
 1 

Supplementary information 

 

Common germline risk variants impact somatic alterations and clinical features across 

cancers 

S Namba and Y Saito et al. 

Corresponding to Keisuke Kataoka (kkataoka-tky@umin.ac.jp) and 

Yukinori Okada (yokada@sg.med.osaka-u.ac.jp) 

 

Table of contents 

n Supplementary Figures ................................................................................................... 4 

Supplementary Figure 1: The comparison of the best PRS and C+T PRS with genome-

wide significant variants in UKB regarding metrics other than R2. ..................................... 4 

Supplementary Figure 2: Receiver operating characteristic curves of the PRSs for 

individual cancer types in UKB. ......................................................................................... 5 

Supplementary Figure 3: Odds ratios stratified by PRS percentiles for individual cancer 

types. ................................................................................................................................. 7 

Supplementary Figure 4: Genetically inferred population and sex of TCGA samples. ...... 9 

Supplementary Figure 5: Evaluation of PRSs using TCGA resources. ............................ 11 

Supplementary Figure 6: Meta-analyses of germline–somatic associations across cancer 

types in TCGA. ................................................................................................................. 13 

Supplementary Figure 7: Associations between PRS values and SCNAs in TCGA. ....... 15 

Supplementary Figure 8: Associations between PRS values and driver mutations in 

TCGA. .............................................................................................................................. 16 

Supplementary Figure 9: Meta-analyses of associations between PRS values and 

hallmark signatures in TCGA. .......................................................................................... 18 



 2 

Supplementary Figure 10: Associations between PRS values and clinical and other 

features in TCGA. ............................................................................................................ 19 

Supplementary Figure 11: Meta-analyses of germline–somatic associations across four 

PCAWG PRAD cohorts. ................................................................................................... 21 

n Supplementary Tables ................................................................................................... 22 

Supplementary Table 1: GWAS summary statistics used for PRS. ................................. 22 

Supplementary Table 2: Definition of cases and controls in UKB. ................................... 24 

Supplementary Table 3: Parameters and numbers of variants used for PRS. ................. 26 

Supplementary Table 4: Evaluation of PRSs using UKB resources. ............................... 27 

Supplementary Table 5: Number of patients without sex aneuploidy in TCGA. ............... 28 

Supplementary Table 6: The gene-level associations for UCEC and BRCA in the cell 

cycle pathway. .................................................................................................................. 29 

n Supplementary Materials and Methods ....................................................................... 30 

UK Biobank (UKB) ........................................................................................................... 30 

Heritability estimates ........................................................................................................ 30 

Pathway enrichment analysis .......................................................................................... 30 

The Cancer Genome Atlas (TCGA) ................................................................................. 31 

Somatic mutation analysis ............................................................................................... 34 

Somatic copy number analysis ........................................................................................ 34 

Immune status analysis ................................................................................................... 35 

Single-sample Gene Set Enrichment analysis ................................................................. 35 

Clinical data analysis ....................................................................................................... 35 

Validation using the Pan-Cancer Analysis of Whole Genomes (PCAWG) PRAD cohorts 36 

n Supplementary Notes .................................................................................................... 37 



 3 

Supplementary Note 1: Acknowledgments. ..................................................................... 37 

Supplementary Note 2: Contributing authors participating in the Glioma International 

Case Control Study, the UCSF Adult Glioma Study, and the GliomaScan consortia. ...... 45 

n Supplementary References ........................................................................................... 49 

  



 4 

Supplementary Figures 

 

Supplementary Figure 1: The comparison of the best PRS and C+T PRS with genome-

wide significant variants in UKB regarding metrics other than R2. 

(A) Scatter plots showing the difference of area under the receiver operating characteristic 

curve (ΔAUC). For each of the best and C+T PRS, we calculated the difference between the 

full model and the reduced model including all covariates but PRS (i.e., age, sex, and top 20 

genetic principal components [PCs]). 

(B) Scatter plots showing the odds ratio of the largest PRS decile against the rest of the 

samples. Error bars represent standard error. 
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Supplementary Figure 2: Receiver operating characteristic curves of the PRSs for 

individual cancer types in UKB. 

The PRSs were evaluated in UKB data with age, sex, and top 20 genetic PCs as covariates.  
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Supplementary Figure 3: Odds ratios stratified by PRS percentiles for individual 

cancer types. 

