Petkoski, S. & Jirsa, V. K. (2022). Supporting Information for "Normalizing the brain connectome for communication through synchronization." *Network Neuroscience* 6(3), 722–744. <u>https://doi.org/10.1162/netn_a_00231</u>

¹ Supplemental Material for

3	Normalizing the	brain	connectome	for	communication	through
4	synchronization					
5	S Petkoski, VK Jirsa.					
6						
7	Correspondence to: spase.petk	oski@univ-a	<u>mu.fr</u> & <u>viktor.jirsa@</u>	univ-amu	<u>fr</u>	
8						
9	This document includes	:				
10	Figure S1					
11	Tables S1 to S15					
12						

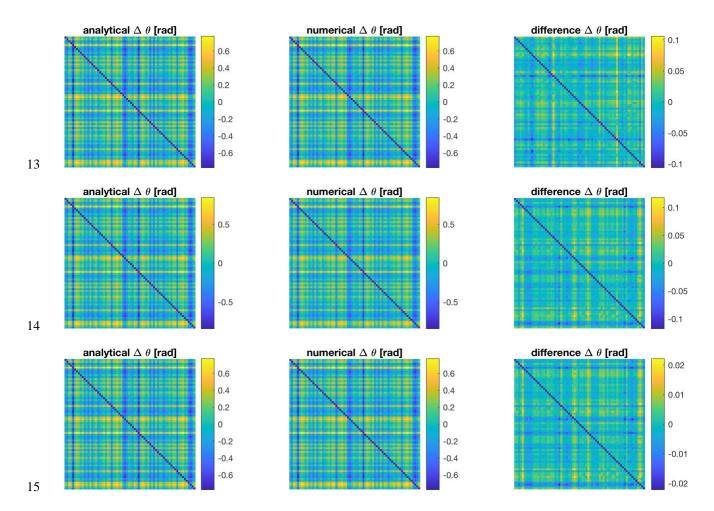


Fig. S1. Analytical (Eq. 3) and numerical results for the phase difference between each pair of brain regions of a single subject, for simulation of the Kuramoto model with (upper row) time step dt=0.0005 and noise intensity D=0, (middle row) dt=0.0001 and D=0.2, and (bottom row) dt=0.0001 and D=. A constant weight of 0.01 is added to all the weights of the connectome, so that all the nodes are synchronized, while preserving the heterogeneity. Parameters: f=10Hz, v=3.3m/s, G=3.

delta	Visual	SensMot	Auditory	ExecCont	FronPar
DMN	9.4e-9	2.4e-41	2.85e-16	0.14	0.21
Visual	-	1.7e-55	4.5e-32	3.1e-05	2.37e-07
SensMot	-	-	1.1e-13	7.7e-43	5.5e-49
Auditory	-	-	-	6.6e-19	6.7e-22
ExecCont	-	-	-	-	0.67

Table S1. p values of the t-test for the null hypothesis that the normalized spectral content in the delta frequency band in different RSNs comes from independent random samples from normal distributions with equal means and equal but unknown variances.

theta	Visual	SensMot	Auditory	ExecCont	FronPar
DMN	5.5e-05	8.1e-34	2.3e-19	9.7e-13	3.5e-34
Visual	-	6.4e-41	1.2e-27	6.3e-20	1.3e-14
SensMot	-	-	9.1e-05	2.8e-04	1.7e-73
Auditory	-	-	-	0.70	4.9e-59
ExecCont	-	-	-	-	4.6e-43

Table S2. p values of the t-test for the null hypothesis that the normalized spectral content in the
theta frequency band in different RSNs comes from independent random samples from normal
distributions with equal means and equal but unknown variances.

alpha	Visual	SensMot	Auditory	ExecCont	FronPar
DMN	7.6e-101	2.1e-75	9.4e-30	0.53	2.4e-56
Visual	-	4.7e-144	7.0e-82	2.8e-84	5.3e-16
SensMot	-	-	6.1e-107	2.4e-60	2.3e-107
Auditory	-	-	-	1.0e-22	2.2e-30
ExecCont	-	-	-	-	1.98e-49

