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S3 Methods 
 
Models 
 
We constructed mathematical models for P vivax recurrences. For the scheme of the models 
see Fig A. Individuals are protected due to the prophylactic effect of antimalarial treatment 
at enrolment. The drug washout time is lognormally distributed and after drug washout 
individuals are susceptible to both new, mosquito-borne infections and relapses. All models 
include a constant infection rate but differ in how relapses are modelled (see also the 
Methods section in the main text). 
 

 
Fig A Model scheme of models 1 to 4. At enrolment patients are treated and thus protected due to the 
prophylactic effect of the antimalarials. After drug washout, patients are susceptible to both new infections and 
relapses. Models 1 to 4 all include a lognormal distributed drug washout time and a constant infection rate. The 
models differ in their relapse rate. 

 
Model 1: constant relapse rate 
The relapse rate is constant and the same for all individuals. Thus, the time to the next relapse 
is exponentially distributed and the fraction of susceptible individuals 𝑆𝑆(𝑡𝑡) at time 𝑡𝑡 is given 
by the following ODE: 

𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑆𝑆(𝑡𝑡) = 𝑤𝑤(𝑡𝑡; 𝜇𝜇,𝜎𝜎) − (𝑟𝑟 + 𝑛𝑛) 𝑆𝑆(𝑡𝑡), 𝑆𝑆(0) = 0, 

where 𝑤𝑤(𝑡𝑡; 𝜇𝜇,𝜎𝜎) is the probability density function of the lognormal distribution with 
parameters 𝜇𝜇 and 𝜎𝜎, 𝑟𝑟 is the constant relapse rate, and 𝑛𝑛 is the constant infection rate. This 
model equation describes that individuals become susceptible after the lognormally 
distributed drug washout time (𝑤𝑤(𝑡𝑡; 𝜇𝜇,𝜎𝜎)) and leave the compartment of susceptible 
individuals after a relapse occurring at rate 𝑟𝑟 or a new infection occurring at rate 𝑛𝑛. Initially, 
all individuals are protected, thus 𝑆𝑆(0) = 0. 
 
Model 2: temporal heterogeneity 
The relapse rate in model 2 is a time-dependent relapse rate given by 𝑟𝑟(𝑡𝑡) = 𝐼𝐼𝑒𝑒−𝑑𝑑𝑑𝑑 (see main 
text for more details). The model equation is similar to the model equation for model 1:   

𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑆𝑆(𝑡𝑡) = 𝑤𝑤(𝑡𝑡; 𝜇𝜇,𝜎𝜎) − (𝑟𝑟(𝑡𝑡) + 𝑛𝑛) 𝑆𝑆(𝑡𝑡), 𝑆𝑆(0) = 0, 

where 𝑤𝑤(𝑡𝑡; 𝜇𝜇,𝜎𝜎) is the probability density function of the lognormal distribution with 
parameters 𝜇𝜇 and 𝜎𝜎, 𝑟𝑟(𝑡𝑡) = 𝐼𝐼𝑒𝑒−𝑑𝑑𝑑𝑑 is the time-dependent relapse rate, and 𝑛𝑛 is the constant 
infection rate. 
 
Model 3: population heterogeneity 
Model 3 takes population heterogeneity in relapses into account as a distribution in relapse 
rates. Each individual has a random relapse rate drawn from a lognormal distribution. In order 
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to simplify the numerical solution of model 3, we group the population into ‘relapse risk 
groups’ of equal size (see Fig B). As we use percentiles of the relapse risk distribution to define 
the relapse risk groups, all relapse risk groups have the same size (meaning the same 
proportion of the population is in each of the relapse risk groups). The relapse rate of each 
risk group is the median relapse rate of this group. Thus, for 𝑘𝑘 relapse risk groups with relapse 
rates 𝑟𝑟𝑖𝑖 the model equation for risk group 𝑖𝑖 is given by:  

𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑆𝑆𝑖𝑖(𝑡𝑡) = 𝑤𝑤(𝑡𝑡; 𝜇𝜇,𝜎𝜎)/𝑘𝑘 − (𝑟𝑟𝑖𝑖 + 𝑛𝑛) 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝑆𝑆𝑖𝑖(0) = 0, 

where 𝑆𝑆𝑖𝑖(𝑡𝑡) is the fraction of susceptibles who are in risk group 𝑖𝑖 (𝑖𝑖 ∈ {1,2, … ,𝑘𝑘}) at time 𝑡𝑡, 𝑘𝑘 
is the number of relapse risk groups, 𝑟𝑟𝑖𝑖 is the median relapse rate of group 𝑖𝑖, and 𝑛𝑛 is the 
constant infection rate. This model equation describes that individuals are equally distributed 
to the risk groups, thus 𝑤𝑤(𝑡𝑡; 𝜇𝜇,𝜎𝜎)/𝑘𝑘 is the fraction of individuals who are susceptible and in 
risk group 𝑖𝑖 after the lognormal distributed drug washout time. Individuals leave the 
compartment of susceptible individuals after a relapse (at rate 𝑟𝑟𝑖𝑖) or a new infection (at rate 
𝑛𝑛). The overall fraction of susceptible individuals at time 𝑡𝑡, 𝑆𝑆(𝑡𝑡), is then given by the sum of 
all susceptible individuals in the different risk groups: 

𝑆𝑆(𝑡𝑡) = �𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑘𝑘

𝑖𝑖=1

. 