Odds ratios were calculated against the 45–55 percentile. The odds ratios of C+T with the 

threshold of 5×10-8 were not shown for HNSC because there was no individual in the 45–55 

percentile due to the sparse distribution of the PRS values. Error bars represent standard 

error.  
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Supplementary Figure 4: Genetically inferred population and sex of TCGA samples.  

(A) A UMAP 2D plot derived from the first 20 PCs of genotype data of TCGA samples merged 

with the 1000 Genomes Project (1KG) samples. EUR, European; EAS, East Asian; AFR, 

African; SAS, South Asian; AMR, American. 

(B, C) The same scatter plots as (A), colored by self-reported race (B) and self-reported 

ethnicity (C), showing high concordance between genetically inferred population and the self-

reported data. 1KG samples were colored in gray. 

(D) Probability of five ancestries estimated by ADMIXTURE (1). 

(E) Mean intensity of signals from the probe on the genotype array for sex chromosomes. 

The intensity was divided by the mean intensity of autosomes. Asterisks indicate that the 
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sample itself was classified as atypical, but another sample derived from the same individual 

was classified as either female or male.  
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Supplementary Figure 5: Evaluation of PRSs using TCGA resources. 

(A) Heatmap showing the median PRS values (after rank-based inverse normal 

transformation [INT]) in the corresponding cancer type (right; e.g., BRCA PRS values of 

BRCA samples) and other cancer types (left; e.g., BRCA PRS values of non-BRCA samples). 
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(B) UCEC PRS value distribution (after INT) across different cancer types for 7,965 TCGA 

samples of European ancestry. Each dot represents a sample and horizontal lines indicate 

the median PRS value in each cancer type. 

(C) Pair-wise correlations of PRS values for different cancer types in TCGA (left) and UKB 

(right) cohorts. The correlations in UKB were calculated for the individuals without any cancer. 

Orange and blue colors depict positive and negative associations. Two-sided Pearson’s 

correlation test. 

(D) Violin plots showing the distribution of PRS values (after INT) stratified by the presence 

of germline pathogenic variants in TCGA. Each dot represents a sample. Two-sided Welch’s 

t-test. 

(E) Fraction of TCGA samples harboring the germline pathogenic variants in each cancer 

type (left) and number of detected germline pathogenic variants in the TCGA cohort across 

different cancer types (right). 

(F) PRS value distribution (after INT) across different subtypes for TCGA samples of 

European ancestry. Each dot represents a sample and horizontal lines indicate the median 

PRS value in each subtype. LumA, luminal A; Lum B, luminal B; Her2, Her2-enriched; Basal, 

basal-like; Normal, normal-like; CN, copy number; MSI, microsatellite instability; UCS, uterine 

carcinosarcoma; wt, wild-type; mut, mutated; CIN, chromosomal instability; GS, genomically 

stable. Two-sided Welch’s t-test with Benjamini–Hochberg correction. 

(D, F) Numbers in parentheses indicate numbers of samples examined. 
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Supplementary Figure 6: Meta-analyses of germline–somatic associations across 

cancer types in TCGA. 

Forest plots of cancer type-specific and pooled standardized mean difference (SMD) of PRS 

values (A, C, E, G, I, K, M, and O) and germline pathogenic variants (B, D, F, H, J, L, N, and 

P) for age at diagnosis (A, B), total mutation number (C, D), total driver mutation number (E, 

F), chromosome/arm SCNA score (G, H), focal SCNA score (I, J), genomic fraction of LOH 

(K, L), leukocyte fraction (M, N), and cytolytic activity (O, P). CI, Confidence interval.  
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Supplementary Figure 7: Associations between PRS values and SCNAs in TCGA. 

Forest plots of cancer type-specific and pooled SMD of PRS values for chromosome/arm 

amplification (top left), deletion (bottom left), focal amplification (top right), and deletion 

(bottom right) SCNA scores. 
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Supplementary Figure 8: Associations between PRS values and driver mutations in 

TCGA. 

The association between each driver mutation and PRS values in individual cancer types. 

Generalized linear model (GLM) using subtypes and germline pathogenic variants as 

covariates. Driver genes detected in less than 5% of the samples were excluded from 

visualization. GLM for SPOP in PRAD and IDH1 in GBM did not converge because they were 

subtype-defining drivers; hence, they were excluded from this figure.  
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Supplementary Figure 9: Meta-analyses of associations between PRS values and 

hallmark signatures in TCGA. 

