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Supplementary methods 
 
Development of HemeMap 
1. Construction of HSC specific regulatory network. Cis-regulatory elements (cisREs) govern 
gene expression via functional interaction with gene promoter directly or indirectly mediated by 
other cisREs59. To decipher the transcriptional regulation underlying human hematopoiesis, we 
developed a computational approach called HemeMap, by leveraging a set of multi-omic data in 
different hematopoietic populations to define cisREs, their target genes and their putative 
regulatory activity throughout hematopoiesis. 
  
2. Identification of cisREs. To identify the putative cisREs in the human hematopoiesis, we used 
a consensus peak set of ATAC-seq data across 18 cell types across the hematopoiesis, similar 
to that which we employed in our previous studies21,29. The peaks were called using MACS260  for 
each cell type and uniformly resized to a width of 500 bp centered on the peak summits, then 
filtered by the ENCODE hg19 blacklist 
(https://www.encodeproject.org/annotations/ENCSR636HFF/). Peaks uniquely occurring in a 
particular cell type, i.e. non-overlapping with peaks from other cell types, were retained. For the 
peaks overlapping in two or more cell types, we compared them iteratively and kept the most 
significant peak. The remaining peaks were further filtered if they overlapped with gene 
promoters, which were defined as 500 bp regions around transcription start sites (TSS) of protein 
coding genes. The cisREs from the entire hematopoietic catalog consisted of 432,428 consensus 
accessible peaks and 18,492 gene promoters. 
  
3. Identification of direct interactions. To find the interactions between genes and cisREs, we 
searched for all possible connections between gene and cisREs within 500 kb of gene TSS. We 
used two criteria to define the interactions which the cisRE could exert a direct effect on gene 
regulation: (1) experimental evidence of physical interaction in three-dimensional space or (2) a 
strong correlation between chromatin accessibility of cisRE and target gene expression. To this 
end, we annotated the nominated links to assess whether cisREs and target genes are spatially 
colocalized (i.e. in a chromatin loop). A published dataset spanning 17 hematopoietic cell types 
of promoter capture Hi-C (PCHi-C) data was used28 and only loops with CHiCAGO score > 5 were 
considered. Next, we computed ATAC-seq reads falling within cisREs across the hematopoietic 
cell populations and performed normalization using the count per million (CPM) method. We 
calculated the Pearson correlation coefficient between chromatin accessibility of cisREs and gene 
expression across 16 hematopoietic cell types for each possible interaction pair. To determine 
the significance, we applied Fisher’s  z  transformation to correlation coefficients. All the 
interactions with > 0.345 (equivalent to P value < 0.05) were kept. Finally, the nominated links 
that passed either of these two analyses were retained and a total of 1,218,933 direct interactions 
were identified.  
  
4. Identification of indirect interactions. A gene regulatory network is established by a chain of 
cisREs which connect to the target though direct or indirect manners. Previous studies35 reported 
that a number of cooperative cisREs could associate with the promoter and other cisREs related 
in multi-way contacts in chromatin loops. Co-accessible chromatin has been reported to be highly 
connected and functionally related, which is useful to evaluate the connectivity between cisREs. 
To identify the indirect interactions, we first computed the co-accessibility across 18 cell types 
between cisREs (not including gene promoters) whose genomic distance less than 500 kb. By 
using the Pearson correlation measurement and Fisher’s  z  transformation as described above, 
the co-accessible cisRE-cisRE links with a correlation coefficient  > 0.362 (equivalent to P value 
< 0.05) were selected. Next, to find the shortest path between a cisRE and its target promoter, 
we constructed a regulatory network using the direct gene-cisRE interactions and co-accessible 



cisRE-cisRE links, and found the shortest paths between cisREs and genes in this network. 
Specifically, the network was built using the igraph R package with gene-cisRE interactions and 
cisRE-cisRE links. Dijkstra's algorithm is designed for searching for the shortest paths between 
nodes in a graph. In our network, we used this method to find all the potential indirect interactions 
mediated by the cisREs that have direct gene interactions identified in the first step of our analysis. 
Given that a smaller weight indicates a greater chance in participating in the shortest path found 
by the Dijkstra’s method, we added the weight to each edge in the network: weight of a pseudo 
number of 1e-5 for direct gene-cisRE interactions and  for cisRE-cisRE links, respectively. All of 
the gene-cisRE pairs that did not pass the direct interaction identification were analyzed by 
Dijkstra’s method. The cisREs were filtered out if they were not linked to any gene. In total, 
4,315,536 interaction pairs are included in HemeMap.  
  
5. HSC specific regulatory network. To define the strengths of cis-regulatory interactions in 
each cell type, we calculated the HemeMap score by using the geometric mean of ATAC-seq 
signal over all the cisREs involved in each interaction to avoid potential bias introduced by the 
outliers. To get the HSC-specific regulatory network, we used the cumulative Chi-Square 
distribution to determine an interaction strength threshold of greater than 8.91 which filtered out 
95% of the interactions. The remaining interactions were used to build an HSC-specific regulation 
network containing 12,808 genes and 372,491 cisREs. 
 