 

 
Fig B Scheme of the distribution of the relapse rates in model 3. Relapse rates in model 3 are lognormally 
distributed (black curve). The population is divided into ‘relapse risk groups’ of equal size (vertical grey lines). In 
this scheme there are five relapse risk groups. When numerically solving the model equation, individuals from 
the same relapse risk group are considered to have the same relapse rate which is chosen as the median relapse 
rate of that group (vertical red dotted lines). 
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Model 4: temporal and population heterogeneity 
Model 4 takes both population heterogeneity and temporal heterogeneity in relapses into 
account as a combination and extension of models 2 and 3. As for model 3, we group the 
population in 𝑘𝑘 different relapse risk groups of equal size. We use again percentiles of the 
relapse risk distribution (a lognormal distribution) to define the relapse risk groups. 
Individuals in the same relapse risk group have the same initial relapse risk that decreases 
over time as in model 2. Thus, the relapse risk of group 𝑖𝑖 is given by: 

𝑟𝑟𝑖𝑖(𝑡𝑡) = 𝐼𝐼𝑖𝑖𝑒𝑒−𝑑𝑑𝑑𝑑 , 
where 𝐼𝐼𝑖𝑖 is the initial relapse risk for relapse risk group 𝑖𝑖 and 𝑑𝑑 is the relapse risk decay rate 
that we assume to be the same for all individuals regardless of their initial relapse risk. Model 
4 is given by: 

𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑆𝑆𝑖𝑖(𝑡𝑡) = 𝑤𝑤(𝑡𝑡; 𝜇𝜇,𝜎𝜎)/𝑘𝑘 − (𝑟𝑟𝑖𝑖(𝑡𝑡) + 𝑛𝑛) 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝑆𝑆𝑖𝑖(0) = 0, 
where 𝑆𝑆𝑖𝑖(𝑡𝑡) is the fraction of susceptible individuals that are in risk group 𝑖𝑖 (𝑖𝑖 ∈ {1,2, … ,𝑘𝑘}) 
at time 𝑡𝑡, 𝑘𝑘 is the number of relapse risk groups, 𝑟𝑟𝑖𝑖(𝑡𝑡) = 𝐼𝐼𝑖𝑖𝑒𝑒−𝑑𝑑𝑑𝑑 is the time-dependent relapse 
rate of group 𝑖𝑖, and 𝑛𝑛 is the constant reinfection rate. As for model 3, the overall fraction of 
susceptible individuals at time 𝑡𝑡, 𝑆𝑆(𝑡𝑡), is the sum of all susceptible individuals in the different 
risk groups. 
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Models for two recurrences  
 
To fit the models not only to the first recurrence after enrolment but to the first and second 
recurrence (only for the Thailand-Myanmar data because the Papua New Guinea data does 
not contain multiple recurrence times), we extend the models to take two recurrences into 
account. The model scheme is shown in Fig C. 
 
For models 1 to 4, we extend the models with an additional compartment for protected and 
susceptible individuals (see Fig C). We make the following model assumptions: 

• After the first recurrence, individuals are again protected. Thus, it is assumed that all 
recurrences are detected and immediately treated. We do not explicitly consider 
blood-stage infections and their duration. 

• The drug washout time and time to recurrence follow the same distribution for the 
first and second recurrence. Thus, there is either no significant change in the 
hypnozoite number or the relapse rate is independent of the hypnozoite number. 
There is also no seasonality or changing of the infection rate over time. 

 

 
Fig C Model scheme of models 1 to 4 for two recurrences. After the first recurrence, we assume that all 
individuals are treated with the same drug as at enrolment. Both the drug washout rate and the recurrence rate 
for the second recurrence are the same as for the first recurrence for models 1 to 4.  
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Parameters of the models 
 