The associations between PRS values and 50 hallmark signatures from meta-analyses. 

Numbers on the right represent pooled SMDs with 95% CIs and P-values (after Benjamini-

Hochberg adjustment).  
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Supplementary Figure 10: Associations between PRS values and clinical and other 

features in TCGA. 

(A, B) Kaplan-Meier survival curves of overall survival (A) and progression-free interval (B) 

for BRCA, UCEC, PRAD, GBM, OV, COADREAD, and ESCA patients grouped by PRS value 

quartiles. P-values were calculated using the Cox proportional hazards model. 

(C) Reviewed Gleason scores for PRAD patients grouped by PRAD PRS value quartiles. 
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(D) Histological grade for ESCA (left), UCEC (middle), and OV (right) patients grouped by 

PRS value quartiles. GX (unknown grade) samples were excluded from the analysis. 

(E) Colorectal cancer sidedness for COADREAD patients grouped by PRS value quartiles. 

Numbers in parentheses indicate numbers of samples examined. 
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Supplementary Figure 11: Meta-analyses of germline–somatic associations across 

four PCAWG PRAD cohorts. 

Forest plots of cancer type-specific and pooled SMD of PRS values (A, C, E, G, I, and K) 

and germline pathogenic variants (B, D, F, H, J, and L) for age at diagnosis (A, B), total 

mutation number (C, D), total driver mutation number (E, F), chromosome/arm SCNA score 

(G, H), focal SCNA score (I, J), and genomic fraction of LOH (K, L). PRAD-UK, Prostate 

Adenocarcinoma – United Kingdom; PRAD-CA, Prostate Adenocarcinoma – Canada; EOPC-

DE, Early Onset Prostate Cancer – Germany; PRAD-US, Prostate Adenocarcinoma – United 

States. We note that PRAD-US is the same dataset as TCGA PRAD cohort. 
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Supplementary Tables 

Supplementary Table 1: GWAS summary statistics used for PRS. 

Study code Cancer type GWAS 
Number of samples 

Available variants 

Heritability reported in the original 

articles (SE) 
LDSC 

heritability (SE) 
Case Control LDSCa GCTA-GREML-LDMSa 

BRCA Breast cancer Ref. [2] 133,384 113,789 genome-wide variants - - 0.11 (0.0067) 

PRAD Prostate cancer Ref. [3] 79,194 61,112 genome-wide variants - - 0.11 (0.013) 

COADREAD Colorectal cancer Ref. [4] 58,131 67,347 lead variantsb - 0.118 - 

SKCM Skin cutaneous melanoma Ref. [5] 30,134 81,415 variants with P < 1×10-4 0.098 (0.02) - - 

LUCA Lung cancer Ref. [6] 29,266 56,450 variants with P < 1×10-5 0.089 (0.0131) - - 

LUAD Lung adenocarcinoma Ref. [6] 11,273 55,483 variants with P < 1×10-5 0.067 (0.0094) - - 

LUSC Lung squamous cell carcinoma Ref. [6] 7,426 55,627 variants with P < 1×10-5 0.062 (0.013) - - 

UCEC Uterine endometrial carcinoma Ref. [7] 12,906 108,979 genome-wide variants - - 0.042 (0.012) 

OV Ovarian serous carcinoma Ref. [8] 14,049 40,941 genome-wide variants - - 0.043 (0.0093) 

ESCA (BEEA)c Esophageal adenocarcinoma and Barrett's esophagus Ref. [9] 10,279 17,159 genome-wide variants - - 0.16 (0.024) 

ESCA (EA)c Esophageal adenocarcinoma Ref. [9] 4,112 17,159 genome-wide variants - - 0.16 (0.025) 

GBM Glioblastoma multiforme Ref. [10] 4,512 10,582 selected variantsd - - - 

HNSC Head and neck squamous cell carcinoma Ref. [11] 6,034 6,585 genome-wide variants - - 0.057 (0.023) 

CESC cervical cancer Ref. [12] 2,866 6,481 genome-wide variants - - 0.050 (0.087) 

a Methods used to estimate heritability 

b Independent lead variants with P < 1×10-5 

c “ESCA (BEEA)” is a GWAS for Barrett’s esophagus and esophageal adenocarcinoma, which considered both diseases as a single 
entity because of a very high genetic correlation (rg ~ 1) between these two diseases (9). On the other hand, “ESCA (EA)” is a GWAS 
only for esophageal adenocarcinoma. 
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d Variants with the nominal significance in a previous GWAS meta-analysis (13). We used GWAS summary statistics that was not 
stratified by age.  
SE, standard error; LDSC, linkage disequilibrium score regression (14); GCTA-GREML-LDMS, linkage disequilibrium- and minor 
allele frequency-stratified multicomponent genomic restricted maximum likelihood analysis, implemented in genome-wide complex 
trait analysis (15).  
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Supplementary Table 2: Definition of cases and controls in UKB. 