Table S3. p values of the t-test for the null hypothesis that the normalized spectral content in the alpha frequency band in different RSNs comes from independent random samples from normal distributions with equal means and equal but unknown variances.

beta	Visual	SensMot	Auditory	ExecCont	FronPar
DMN	5.4e-05	2.1e-35	1.9e-56	1.6e-06	4.0e-4
Visual	-	3.3e-26	4.6e-45	1.26e-15	7.3e-15
SensMot	-	-	0.40	2.2e-44	7.5e-47
Auditory	-	-	-	2.1e-63	2.47e-76
ExecCont	-	-	-	-	2.0e-2

35 Table S4. p values of the t-test for the null hypothesis that the normalized spectral content in the 36 beta frequency band in different RSNs comes from independent random samples from normal 37 distributions with equal means and equal but unknown variances.

low gamma	Visual	SensMot	Auditory	ExecCont	FronPar
DMN	3.1e-3	2.5e-2	2.5e-22	0.19	9.0e-18
Visual	-	0.86	4.03e-31	4.4e-4	1.0e-10
SensMot	-	-	2.5e-24	3.0e-3	4.4e-08
Auditory	-	-	-	7.4e-13	2.8e-47
ExecCont	-	-	-	-	5.2e-15

39 Table S5. p values of the t-test for the null hypothesis that the normalized spectral content in the 40 low gamma frequency band in different RSNs comes from independent random samples from 41 normal distributions with equal means and equal but unknown variances.

gamma	Visual	SensMot	Auditory	ExecCont	FronPar
DMN	2.6e-08	7.3e-21	3.7e-14	9.4e-09	1.9e-2
Visual	-	2.1e-31	3.9e-2	0.67	6.0e-4
SensMot	-	-	4.3e-37	3.2e-31	7.4e-25
Auditory	-	-	-	0.12	3.6e-08
ExecCont	-	-	-	-	2.0e-4

Table S6. p values of the t-test for the null hypothesis that the normalized spectral content in the
gamma frequency band in different RSNs comes from independent random samples from normal
distributions with equal means and equal but unknown variances.

DMN	theta	alpha	beta	low gamma	gamma
delta	0.11	1.1e-30	2.3e-15	2.2e-2	5.6e-4
theta	-	1.8e-34	1.9e-11	0.38	0.057
alpha	-	-	3.0e-49	1.0e-32	6.1e-39
beta	-	-	-	8.5e-08	2.4e-07
low gamma	-	-	-	-	0.43

Table S7. p values of the t-test for the null hypothesis that the normalized spectral content in the
Default Mode Network in different frequencies comes from independent random samples from
normal distributions with equal means and equal but unknown variances.

Visual	theta	alpha	beta	low gamma	gamma
delta	8.3e-03	3.6e-95	4.3e-18	8.2e-06	4.7e-02
theta	-	2.4e-84	1.6e-09	9.4e-02	0.66
alpha	-	-	4.3e-72	3.5e-83	3.2e-80
beta	-	-	-	2.9e-06	1.6e-09
low gamma	-	-	-	-	4.5e-02

51 **Table S8.** p values of the t-test for the null hypothesis that the normalized spectral content in the 52 Visual network in different frequencies comes from independent random samples from normal 53 distributions with equal means and equal but unknown variances.

SensMot	theta	alpha	beta	low gamma	gamma
delta	0.76	6.1e-127	3.2e-53	4.6e-29	0.88
theta	-	1.2e-124	1.7e-51	1.7e-27	0.92
alpha	-	-	1.5e-68	6.5e-91	1.9e-112
beta	-	-	-	5.8e-13	9.2e-45
low gamma	-	-	-	-	8.0e-23

Table S9. p values of the t-test for the null hypothesis that the normalized spectral content in the Sensory Motor network in different frequencies comes from independent random samples from

57 normal distributions with equal means and equal but unknown variances.