The Thailand-Myanmar data consists of two different studies and individuals treated with 
different antimalarials. Different parameters of the models may vary by study or antimalarial 
treatment (see Table A).  
For the constant infection rate, we considered both the case that the infection rate is the 
same for the two different studies and the case that is different (see Table A in S4 Model 
comparisons). 
The drug washout time depends on the antimalarial treatment. In the case that individuals 
received a treatment with a combination of different drugs, the drug with the longer half-life 
determines the drug washout time. The half-lifes of the different antimalarials are 20-45 
minutes for artesunate (AS) [1], 4-6 hours for primaquine (PMQ) [2, 3], approx. 3 weeks for 
dihydroartemisinin-piperaquine (DP) [4, 5], and 1-2 months for chloroquine (CHQ) [6]. Thus, 
for individuals treated with chloroquine and primaquine (CHQ/PMQ) the drug washout time 
is determined by chloroquine. For individuals treated with dihydroartemisinin-piperaquine 
and primaquine (DP/PMQ) the drug washout time is determined by dihydroartemisinin-
piperaquine. Note that recurring P vivax infections were treated with the same antimalarial 
as at enrollment in the VHX study and with the standard chloroquine and primaquine in the 
BPD study. Thus, all individuals except the group treated DP/PMQ in the BPD study were 
treated with the same antimalarial at each recurrence. For simplicity, we fitted a separate 
drug washout time distribution for the DP/PMQ group, thus we assume that these individuals 
are treated with the same antimalarial at each treatment or at least an antimalarial with the 
same washout time distribution. 
For the relapse parameters, we distinguish between individuals who received blood-stage 
treatment only (AS and CHQ) and those who also received primaquine (CHQ/PMQ and 
DP/PMQ). Since primaquine is a radical cure killing parasites of all stages including 
hypnozoites [7], individuals who were treated with primaquine are expected to not have any 
relapses.  
 

Parameter dependency groups in the model fits to the Thailand-Myanmar data 

Treatment Study (group for 
new infection rate) 

Drug washout 
distribution group Relapse group 

Artesunate VHX AS Blood-stage treatment 
Chloroquine VHX CHQ Blood-stage treatment 

Chloroquine & 
Primaquine VHX CHQ - 

Chloroquine & 
Primaquine BPD CHQ - 

Dihydroartemisinin-
Piperaquine & 

Primaquine 
BPD DP - 

Table A This table shows how the parameters for new infections, the drug washout distribution, and relapses 
depend on treatment and study in the Thailand-Myanmar data. The parameters are the same if they are in the 
same group, e.g., all individuals treated with chloroquine have the same drug washout time distribution 
regardless of whether they were treated with chloroquine and primaquine or only with chloroquine. 
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The parameters for each model and each data set are given below. 
 
Model 1: constant relapse rate 
PNG data: Since in this model both the infection rate and the relapse rate are constant, we 
sum them to a constant recurrence rate (each individually would not be identifiable). The 
model contains two parameters for the drug washout time distribution, the recurrence rate 
for patients treated for blood-stage infection only, and the recurrence rate for patients 
treated for both blood- and liver-stage infection.  
PNG data by village: The model contains two parameters for the drug washout time 
distribution for all villages and the recurrence rates for patients treated for blood-stage 
infection only and patients treated for both blood- and liver-stage infections for each of the 
5 villages. Overall, model 1 fit to the PNG data by village contains 12 parameters. 
Thailand-Myanmar data (for the case of two different infection rates): The model contains 
six parameters for the drug washout time, the mean and standard deviation for the lognormal 
distribution of drug washout times for AS, CHQ, and DP, respectively. Thus, we have the 
recurrence rate for individuals in the VHX study who received blood-stage treatment, the 
recurrence rate for the VHX study with primaquine treatment, and the recurrence rate for 
the BPD study with primaquine treatment. Overall, this model has 9 parameters.  
 
Model 2: temporal heterogeneity 
PNG data: The model contains two parameters for the drug washout time distribution, the 
rate of new infections, and for the time-dependent relapse rate 𝑟𝑟(𝑡𝑡) = 𝐼𝐼𝑒𝑒−𝑑𝑑𝑑𝑑, the initial 
relapse rate (𝐼𝐼) and the rate of decay of the relapse rate (𝑑𝑑) for blood-stage treatment. 
Overall, the model contains 5 parameters. 
PNG data by village: The model contains two parameters for the drug washout time 
distribution for all villages and the rate of new infections, the initial relapse rate, and the 
exponential decay rate of the relapse rate for each of the 5 villages. Overall, model 2 fit to the 
PNG data by village contains 17 parameters. 
Thailand-Myanmar data (for the case of two different infection rates): The model contains 
the mean and standard deviation for the lognormal distribution of drug washout times for AS, 
CHQ, and DP, respectively, and two infection rates for VHX and BPD. For the time-dependent 
relapse rate 𝑟𝑟(𝑡𝑡) = 𝐼𝐼𝑒𝑒−𝑑𝑑𝑑𝑑, we have the initial relapse rate (𝐼𝐼) and the rate of decay of the 
relapse rate (𝑑𝑑) for blood-stage treatment. Overall, there are 10 parameters in this model. 
 