Study code 
Number of samples  Inclusion criteria of case samples Inclusion criteria of 

control samplesa  Case Control  Self-reported diseases ICD-10 codes Histology Sex 

BRCA 11,469 142,892  breast cancer C50 - female female 

PRAD 7,100 126,652  prostate cancer C61 - male male 

COADREAD 4,525 269,544  

colon cancer/sigmoid cancer, 

large bowel cancer/colorectal 

cancer, rectal cancer 

C18, C19, C20 - both both 

SKCM 4,242 269,544  malignant melanoma C43 - both both 

LUCA 1,996 269,544  
lung cancer, non-small cell lung 

cancer, small cell lung cancer 
C34 - both both 

LUAD 868 269,544  - C34 
Adenocarcinoma, intestinal type; Adenocarcinoma in tubulovillous adenoma; 

Adenocarcinoma in villous adenoma; Adenocarcinoma (NOS) 
both both 

LUSC 510 269,544  - C34 

Squamous cell carcinoma; Squamous cell carcinoma, keratinizing; Squamous cell 

carcinoma, large cell, non-keratinizing; Squamous cell carcinoma, micro-invasive; 

Squamous cell carcinoma, small cell, non-keratinizing 

both both 

UCEC 1,587 142,892  uterine/endometrial cancer C54 - female female 
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OV 367 142,892  - C56 

Papillary serous cystadenocarcinoma; Serous cystadenocarcinoma; Serous 

cystadenoma, borderline malignancy; Serous papillary cystic tumor of borderline 

malignancy; Serous surface papillary carcinoma 

female female 

ESCA (BEEA) 482 269,544  - C15 
Adenocarcinoma, NOS; Adenocarcinoma, intestinal type; 

Adenocarcinoma in tubulovillous adenoma 
both both 

ESCA (EA) 482 269,544  - C15 
Adenocarcinoma, NOS; Adenocarcinoma, intestinal type; 

Adenocarcinoma in tubulovillous adenoma 
both both 

GBM 262 269,544  - C71 Giant cell glioblastoma; Glioblastoma (NOS) both both 

HNSC 689 269,544  
oropharynx / oropharyngeal 

cancer, tongue cancer 

C01, C02, C03, 

C04, C05, C06, 

C09, C10, C13, 

C14 

- both both 

CESC 1,482 142,892  cervical cancer C53 - female female 

a Control samples were restricted to the samples without any cancer diagnosis or self-reported cancer. 

ICD, International Classification of Diseases; NOS, not otherwise specified.  
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Supplementary Table 3: Parameters and numbers of variants used for PRS. 

Study code 
The best PRS 

method 

The best C+T 

threshold 

The best lassosum 

parameters 
 Number of variants used 

s lambda  C+T 

(5×10-8) 

C+T 

(1×10-7) 

C+T 

(1×10-6) 

C+T 

(1×10-5) 

C+T 

(1×10-4) 

C+T 

(1×10-3) 

C+T 

(1×10-2) 

C+T 

(1×10-1) 
lassosuma PRScs LDpred2 

BRCA LDpred2 1×10-4 0.5 0.00428133  364 395 555 876 1,700 4,679 17,474 80,031 112,710 1,081,107 1,142,637 

PRAD lassosum 1×10-4 0.5 0.00545559  374 398 525 794 1,545 5,012 26,005 170,009 168,700 1,082,596 1,204,849 

COADREAD C+T (1×10-5) 1×10-5 - -  35 39 51 61 - - - - - - - 

SKCM C+T (1×10-4) 1×10-4 - -  108 120 156 280 672 - - - - - - 

LUCA C+T (1×10-5) 1×10-5 - -  48 50 82 133 - - - - - - - 

LUAD C+T (1×10-5) 1×10-5 - -  19 23 33 74 - - - - - - - 

LUSC C+T (1×10-5) 1×10-5 - -  29 30 45 90 - - - - - - - 

UCEC lassosum 1×10-1 0.9 0.00695193  17 19 32 75 329 1,871 11,415 64,118 529,365 1,075,588 1,126,937 