6. Benchmarking of HemeMap. To validate the activity of cisREs, we used different epigenomic 
marks including those present active enhancers (H3K4me1 and DNase I) and those present 
repressive domains (H3K27me3) of HSPCs from the Roadmap Consortium31. We also employed 
genomic interaction data of HiC30 and predicted interactions in HSPCs from the Roadmap 
Consortium31 to validate that the nominated interactions are active in the HSPC compartment. 
 
De novo motif discovery 
To explore the MECOM mediated regulatory network, we retrieved all of the cisREs associated 
with MECOM network genes identified as differentially expressed after MECOM editing. We used 
the 200 bp sequences centered on cisREs, i.e. the genomic regions around summits of peaks or 
TSS, as input for the de novo motif discovery analysis. The MEME suite61 was used and all the 
motifs with reported E value < 1e-20 were collected from results of DREME62 and MEME. 
Similarity of de novo motifs and the putative TF motifs from a comprehensive collection of 401 
human TFBS models (HOCOMOCO V11)63  was performed using Tomtom64. We also correlated 
the similarity of the ETS family motif identified via de novo motif discovery with the EVI1 binding 
motif from a published dataset11 by calculating the Pearson correlation coefficient of the Position 
Frequency Matrix (PFM) of the two motifs using universal motif R package. 
  
TF Footprinting analysis 
A TF footprint is a particular pattern of Tn5 enzyme cleavage sites generated by ATAC-seq data 
that enables analysis of chromatin occupancy at the base-pair resolution. There is a depletion of 
cleavage events at the specific site of TF binding on open chromatin, which allowed for the 
identification of TF binding events with the consensus motifs of interest from the de novo motif 
discovery analysis65. For each de novo motif, including ETS, RUNX, JUN, KLF, CTCF and GATA, 
we scanned all of the consensus motif sequences that occur within the cisREs in MECOM-
mediated regulatory network using the software FIMO66 with default parameters, except for a 
significance threshold of 5e-4. To create a nucleotide resolution cleavage frequency profile for 
each TF, we used make_cut_matrix function  (https://github.com/Parkerlab/atactk) to count the 
Tn5 enzyme cleavage frequency at the recognized motif sites and their flanking +/- 250 bp 
sequences, using ATAC-seq data from HSCs. Then, we used CENTIPEDE67 to build an 



unsupervised Bayesian mixture model with the cleavage frequency profile to generate a posterior 
probability value for each motif instance. A motif instance was considered a footprint that is bound 
by a particular TF when the posterior probability score was greater than 0.95. The plot of cleavage 
frequency around the footprints was created by aggregating both strands using a custom R script. 

Footprint co-occurrence analysis 
To explore how these TFs cooperate with each other via combinatorial binding on the cisREs of 
MECOM network genes, we evaluated the co-occurrence of the TF footprints. Specifically, a 
hypergeometric test was employed to determine the statistical significance of co-occurrence of 
two different footprints, as depicted by the following equation: 
 

  
where 𝑁 is the total number of cisREs, 𝑓1 and 𝑓2 are the number of cisREs containing footprints 
of each of the two tested TFs, respectively. P value measuring the significance of enrichment is 
the tail probability of observing 𝑐′ or more cisREs containing both TF footprints.  
 
Derivation of variables of interest 
We log2-transformed the TCGA normalized read counts and stratified the cohort based on 
MECOM expression (MECOM low, log2(RPKM+1)<4; MECOM high, log2(RPKM+1)≥4). LSC17 
score was calculated as follows: (DNMT3B × 0.0874) + (ZBTB46 × −0.0347) + (NYNRIN × 
0.00865) + (ARHGAP22 × −0.0138) + (LAPTM4B × 0.00582) + (MMRN1 × 0.0258) + (DPYSL3 × 
0.0284) + (KIAA0125 × 0.0196) + (CDK6 × −0.0704) + (CPXM1 × −0.0258) + (SOCS2 × 0.0271) 
+ (SMIM24 × −0.0226) + (EMP1 × 0.0146) + (NGFRAP1 × 0.0465) + (CD34 × 0.0338) + (AKR1C3 
× −0.0402) + (GPR56 × 0.0501)43. For each of the three included studies, the expression of each 
gene in each individual sample was compared to the mean expression in the pertaining study 
cohort. GSEA (as described previously) was performed to determine the enrichment or depletion 
of MECOM down genes in each sample compared to the mean. A sample was determined to 
have enrichment of MECOM down genes if the Normalized Enrichment Score >0 and p-value 
<0.05, depletion of MECOM down genes if NES <0 and p-value <0.05, or unchanged MECOM 
down genes if p-value >0.05. In addition, the normalized enrichment score was studied as a 
continuous measure of MECOM network status. Clinical risk scoring was provided in tables by 
each of the studies based on the National Comprehensive Cancer Network criteria, and in this 
analysis are labelled as Adverse, Intermediate and Favorable for consistency.   
 