Model 3: population heterogeneity 
PNG data: The model contains two parameters for the drug washout time distribution, the 
rate of new infections, and two parameters for the distribution of relapse rates. 
PNG data by village: The model contains two parameters for the drug washout time 
distribution for all villages and the rate of new infections and two parameters for distribution 
of relapse rates for each of the 5 villages. Overall, model 3 fit to the PNG data by village 
contains 17 parameters. 
Thailand-Myanmar data (for the case of two different infection rates): The model contains 
the mean and standard deviation for the lognormal distribution of drug washout times for AS, 
CHQ, and DP, respectively, and two infection rates for VHX and BPD. The relapse rate is 
lognormal distributed. Thus, the model also contains the mean and standard deviation for the 
relapse rate distribution for blood-stage. Overall, model 3 has 10 parameters. 
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This models also contains a parameter that is integer-valued, the number of relapse risk 
groups. We fit the model for different numbers of relapse risk groups and compared the 
model fits (see Fig E in S4 Model comparisons). 
 
Model 4: temporal and population heterogeneity 
PNG data: The model contains two parameters for the drug washout time distribution, the 
rate of new infections, two parameters for the distribution of the initial relapse rates, and the 
exponential decay rate of the relapse rate. 
PNG data by village: The model contains two parameters for the drug washout time 
distribution for all villages and the rate of new infections, two parameters for distribution of 
relapse rates, and the decay rate of the relapse rate for each of the 5 villages. Overall, model 
4 fit to the PNG data by village contains 22 parameters. 
Thailand-Myanmar data (for the case of two different infection rates): The model contains 
the mean and standard deviation for the lognormal distribution of drug washout times for AS, 
CHQ, and DP, respectively, and two infection rates for VHX and BPD. The initial relapse rate is 
lognormal distributed and decays exponentially. Overall, model 4 has 11 parameters. 
As model 3, this models also contains a parameter that is integer-valued, the number of 
relapse risk groups.  
 
For a list of all the parameter values as well as their maximum likelihood estimates and their 
95% confidence intervals, see Tables A to D in S1 Tables for the PNG data, Tables E to H in S1 
Tables for the PNG data by village, and Tables R to U in S1 Tables for the Thailand-Myanmar 
data. 
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Likelihood function for fitting to the first and second recurrence time simultaneously 
(Thailand-Myanmar data only) 
 
We use the following notation for the likelihood function: 

• 𝑝𝑝: vector of parameters for the model 
• 𝐷𝐷: data, 𝐷𝐷𝑖𝑖: data for individual 𝑖𝑖 (there are overall 𝑁𝑁 individuals who can be divided 

into 𝑁𝑁0 individuals with no recurrences, 𝑁𝑁1 individuals with 1 recurrence, and 𝑁𝑁2 
individuals with at least 2 recurrences) 

• 𝑗𝑗: relapse risk group number out of different 𝑟𝑟 risk groups of equal size (Fig B) 
• 𝑅𝑅𝑖𝑖: relapse risk group of individual 𝑖𝑖 
• 𝑈𝑈𝑗𝑗(𝑡𝑡): probability that an individual in risk group 𝑗𝑗 has a recurrence more than 𝑡𝑡 days 

after the previous recurrence (i.e., stays uninfected for at least 𝑡𝑡 days). 
Note that for models 1 to 4 there is no difference between 𝑈𝑈𝑗𝑗(𝑡𝑡) for the first and the 
second recurrence as the drug washout time, relapses, and recurrences are assumed 
to have the save distribution for the first and the second recurrence. 

• 𝐺𝐺𝑗𝑗(𝑡𝑡) = 𝑈𝑈𝑗𝑗(𝑡𝑡 − Δ) − 𝑈𝑈𝑗𝑗(𝑡𝑡): probability that an individual in risk group 𝑗𝑗 has a 
recurrence between day 𝑡𝑡 − Δ (the day of the last follow-up before a recurrence, Δ 
depends on the follow-up scheme) and day 𝑡𝑡 (follow-up visit with a recurrence) after 
the previous recurrence. 

 
The likelihood function is given by: 

𝐿𝐿(𝑝𝑝|𝐷𝐷) = 𝑃𝑃(𝐷𝐷|𝑝𝑝) =  �𝑃𝑃(𝐷𝐷𝑖𝑖|𝑝𝑝) =  ���𝑃𝑃(𝐷𝐷𝑖𝑖|𝑅𝑅𝑖𝑖 = 𝑗𝑗) × 𝑃𝑃(𝑅𝑅𝑖𝑖 = 𝑗𝑗)
𝑟𝑟

𝑗𝑗=1

�
𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

, 

where we assume that individuals are independent, we split up the population into the 
different ‘relapse risk’ groups 𝑅𝑅𝑖𝑖, and in the last step (and in the following) we omit the 
parameters 𝑝𝑝 to keep the notation simpler. 
For each individual, the data 𝐷𝐷𝑖𝑖  contains the number of recurrences, recurrence times, and 
times of censoring. Thus, each individual will fall into one of the three groups below (omitting 
the index 𝑖𝑖  for individual 𝑖𝑖 in our notation for simplicity): 