OV lassosum 5×10-8 0.9 0.01128838  35 39 50 97 395 2,757 21,477 161,855 144,810 1,082,662 1,207,877 

ESCA (BEEA) lassosum 1×10-1 0.9 0.00885867  15 19 44 94 295 1,700 11,964 83,657 601,980 1,074,317 1,076,634 

ESCA (EA) lassosum 1×10-1 0.5 0.01128838  5 6 10 42 211 1,451 11,352 84,768 356,743 1,077,063 1,082,942 

GBM C+T (1×10-1) 1×10-1 - -  20 20 25 48 144 393 778 910 - - - 

HNSC PRScs 1×10-1 0.9 0.00162378  2 2 10 41 210 1,426 9,814 58,334 4,141,292 931,477 994,382 

CESC lassosum 1×10-3 0.9 0.02976351  2 3 5 13 50 346 2,236 14,463 2,814 229,973 223,583 

a 80 PRSs were calculated for each study according to the hyperparameters. This table shows the data of the most predictable 
PRS.  
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Supplementary Table 4: Evaluation of PRSs using UKB resources. 

Study code PRS 
ΔAUC (full model 
- reduced model) 

AUC 
(full model) 

AUC 
(reduced model) 

AUC evaluated 
without covariates 
(Phenotype ~ PRS) 

Nagelkerke's 
R2 

P (Delong's 
test) 

Adjusted P 
(Benjamini-Hochberg) 

BRCA LDpred2 8.03×10-2 0.696 0.616 0.659 5.55×10-2 2.41×10-239 1.68×10-238 

UCEC lassosum 7.95×10-2 0.761 0.681 0.697 1.10×10-1 1.23×10-29 4.30×10-29 

SKCM best C+T (P < 1×10-4) 6.75×10-2 0.682 0.615 0.645 2.61×10-2 6.01×10-80 2.81×10-79 

PRAD lassosum 6.50×10-2 0.813 0.748 0.701 7.98×10-2 1.62×10-242 2.27×10-241 

GBM best C+T (P < 1×10-1) 4.13×10-2 0.758 0.717 0.651 2.16×10-2 2.42×10-5 4.23×10-5 

OV lassosum 2.93×10-2 0.717 0.687 0.620 1.42×10-2 4.91×10-5 7.64×10-5 

COADREAD best C+T (P < 1×10-5) 1.73×10-2 0.724 0.707 0.594 1.15×10-2 1.02×10-27 2.87×10-27 

ESCA (BEEA) lassosum 1.46×10-2 0.819 0.804 0.614 1.23×10-2 1.40×10-5 2.80×10-5 

ESCA (EA) lassosum 1.01×10-2 0.814 0.804 0.594 8.75×10-3 3.66×10-4 5.13×10-4 

CESC lassosum 1.02×10-2 0.563 0.553 0.537 1.58×10-3 2.33×10-2 2.51×10-2 

HNSC PRScs 9.88×10-3 0.672 0.662 0.572 5.61×10-3 2.13×10-2 2.48×10-2 

LUCA best C+T (P < 1×10-5) 2.24×10-3 0.729 0.727 0.543 1.35×10-3 4.83×10-3 6.15×10-3 

LUSC best C+T (P < 1×10-5) 7.71×10-4 0.778 0.777 0.539 7.46×10-4 4.18×10-1 4.18×10-1 

LUAD best C+T (P < 1×10-5) 1.30×10-2 0.743 0.730 0.580 6.49×10-3 5.01×10-6 1.17×10-5 

Reduced model included all covariates but PRS (i.e., age, sex, and top 20 genetic principal components [PCs]). AUC, area under the 

curve.  
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Supplementary Table 5: Number of patients without sex aneuploidy in TCGA. 

