OR malodor OR oral malodor	
	OR malodour OR bad breath OR fetor oris	

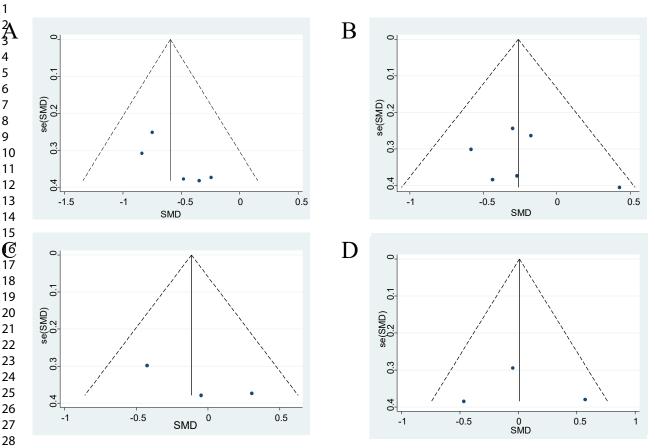


Figure S1: Funnel plot of halitosis parameters in short-term (≤4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI.

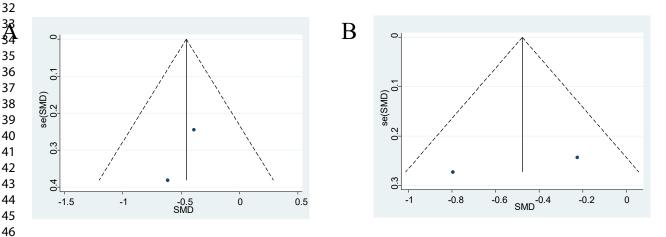


Figure S2: Funnel plot of halitosis parameters in long-term (>4 weeks): (A) OLP scores; (B) VSC concentrations.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

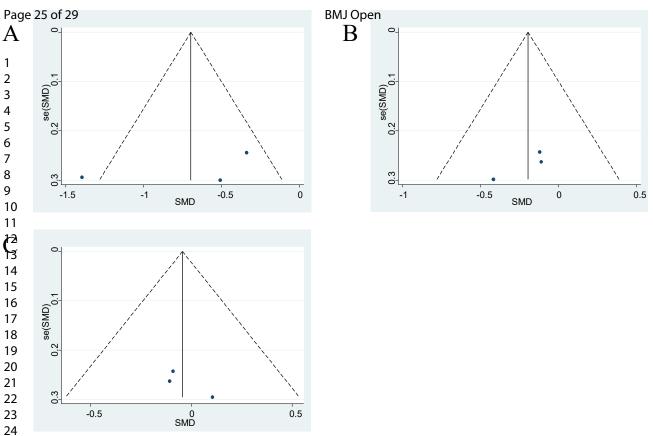


Figure S3: Funnel plot of VSC subgroups in short-term (≤4 weeks): (A) H₂S; (B) CH₃S; (C) $C_2H_6S.$

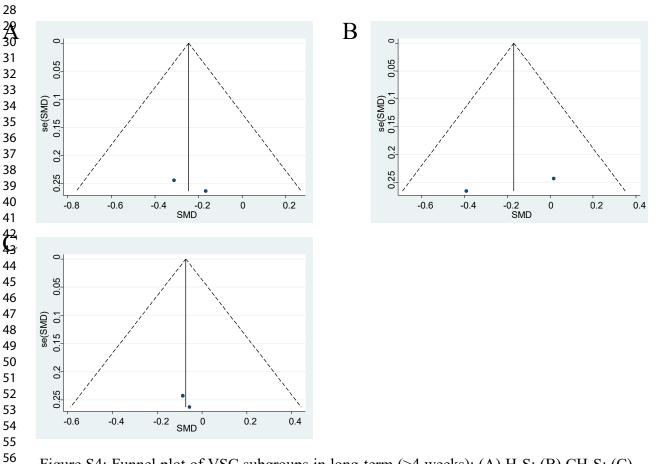


Figure S4: Funnel plot of VSC subgroups in long-term (>4 weeks): (A) H₂S; (B) CH₃S; (C) $C_2H_6S.$