• 0 recurrences: denoted as 𝑛𝑛 = 0, where 𝑛𝑛 is the number of recurrences. 
• 1 recurrence at time 𝑡𝑡1: denoted as (𝑛𝑛 = 1) ⋂ 𝑡𝑡1. 
• At least 2 recurrences at times 𝑡𝑡1 and 𝑡𝑡2 (where 𝑡𝑡1 is the time from the beginning of 

the study to the first recurrence and 𝑡𝑡2 is the time from the first recurrence to the 
second recurrence): denoted as (𝑛𝑛 ≥ 2) ⋂ 𝑡𝑡1 ⋂ 𝑡𝑡2 

Next, we determine 𝑃𝑃(𝐷𝐷𝑖𝑖|𝑅𝑅𝑖𝑖 = 𝑗𝑗) for each of these three cases: 
• 0 recurrences case: 

𝑃𝑃(𝑛𝑛 = 0| 𝑅𝑅 = 𝑗𝑗) = 𝑈𝑈𝑗𝑗(𝑇𝑇), 
where 𝑇𝑇 is the overall follow-up time. 

• 1 recurrence case: 
𝑃𝑃((𝑛𝑛 = 1) ⋂ 𝑡𝑡1| 𝑅𝑅 = 𝑗𝑗) = 𝑃𝑃(𝑛𝑛 = 1 | 𝑡𝑡1,𝑅𝑅 = 𝑗𝑗) × 𝑃𝑃(𝑡𝑡1|𝑅𝑅 =  𝑗𝑗)

= 𝑈𝑈𝑗𝑗(𝑇𝑇 − 𝑡𝑡1) × 𝐺𝐺𝑗𝑗(𝑡𝑡1). 
• At least 2 recurrences case: 

𝑃𝑃((𝑛𝑛 ≥ 2)  ∩  𝑡𝑡1 ∩  𝑡𝑡2 | 𝑗𝑗) = 𝑃𝑃(𝑛𝑛 ≥ 2| 𝑡𝑡1, 𝑡𝑡2, 𝑗𝑗) × 𝑃𝑃(𝑡𝑡1 ∩ 𝑡𝑡2| 𝑗𝑗)
= 𝐺𝐺𝑗𝑗(𝑡𝑡1) × 𝐺𝐺𝑗𝑗(𝑡𝑡2 − 𝑡𝑡1),  
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where in the last step 𝑃𝑃(𝑛𝑛 ≥ 2| 𝑡𝑡1, 𝑡𝑡2, 𝑗𝑗) = 1 as the probability to have at least two 
recurrences given the time of two recurrences is 1. Alternatively, this can also be 
derived mathematically in the following way: 

𝑃𝑃(𝑛𝑛 ≥ 2| 𝑡𝑡1, 𝑡𝑡2,𝑅𝑅 = 𝑗𝑗) =  𝑃𝑃(𝑛𝑛 = 2| 𝑡𝑡1, 𝑡𝑡2,𝑅𝑅 = 𝑗𝑗) +  𝑃𝑃(𝑛𝑛 > 2| 𝑡𝑡1, 𝑡𝑡2,𝑅𝑅 = 𝑗𝑗)
= 𝑈𝑈𝑗𝑗(𝑇𝑇 − (𝑡𝑡1 + 𝑡𝑡2)) + �1 − 𝑈𝑈𝑗𝑗�𝑇𝑇 − (𝑡𝑡1 + 𝑡𝑡2)�� = 1 

as the probability to have exactly two recurrences is equal to the probability to have 
no more recurrences in the remaining time (from the second recurrence to censoring) 
and the probability to have more than two recurrences is the probability to have at 
least one recurrence in the remaining time (i.e., to not have no recurrences).  

 
Now, we know 𝑃𝑃(𝐷𝐷𝑖𝑖|𝑅𝑅𝑖𝑖 = 𝑗𝑗) for each of the three cases. Splitting up the population into 
individuals with 0, 1, or at least 2 recurrences and using the above formulas for the likelihood 
function and 𝑃𝑃(𝐷𝐷𝑖𝑖|𝑅𝑅𝑖𝑖 = 𝑗𝑗), we obtain the following likelihood function: 

𝐿𝐿(𝑝𝑝|𝐷𝐷) = ���𝑈𝑈𝑗𝑗(𝑇𝑇𝑖𝑖) × 𝑃𝑃(𝑅𝑅𝑖𝑖 = 𝑗𝑗)
𝑟𝑟

𝑗𝑗=1

�
𝑁𝑁0

𝑖𝑖=1

× ���𝐺𝐺𝑗𝑗�𝑡𝑡𝑖𝑖,1� × 𝑈𝑈𝑗𝑗(𝑇𝑇 − 𝑡𝑡1) × 𝑃𝑃(𝑅𝑅𝑖𝑖 = 𝑗𝑗)
𝑟𝑟

𝑗𝑗=1

�
𝑁𝑁1

𝑖𝑖=1

× ���𝐺𝐺𝑗𝑗(𝑡𝑡𝑖𝑖,1) × 𝐺𝐺𝑗𝑗(𝑡𝑡𝑖𝑖,2) × 𝑃𝑃(𝑅𝑅𝑖𝑖 = 𝑗𝑗)
𝑟𝑟

𝑗𝑗=1

�
𝑁𝑁2

𝑖𝑖=1

. 