TCGA Cancer code Corresponding study code EUR EAS AFR AMR SAS Admix 

ACC - 64 2 0 0 0 12 

BLCA - 283 38 12 3 1 29 

BRCA BRCA 759 52 116 6 6 82 

CESC - 151 19 17 24 0 62 

CHOL - 27 2 2 2 0 3 

COAD COADREAD 329 12 46 0 0 24 

DLBC - 27 14 1 1 1 4 

ESCAa ESCA (BEEA) 115 42 3 1 0 17 

GBM GBM 362 5 25 3 2 45 

HNSC - 405 5 36 5 6 47 

KICH - 55 1 4 1 1 4 

KIRC - 402 6 30 13 0 39 

KIRP - 194 5 38 4 1 28 

LAML - 162 1 9 1 0 6 

LGG - 403 8 9 10 2 43 

LIHC - 152 153 14 4 0 22 

LUAD - 426 9 33 2 0 26 

LUSC - 368 8 16 0 0 23 

MESO - 79 0 0 0 1 5 

OV OV 479 13 23 4 4 38 

PAAD - 152 11 6 2 0 7 

PCPG - 140 3 13 2 4 11 

PRAD PRAD 383 8 40 2 0 37 

READ COADREAD 131 1 2 0 0 8 

SARC - 205 6 12 3 0 18 

SKCM - 437 12 1 5 0 7 

STAD - 254 72 8 5 0 58 

TGCT - 116 4 1 11 0 16 

THCA - 335 40 16 21 15 50 

THYM - 91 12 5 2 1 11 

UCEC UCEC 361 30 77 8 2 48 

UCS UCEC 38 3 4 0 0 4 

UVM - 80 0 0 0 0 0 
a We used only esophagus adenocarcinoma (n = 82 for EUR samples) for the germline–
somatic association study to match the histology with the GWAS cohort. 
EUR, European; EAS; East Asian; AFR, African; AMR, American; SAS, South Asian.  
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Supplementary Table 6: The gene-level associations for UCEC and BRCA in the cell 

cycle pathway. 

  UCEC   BRCA 
Gene Z-score P-value   Z-score P-value 

CDKN2B 2.71  2.4×10-3  6.54  6.9×10-13 
CDKN2A 1.52  4.6×10-2  6.08  1.1×10-11 
CCND1 2.49  3.8×10-3  5.55  3.9×10-10 

CDKN1A 1.28  7.3×10-2  3.92  3.1×10-6 
CDKN2C -0.68  7.1×10-1  3.29  7.4×10-5 
CCNE1 0.18  3.6×10-1  2.35  1.4×10-3 
E2F3 0.31  2.9×10-1  2.13  2.3×10-3 
CDK6 -0.31  5.3×10-1  1.61  1.1×10-2 
E2F1 1.35  6.7×10-2  1.71  1.1×10-2 

CDKN1B 0.43  2.8×10-1  1.60  1.3×10-2 
CDK2 1.31  7.8×10-2  0.67  1.2×10-1 
CDK4 -0.29  5.6×10-1  0.26  2.1×10-1 

CCND3 0.40  2.5×10-1  -0.48  3.9×10-1 
CCND2 2.67  2.0×10-3  -1.08  6.5×10-1 

RB1 1.42  5.3×10-2   -1.26  7.5×10-1 
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Supplementary Materials and Methods 

UK Biobank (UKB) 

UKB is a population-based prospective cohort with approximately 500,000 participants. The 

detailed characteristics of UKB were described elsewhere (16). The UKB analysis was 

conducted via the application (47821). We used the imputed genotype data (release version 

3) and excluded variants with an INFO score < 0.5. To minimize the variability due to 

population stratification, we restricted our analyses to white British individuals who met all of 

the following criteria: (i) the self-reported ethnicity was white British; (ii) the genetic ethnicity 

defined in the UKB data-field 22006 was “Caucasian”; (iii) the genetic sex was matched to 

the self-reported sex and was not inferred as sex chromosome aneuploidy; (iv) the individuals 

were not outliers in heterozygosity or missing rate; (v) the individuals were not excluded from 

kinship inference process. Subsequently, for each pair of relatives inferred to be third degree 

or closer, individuals with a higher missing rate were removed, resulting in 335,048 unrelated 

individuals. 

 

Heritability estimates 

We evaluated common SNP heritability and genetic correlation using LD score regression 

(14). We used LD scores calculated for HapMap3 variants using European samples in the 

1000 Genomes Project (14), and the baseline LD model v2.2 (17) as the annotations used 

for the heritability analysis. The estimated heritability and genetic correlation were converted 

to the liability scale, assuming that the population prevalence matched the prevalence in the 

UKB analysis data. 