BMJ	Open
	ъ

A							В						
Egger's test							Egger's test						
Std_Eff	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval]	Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
slope bias	-1.654658 3.312431	.4354301 1.341309	-3.80 2.47	0.032 0.090	-3.04039 9562116	2689248 7.581074	slope bias	6982326 1.432804	. 6453982 2. 079837	-1.08 0.69	0.340 0.529	-2.490145 -4.341748	1.09368 7.207357
С							D						
Egger's test							Egger's test						
Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	Std_Eff	Coef.	Std. Err.	t	₽> t	[95% Conf.	. Interval
slope bias	-2.485861 6.934603	1.282746 3.728761	-1.94 1.86	0.303 0.314	-18.7847 -40.4438	13.81297 54.313	slope bias	2878511 .8711259	3.056969 8.860095	-0.09 0.10	0.940 0.938	-39.13033 -111.7071	38.5546 113.449
E							F						
Egger's test							Egger's test						
Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]	Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
slope bias	2.223943 -10.63929	3.837093 13.91572	0.58 -0.76	0.666 0.584	-46.53094 -187.4552	50.97883 166.1766	slope bias	1.252312 -5.480127	.6648476 2.507946	1.88 -2.19	0.311 0.273	-7.195378 -37.3466	9.700003 26.38635
G													
Egger's test													
Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]							
slope bias	-1.041425	.5483955	-1.90	0.309	-8.00945 -22.57509	5.926601							

Figure S5: The result of Egger's test in short-term (≤ 4 weeks): (A) OLP scores; (B) VSC concentrations; (C) TCS; (D) PI; (E) H₂S; (F) CH₃S; (G) C₂H₆S.

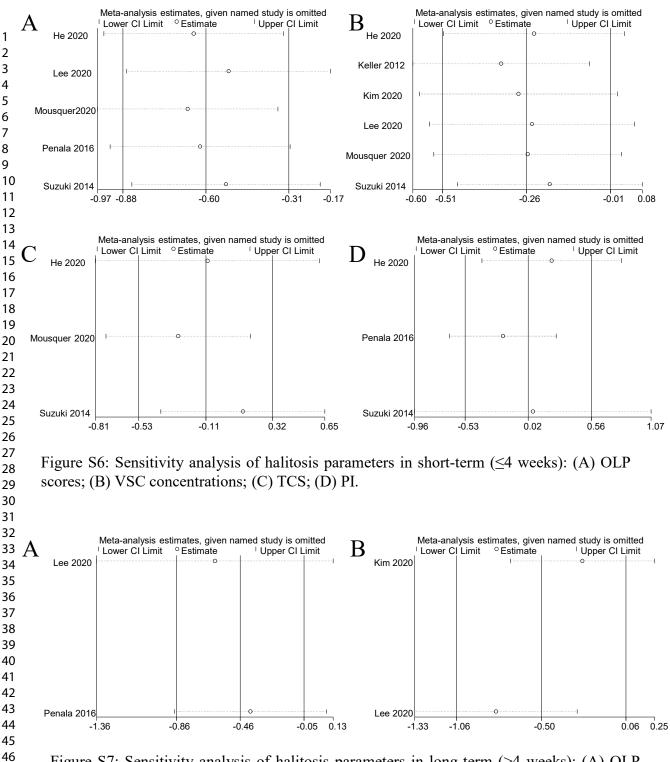
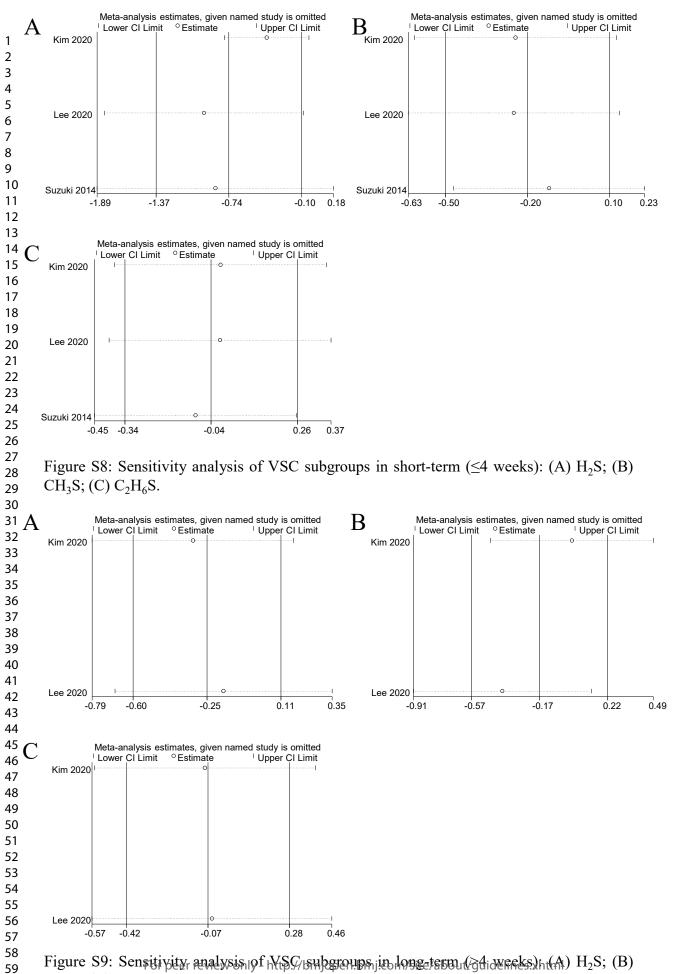



