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Appendix 1. Randomization of the interlayer links

Our dataset contains two types of data regarding the cerebral tissue type into GM and WM:

the first regarding the structural brain connectivity and the other morphological and

functioning of the brain. We understand that these two types of data may be considered as

different types of data in the multilayer architecture, especially since the centrality of a node

in the multilayer is, in general, a non-trivial integration of the centralities obtained by the

node replicas in the different layers considering the full multilayer approach. Thus, our

objective was to work upon the structural networks but considering the mediation of the

morphological and functional interactions. In this way, local centralities of node i in layer α

will be influenced by local centralities nodes in layer , but only of nodes that have beenβ

functionally related. This is indeed the role of the principal roles of the interlayer edges in

multilayer networks. That being said, this is a generic definition and the particularities when

considering the different centrality measures should be worked out.

In order to assess the influence of the structural DTI in the detection of nodes with significant

differences on the centrality measures, we have performed an experiment randomising the

DTI interlayer links. We have applied the process as follows: For each individual on the

dataset (HV and people with MS), we took its interlayer links and we have randomised them

(including weights), thus in this null model the number of links and the sum of strengths is

maintained. We applied this to all brain regions and it showed a loss of significant different

areas between HV and people with MS between original and reshuffled data (see Table

below), keeping mainly deep grey matter areas as the most relevant (thanks to rsfMRI and

GM contributions) as it  would expect for MS disease (see Table S1).

Metric Original data Shuffled data

Strength 31/76 19/76

Degree 31/76 7/76

Betweenness centrality 6/76 4/76

Closeness centrality 40/76 17/76

Local efficiency 76/76 69/76
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Table S1. Number of identified regions with significant differences (p<0.05) in network

descriptors obtained from the shuffled multilayer network analysis.

To explore these results in depth, we have compared the results of Figure 4 of the main

document with the results obtained with the shuffled network. Figure 4 displays the statistical

significance of bilateral Thalamus, a major affected region with MS. However, even they do

not show a large variation in the centrality measures across other different areas, all metrics

have lost predictive power and have lower statistical significance to the point that the

differences in the Right Thalamus are no more significant, as can be seen in Figure S1. See

also the results in Table S2, where the randomised version of the multilayer structure

identifies less significant regions than the original network, compared to Table 3 of the main

document.

Figure S1. Extended version of Figure 4 of the main document, where ‘*’ and ‘+’ stands for

statistical significance of original and shuffled data, respectively.
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Nodes p-values

Name Strength Degree BC CC LE

Left Thalamus 0.306 0.248 0.569 0.011 0.048

Left Caudate 0.002 0.021 0.187 0.030 0.046

Left Putamen 0.003 0.404 0.359 0.004 0.050

Left Pallidum 0.024 0.343 0.954 0.260 0.044

Left Hippocampus 0.204 0.001 0.318 0.009 0.051

Left Amygdala 0.000 0.443 0.822 0.076 0.045

Left Accumbens 0.105 0.024 0.048 0.088 0.046

Right Thalamus 0.006 0.154 0.335 0.001 0.051

Right Caudate 0.001 0.132 0.540 0.026 0.048

Right Putamen 0.001 0.178 0.380 0.166 0.045

Right Pallidum 0.150 0.104 0.158 0.001 0.053

Right Hippocampus 0.046 0.150 0.029 0.075 0.046

Right Amygdala 0.165 0.288 0.199 0.088 0.047

Right Accumbens 0.352 0.101 0.511 0.082 0.045

Table S2. Detail of p-values obtained from comparing healthy volunteers (HV) with people

with MS in all deep grey matter regions for each of the multilayer metrics on the suffled

network: Strength, Degree, Betweenness centrality (BC), Closeness centrality (CC) and Local

efficiency (LE).
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Appendix 2. Classification task

In our previous paper (Solana et al. 2019) we used only structural DTI connectivity networks

to train a classifier between people with MS and HV, and it showed that the results were

suboptimal only using a single network. Based on that, we hypothesized that the impact of

GM damage needs to be incorporated to improve classification performance. Upon our

intuitions, we decided to move to an architecture that allows the morphological, structural

and functional brain networks together, as the current work. In Table S3, we can see how the

classification performance improves using jointly the morphological, structural and

functional brain networks compared to other combinations thereof. We proceed as follows,

we trained a Fully Connected Neural Network model taking as inputs the adjacency (or supra

adjacency) matrices representing the brain of the subjects and producing two single outputs

giving the probability of a subject being classified as HV or MS. We applied the process to

the single layer representation and the different combination of two and three layers. The

table also shows the accuracy (mean and standard deviation) obtained applying a stratified

k-fold cross-validation (k=10) experiment:

AUC

ROC

AUC

Precision-Recall

Accuracy

DTI 0.62 ± 0.03 0.93 ± 0.10 0.89 ± 0.02

GM 0.54 ± 0.02 0.92 ± 0.01 0.89 ± 0.00

RS-fMRI 0.61 ± 0.03 0.92 ± 0.01 0.89 ± 0.00

DTI + GM 0.62 ± 0.03 0.93 ± 0.01 0.89 ± 0.00

DTI + RS-fMRI 0.65 ± 0.05 0.94 ± 0.01 0.89 ± 0.00

GM + RS-fMRI 0.65 ± 0.03 0.93 ± 0.01 0.89 ± 0.00

DTI + GM + RS-fMRI 0.68 ± 0.06 0.94 ± 0.01 0.90 ± 0.01

Table S3. Detail of accuracy (mean and standard deviation) from classification task of the

single layer representation and the different combination of two and three layers
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The results of this experiment shows that the combination of the multiple types of data helps

in the classification process, showing the capabilities of our modelling approach (2 layers,

with structural DTI as interlink) surpass any other combination.
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