 

Pathway enrichment analysis 

We ran MAGMA (18) to summarize GWAS summary statistics of UCEC and BRCA into the 
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gene-level statistics and to perform a pathway enrichment analysis. We used the 1000 

Genomes Project (phase 3) (19) European samples as the reference panel. Pathway 

enrichment was evaluated for the canonical cancer pathways defined in TCGA (20), and the 

enrichment with false discovery rate < 0.05 was considered to be significant. Among genes 

in pathways significantly enriched in both UCEC and BRCA, genes with MAGMA gene-level 

P-value < 0.05 were considered as those associated with both cancer types. To calculate the 

subset of the PRS values, we chose three genes that were associated with both cancer types, 

and used the variants overlapping with the gene body of these genes among the variants 

used for the best PRSs. 

  

The Cancer Genome Atlas (TCGA) 

Data acquisition 

Germline genotype data for common variants were obtained using Affymetrix Genome-Wide 

Human SNP Array 6.0. Samples that passed quality control were chosen based on TCGA 

PanCan Atlas Project. Birdseed files representing 905,600 variants for 11,520 normal tissues 

were downloaded from GDC Portal (database of Genotypes and Phenotypes (dbGaP) 

accession phs000178.v10.p8) and annotated with the corresponding annotation file (release 

35). Somatic and germline mutational data in Mutation Annotation Format (compiled by TCGA 

PanCanAtlas MC3 Working Group and Germline Working Group, respectively), RNA-seq 

expression data, In Silico Admixture Removal (ISAR)-corrected copy number segment data, 

and clinical information were downloaded from GDC (https://gdc.cancer.gov/about-

data/publications/pancanatlas and https://gdc.cancer.gov/about-

data/publications/PanCanAtlas-Germline-AWG). TCGA subtype information was obtained 

from original cancer type-specific studies or PanCan Atlas studies (21–24). Evaluated 

subtypes were shown in Supplementary Figure 5F. Germline variants classified as 

‘pathogenic’ or ‘likely pathogenic’ by TCGA PanCan Atlas Germline Working Group (25) were 
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considered as germline pathogenic variants. 

 

Quality control of genotype data 

We first excluded low confidence genotypes (the Birdseed [26] metric, confidence, larger than 

0.05) per sample. As a result, genotypes were retained in at least one sample for 868,179 

variants. Samples were excluded if the genotype call rate was less than 0.95 or 

heterozygosity was outside of three standard deviations from the mean value. Duplicates and 

closely related individuals were detected with King (27). For a pair within the second degree, 

one individual with a lower call rate was excluded. For multiple samples from a single 

individual, we discarded all of the samples unless they were all inferred as duplicates of the 

same individual. Subsequently, we chose one sample per individual prioritizing peripheral 

blood samples and samples with the highest call rate. Variants were excluded if (i) the call 

rate was less than 0.97, (ii) minor allele frequency was less than 0.005, or (iii) P-value of 

Hardy-Weinberg Equilibrium (HWE) with the mid-P adjustment was less than 1×10-6 in at 

least one population. Among variants with low HWE P-values, one variant, rs10052657, was 

rescued because it was associated with esophageal squamous cell carcinoma in GWAS 

catalog (28). After quality control, we retained 751,839 variants for 10,228 individuals for 

imputation.  

 

Imputation 

We first matched the strand of TCGA genotype data with those of 1000 Genomes Project 

(phase 3) (19). For palindrome variants, we utilized the LD structure of the European 

population by using Genotype Harmonizer (29) (v1.4.23, 

https://github.com/molgenis/systemsgenetics/wiki/Genotype-Harmonizer) with its default 

settings, and additionally, variants were retained if the difference in allele frequencies 

between the two datasets were less than 0.35. Statistical phasing by Shapeit4 (30) (v4.1.2, 
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https://odelaneau.github.io/shapeit4/) were conducted with the option “--mcmc-iterations 

10b,1p,1b,1p,1b,1p,1b,1p,10m” for more accurate phasing than the default settings. 

Subsequently, we conducted imputation with Minimac4 (31) (v1.0.1, 

http://genome.sph.umich.edu/wiki/Minimac4), and kept variants with (i) R2 larger than 0.7 and 

(ii) minor allele frequency larger than 0.005, resulting in 22,044,972 variants. 