 
The general loglikelihood function is then: 

𝑙𝑙(𝑝𝑝|𝐷𝐷) = � log ��𝑈𝑈𝑗𝑗(𝑇𝑇𝑖𝑖) × 𝑃𝑃(𝑅𝑅𝑖𝑖 = 𝑗𝑗)
𝑟𝑟

𝑗𝑗=1

�
𝑁𝑁0

𝑖𝑖=1

+ � log ��𝐺𝐺𝑗𝑗�𝑡𝑡𝑖𝑖,1� × 𝑈𝑈𝑗𝑗(𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑖𝑖,1) × 𝑃𝑃(𝑅𝑅𝑖𝑖 = 𝑗𝑗)
𝑟𝑟

𝑗𝑗=1

�
𝑁𝑁1

𝑖𝑖=1

+ � log ��𝐺𝐺𝑗𝑗�𝑡𝑡𝑖𝑖,1� × 𝐺𝐺𝑗𝑗(𝑡𝑡𝑖𝑖,2) × 𝑃𝑃(𝑅𝑅𝑖𝑖 = 𝑗𝑗)
𝑟𝑟

𝑗𝑗=1

� .
𝑁𝑁2

𝑖𝑖=1

  

 
In the case of only one risk group for the entire population, i.e., for models 1 and 2, the 
loglikelihood function simplifies to: 

𝑙𝑙(𝑝𝑝|𝐷𝐷) = � log[𝑈𝑈(𝑇𝑇𝑖𝑖)] + � log�𝑈𝑈�𝑡𝑡𝑖𝑖,1� × 𝑈𝑈(𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑖𝑖,1)� + � log�𝐺𝐺�𝑡𝑡𝑖𝑖,1� × 𝐺𝐺(𝑡𝑡𝑖𝑖,2)�.
𝑁𝑁2

𝑖𝑖=1

 
𝑁𝑁1

𝑖𝑖=1

 
𝑁𝑁0

𝑖𝑖=1

 

 
In the case that individuals are equally distributed to the different risk groups (by using 
percentiles of the relapse rate distribution), i.e., in models 3 and 4, we have the following 
simplified loglikelihood function: 
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𝑙𝑙(𝑝𝑝|𝐷𝐷) = � log ��𝑈𝑈𝑗𝑗(𝑇𝑇𝑖𝑖)
𝑟𝑟

𝑗𝑗=1

�
𝑁𝑁0

𝑖𝑖=1

+ � log ��𝐺𝐺𝑗𝑗�𝑡𝑡𝑖𝑖,1� × 𝑈𝑈𝑗𝑗(𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑖𝑖,1)
𝑟𝑟

𝑗𝑗=1

�
𝑁𝑁1

𝑖𝑖=1

+ � log ��𝐺𝐺𝑗𝑗�𝑡𝑡𝑖𝑖,1� × 𝐺𝐺𝑗𝑗(𝑡𝑡𝑖𝑖,2)
𝑟𝑟

𝑗𝑗=1

� + (𝑁𝑁0 + 𝑁𝑁1 + 𝑁𝑁2) × log �
1
𝑟𝑟
�

𝑁𝑁2

𝑖𝑖=1

.  

The last term in the loglikelihood function for model 3 comes from 𝑃𝑃(𝑅𝑅𝑖𝑖 = 𝑗𝑗) as it holds that 

𝑃𝑃(𝑅𝑅𝑖𝑖 = 𝑗𝑗) =
1
𝑟𝑟

 

for all individuals 𝑖𝑖 and all risk groups 𝑗𝑗. In models 3 and 4, the risk groups were chosen by the 
percentiles of the relapse rate distribution, i.e., a fraction 1/𝑟𝑟 of the population is in each of 
the risk groups.  
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Model fits 
 
In order to fit the models to the time-to-recurrence data for the first (and to the second for 
the Thailand-Myanmar data) recurrence, we numerically solve the model equations (see main 
text) using the ODE solver ode15s in Matlab (version R2018b) [8].  
We obtain the fraction of susceptible individuals at time 𝑡𝑡, 𝑆𝑆(𝑡𝑡), as the numerical solution of 
the model equation. The fraction of individuals that remain uninfected at time 𝑡𝑡 is then given 
as all the individuals who are still protected by the antimalarial treatment and all the 
susceptible individuals who have not yet been reinfected or had a relapse, i.e., 