Figure S7: Sensitivity analysis of halitosis parameters in long-term (>4 weeks): (A) OLP scores; (B) VSC concentrations.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 $_{60}^{55}$ CH₃S; (C) C₂H₆S.

Pag	ge 29 of 29				
1	PRIS	MA 20	020 Checklist		
3 4 5	Section and Topic	ltem #	Checklist item		
6	TITLE		F		
7	Title	1	Identify the report as a systematic review.		
8	ABSTRACT	1	F		
9	Abstract	2	See the PRISMA 2020 for Abstracts checklist.		
10	INTRODUCTION				
11 12	Rationale	3	Describe the rationale for the review in the context of e		
13	Objectives	4 Provide an explicit statement of the objective(s)			
14	METHODS				
15	Eligibility criteria	5	Specify the inclusion and exclusion criteria for the revie		
16 17	Information sources	6	Specify all databases, registers, websites, organisation date when each source was last searched or consulted		
18	Search strategy	7	Present the full search strategies for all databases, reg		
19 20 21	Selection process	8	Specify the methods used to decide whether a study m and each report retrieved, whether they worked indepe		
21 22 23	Data collection process	9	Specify the methods used to collect data from reports, independently, any processes for obtaining or confirmin process.		
24 25 26	Data items	10a	List and define all outcomes for which data were sough study were sought (e.g. for all measures, time points, a		
20 27 28 29 30		10b	List and define all other variables for which data were s assumptions made about any missing or unclear inform		
	Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the study and whether they worked independently, and if a		
31	Effect measures	12	Specify for each outcome the effect measure(s) (e.g. ri		
32	Synthesis	13a	Describe the processes used to decide which studies v		

ADSTRACT	· · · · · · · · · · · · · · · · · · ·		
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	2,3
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	3
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	4
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	3
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	3
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	4
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	4
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	4
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	4
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	4
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	4
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics an comparing against the planned groups for each synthesis (item #5)).	
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	4
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	4
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	4
·	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	4
-	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	4
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	5
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	5
	I		J

Location where item is reported

PRISMA 2020 Checklist

Section and Topic	Checklist item				
RESULTS					
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	5		
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	5		
Study characteristics	17	Cite each included study and present its characteristics.	5		
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	5		
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	5		
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	6		
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	6		
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	6		
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	6		
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.			
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.			
DISCUSSION					
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	7		
	23b	Discuss any limitations of the evidence included in the review.	7,8		
	23c	Discuss any limitations of the review processes used.	7,8		
	23d	Discuss implications of the results for practice, policy, and future research.	8		
OTHER INFORMAT					
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	3		
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	3		
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	3		
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.			
Competing interests	26	Declare any competing interests of review authors.	2		
Availability of lata, code and studies; data used for all analyses; analytic code; any other materials used in the review.					

 44 From:
 Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

 45
 For peer For every hybring by the patter of the