Auditory	theta	alpha	beta	low gamma	gamma
delta	2.5e-03	7.7e-14	3.7e-59	2.6e-10	8.1e-27
theta	-	6.47e-21	7.0e-63	1.6e-04	4.8e-33
alpha	-	-	9.5e-35	1.5e-28	1.4e-07
beta	-	-	-	7.8e-64	3.6e-12
low gamma	-	-	-	-	4.6e-39

59 **Table S10.** p values of the t-test for the null hypothesis that the normalized spectral content in the

60 Auditory network in different frequencies comes from independent random samples from normal

61 distributions with equal means and equal but unknown variances.

ExecCont	theta	alpha	beta	low gamma	gamma
delta	4.8e-18	2.5e-19	3.9e-30	1.2e-4	4.1e-02
theta	-	1.5e-37	2.2e-02	5.8e-05	7.6e-20
alpha	-	-	4.3e-47	4.3e-23	1.6e-12
beta	-	-	-	5.3e-10	3.3e-30
low gamma	-	-	-	-	7.6e-07

63 **Table S11.** p values of the t-test for the null hypothesis that the normalized spectral content in the

64 Executive Control network in different frequencies comes from independent random samples from

normal distributions with equal means and equal but unknown variances.

FronPar	theta	alpha	beta	low gamma	gamma
delta	5.1e-30	6.8e-36	4.3e-41	2.9e-13	4.6e-02
theta	-	1.1e-55	1.2e-75	1.8e-02	3.1e-27
alpha	-	-	2.9e-09	2.3e-46	5.6e-29
beta	-	-	-	4.4e-52	5.6e-25
low gamma	-	-	-	-	9.2e-15

67 **Table S12.** p values of the t-test for the null hypothesis that the normalized spectral content in the

68 Frontal Parietal network in different frequencies comes from independent random samples from

69 normal distributions with equal means and equal but unknown variances.

70

Frequency bands	delta	theta	alpha	beta	low gamma	gamma
freq. [Hz]	1-4	4-8	8-13	13-30	30-50	50-80

71 Table S13. EEG frequency band

Lobes	Regions			
Frontal	caudalmiddlefrontal, lateralorbitofrontal, medialorbitofrontal, paracentral, parsopercularis, parsorbitalis, parstriangularis, precentral, rostralmiddlefrontal, superiorfrontal, frontalpole			
Cingulate	caudalanteriorcingulate, isthmuscingulate, posteriorcingulate, rostralanteriorcingulate			
Parietal	inferiorparietal, postcentral, precuneus, superiorparietal, supramarginal			
Temporal	bankssts, entorhinal, fusiform, inferiortemporal, middletemporal, parahippocampal, superiortemporal, temporalpole, transversetemporal, insula			
Occipital	cuneus, lateraloccipital, lingual, pericalcarine			

Table S14. Brain regions of different lobes with same ordering as in Figs. Fig. 2 (B) and 3.

Restion State Networks	Regions
DMN	inferiorparietal, isthmuscingulate, medialorbitofrontal, posteriorcingulate, precuneus, frontalpole
Visual	cuneus, fusiform, lateraloccipital, lingual, pericalcarine, precuneus
Sensory Motor	paracentral, postcentral, posteriorcingulate, precentral, paracentral
Auditory	bankssts, parstriangularis, superiortemporal, transversetemporal, insula
Executive Control	caudalanteriorcingulate rostralanteriorcingulate, rostralmiddlefrontal
Frontal Parietal	caudalmiddlefrontal, inferiorparietal, parsopercularis, parsorbitalis, parstriangularis, rostralmiddlefrontal, superiorparietal, supramarginal

73 Table S15. Brain regions of different Resting State Networks (RSNs).