𝑈𝑈(𝑡𝑡) = �1 −� 𝑤𝑤(𝜏𝜏; 𝜇𝜇,𝜎𝜎)
𝑡𝑡

0
𝑑𝑑𝑑𝑑� + 𝑆𝑆(𝑡𝑡), 

where 𝑤𝑤(𝑡𝑡; 𝜇𝜇,𝜎𝜎) is the probability density function of the lognormal distribution of drug 
washout times with parameters 𝜇𝜇 and 𝜎𝜎.  
We interpret 𝑈𝑈(𝑡𝑡) as the probability to be uninfected until time 𝑡𝑡 and use it to define the 
probability to have an infection at the visit on day 𝑡𝑡 (𝐺𝐺(𝑡𝑡)) as in the main text: 

𝐺𝐺(𝑡𝑡) = 𝑈𝑈(𝑡𝑡 − Δ) − 𝑈𝑈(𝑡𝑡), 

where 𝑡𝑡 − Δ is the time of the last follow-up visit before day 𝑡𝑡.  
Both 𝑈𝑈(𝑡𝑡) and 𝐺𝐺(𝑡𝑡) depend on the model parameters, 𝐺𝐺(𝑡𝑡) also depends on the follow-up 
scheme, and for the population heterogeneity model they both depend on the number of 
relapse risk groups. We tried either one rate of new infections or two different rates of new 
infections for the two different studies in the Thailand-Myanmar data, different follow-up 
schemes and different numbers of relapse risk groups in the population heterogeneity model 
(see Supplementary results). In the end, we chose a daily follow-up scheme, 10 different 
relapse risk groups, two rates of new infections in the Thailand-Myanmar data, and one rate 
of new infections for the PNG data for all model comparisons and all data sets. 
With 𝑈𝑈(𝑡𝑡) and 𝐺𝐺(𝑡𝑡) we can use the above loglikelihood function to fit our models to the first 
and second recurrence time in the Thailand-Myanmar data and obtain Maximum Likelihood 
Estimates (MLEs) for the parameter values. We do so by selecting random initial parameter 
values and minimizing the negative loglikelihood function using the Matlab function fmincon. 
In order to assure that we obtain a good fit, we minimize the negative loglikelihood function 
for 100 random initial parameter vectors and the MLE of the parameters for the fit to the first 
recurrence only (see Tables N, O, P and Q in S1 Tables). 
We fit to the first recurrence times in the same way as to the first and second recurrence time 
in the Thailand-Myanmar data. However, instead of the above loglikelihood function, we used 
the following simpler loglikelihood function:  

𝑙𝑙(𝑝𝑝|𝐷𝐷) =  � log[𝑈𝑈(𝑡𝑡𝑖𝑖 − ∆) − 𝑈𝑈(𝑡𝑡𝑖𝑖)] + � log [𝑈𝑈(𝑇𝑇𝑖𝑖)]
𝑁𝑁0

𝑖𝑖=1

𝑁𝑁1

𝑖𝑖=1

, 

where 𝑁𝑁0 and 𝑁𝑁1 are the numbers of individuals with zero and at least one recurrence, 
respectively, 𝑈𝑈(𝑡𝑡) is the probability to be uninfected until time 𝑡𝑡, 𝑡𝑡𝑖𝑖 is the time of the first 
recurrence of individual 𝑖𝑖, 𝑡𝑡𝑖𝑖 − ∆ is the time of the last follow-up visit before day 𝑡𝑡𝑖𝑖, and 𝑇𝑇𝑖𝑖 is 
the follow-up time of individual 𝑖𝑖. As for the model comparison for the fit to the first and 
second recurrence time, we use daily follow-up and 10 relapse risk groups in the population 
heterogeneity model. 
We compare the model fits using the Akaike Information Criterion (AIC) that is given by 
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𝐴𝐴𝐴𝐴𝐴𝐴 = 2 × �−𝑙𝑙(𝑝𝑝|𝐷𝐷)� + 2 × 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 , 

where −𝑙𝑙(𝑝𝑝|𝐷𝐷) denotes the negative loglikelihood and 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 denotes the number of 
parameters. 
We also compared model fits of model 4 with model 3 using the likelihood-ratio test and 
found that model 4 is a significantly better model (p-value < 0.0001). 
 
 
Confidence Intervals 
 
We computed confidence intervals using bootstrapping and the percentile method. We drew 
individuals from the data with replacement and fitted each model to the new data as 
described above. However, we used only 10 random initial parameter values and the best 
fitting parameter values for the original data for fitting each model to the bootstrapped data 
(for efficiency and time reasons). This was repeated 1000 times. The 95% confidence interval 
for each parameter is the 95th percentile of the MLE of the best fitting parameters for the 
bootstrapped data. 
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Model simulations 
 
We simulated 1,000 cohorts of 1,000 individuals for 1 year and artesunate or chloroquine 
using models 1 to 3. The parameters for the model simulation are the MLEs of the parameters 
from the fit to the first and second recurrence time in the Thailand-Myanmar data (see Tables 
R, S and T in S1 Tables). The detailed description of the model simulation method for each 
model is given below. 
 
Model 1: constant relapse rate 
For each individual a drug washout time is drawn from a lognormal distribution with the 
appropriate parameters depending on the antimalarial treatment. Since the recurrence rate 
is constant, the time from drug washout to a recurrence is exponentially distributed. Thus, 
the recurrence time is drawn from an exponential distribution with mean 1/recurrence rate. 
The time of the first recurrence is then the sum of the drug washout time and the time from 
drug washout to recurrence. This process is repeated until the individual has been simulated 
for 1 year. 
 
Model 2: temporal heterogeneity 
The drug washout time is drawn from a lognormal distribution as for model 1. In this model, 
the rate of new infections is constant, but the relapse rate is non-constant and decreases in 
time. For an event occurring at rate 𝑟𝑟(𝑡𝑡) the cumulative distribution function of the time to 
next event distribution is given by: 

𝑓𝑓(𝑡𝑡) = 1 − 𝑒𝑒−∫ 𝑟𝑟(𝑥𝑥)𝑑𝑑𝑑𝑑𝑡𝑡
0 . 

The recurrence rate is the sum of the rate of new infections and the relapse rate, thus the 
cumulative distribution function of the time to the next recurrence after drug washout is 
given by: 

𝑓𝑓(𝑡𝑡) = 1 − 𝑒𝑒−∫ 𝑛𝑛 + 𝐼𝐼𝑒𝑒−𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑡𝑡
0 . 

Due to the prophylactic effect of the antimalarial treatment, there are no recurrences before 
drug washout. Thus, we shift the recurrence rate by the drug washout time 𝑤𝑤 and to take into 
account the blocking of relapses and new infections before drug washout. We obtain the 
following cumulative distribution function for the time to the next recurrence: 

𝑔𝑔(𝑡𝑡,𝑤𝑤) = 1 − 𝑒𝑒−∫ 𝑛𝑛 + 𝐼𝐼𝑒𝑒−𝑑𝑑(𝑥𝑥+𝑤𝑤) 𝑑𝑑𝑑𝑑𝑡𝑡
0 = 1 − 𝑒𝑒−𝑛𝑛𝑛𝑛 − 𝐼𝐼𝑑𝑑 𝑒𝑒−𝑑𝑑𝑑𝑑 �1−𝑒𝑒−𝑑𝑑𝑑𝑑�, 

where 𝑤𝑤 is drug washout time. 
Next, we simulate the time to the next recurrence using inverse transform sampling, i.e., we 
sample a number 𝑥𝑥 from a uniform distribution between 0 and 1 and estimate 𝑔𝑔−1(𝑥𝑥,𝑤𝑤) 
which is a sample of a random variable with cumulative distribution function 𝑔𝑔(∙,𝑤𝑤). We 
estimate 𝑔𝑔−1(𝑥𝑥,𝑤𝑤) by computing 𝑔𝑔(∙,𝑤𝑤) for a range of time points and choosing the time 
point 𝑡𝑡 for which 𝑔𝑔(𝑡𝑡,𝑤𝑤) is closest to 𝑥𝑥. Thus, the time to the first recurrence is given by the 
estimate for 𝑔𝑔−1(𝑥𝑥,𝑤𝑤). As for model 1, this process is repeated until the individual has been 
simulated for 1 year. 
 
Model 3: population heterogeneity 
Each individual has a different relapse rate that is sampled from the lognormal distribution of 
relapse rates. The relapse rate is constant and each individual keeps the same relapse rate for 
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the entire simulated year. The drug washout time was computed as for models 1 and 2. Since 
both the rate of new infections and relapse rate are constant, the time to the next recurrence 
can be simulated as for model 1 by sampling from an exponential distribution. 
 
Instead of simulating the time to the next recurrence, we can also simulate the time to the 
next new infection and the time to the next relapse in the same way as described above. The 
time to the next recurrence is then the smaller of these. This approach has the advantage that 
we know for each simulated recurrence whether it is a relapse or a new infection. 
For model 1, we interpret the recurrence rate of primaquine treated patients as the rate of 
new infections. The rate of relapses is then the recurrence rate for artesunate or chloroquine 
treated patients minus the rate of new infections. 
The time to relapse in model 2 can be simulated exactly as described above and the time to a 
new infection is a sample from an exponential distribution as the rate of new infections is 
constant. 
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