 

Ancestry analysis 

We merged non-palindrome autosome variants of TCGA genotype data with those of 1000 

Genomes Project. After LD pruning and excluding high LD regions (32), we performed 

principal component analysis (PCA) with smartpca (33,34) (EIGENSOFT v6.1.4, 

https://www.hsph.harvard.edu/alkes-price/software/) and subsequently conducted dimension 

reduction for the first 20 PCs by UMAP (35,36). Because clusters were clearly separated in 

a two-dimensional plot, we manually inspected the clusters and found that they matched well 

with self-reported race and ethnicity (Supplementary Figure 4). We also used a likelihood 

model implemented in ADMIXTURE (1) (v1.3.0, http://dalexander.github.io/admixture/) with 

the number of ancestries of five. Samples were considered as admixed if the sum of the 

probabilities of all ancestries except for the best-inferred ancestry was greater than 0.2. 

 

Sex inference 

We obtained the probe intensity of the genotyping array by running Birdseed (26) (v1.4, 

https://www.broadinstitute.org/birdsuite/birdsuite-install) for non-tumor samples. We used the 

same batches as used in the original genotyping procedure by TCGA. We calculated the 

mean intensity in sex chromosomes in proportion to that in autosomal chromosomes, and 

classified samples as male if the relative mean intensity of chromosome X was less than 0.8 

and that of chromosome Y was greater than 0.5. Similarly, we classified samples as female 

if the relative mean intensity of chromosome X was greater than 0.85 and that of chromosome 
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Y was less than 0.7. Other samples were considered to have atypical sex chromosomes and 

were not used to analyze germline–somatic association. 

 

Somatic mutation analysis 

Somatic mutations with low variant allele frequency (less than 0.05) were excluded, and total 

somatic mutation numbers were calculated as all mutations (both synonymous and non-

synonymous) in coding regions. 

Tumors were classified as hypermutated if they met the criteria below: (i) samples harboring 

pathogenic somatic POLE/POLD1 mutations (37), (ii) microsatellite instable samples, 

determined using MSIsensor as previously described (38), (iii) samples with total somatic 

mutation number above 75th percentile + 3 * interquartile range in each cancer type, after 

excluding (i) and (ii) samples. Hypermutator samples were excluded when evaluating somatic 

mutations to ensure accurate and representative results for the majority of tumor samples. 

Driver gene list for each cancer type was obtained from TCGA PanCan Atlas Project (39). 

Non-synonymous somatic mutations in the driver genes of the corresponding cancer type 

were considered as somatic driver mutations. Driver mutation numbers were calculated as a 

sum of somatic driver mutation numbers for each sample. Meta-analysis was performed if 

the gene was considered as a driver in three or more cancer types. 

 

Somatic copy number analysis 

To quantify the genomic fraction of LOH for each sample, we used publicly available ISAR-

corrected ABSOLUTE copy number calls. X and Y chromosome regions were discarded from 

the analysis. The genomic fraction of LOH was defined as 100 times the total length of LOH 

regions/length of the genome, as previously described (40). 

To distinguish focal and chromosome/arm SCNAs, we used GISTIC 2.0 (v2.0.23, 

https://github.com/broadinstitute/gistic2) applied to the ISAR-corrected ABSOLUTE 
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segmented file. Default parameters were used, except that a broad length cutoff was 0.7 

chromosome arms. Focal and chromosome/arm SCNA scores were calculated using 

GISTIC2.0 output as previously described (40,41). First, for each sample, each focal-event 

log2 copy number ratio from GISTIC2.0 was classified into the following score: 2 if the log2 

ratio ≥ 1, 1 if the log2 ratio < 1 and ≥ 0.25, 0 if the log2 ratio < 0.25 and ≥ −0.25, −1 if the log2 

ratio < −0.25 and ≥ −1, and −2 if the log2 ratio < −1. The absolute values of the score from 

each focal and chromosome/arm event were summed into focal and chromosome/arm 

scores, respectively. For amplification and deletion scores, only amplification and deletion 

events were considered, respectively. 

 

Immune status analysis 

Estimation of leukocyte fraction was generated using a mixture model of DNA methylation in 

pure leukocytes versus normal tissue. More details and all calls can be found elsewhere (42). 

Cytolytic activity metric was obtained by calculating the geometric mean of GZMA and PRF1 

expression. 

 

Single-sample Gene Set Enrichment analysis 

RNA-seq non-transformed gene expression values were input into single-sample gene set 

enrichment analysis (ssGSEA2.0, https://github.com/broadinstitute/ssGSEA2.0) (43) with 

default parameters. Fifty hallmark signature gene sets from the Molecular Signature 

Database (MSigDB v7.0) (44) were evaluated, and the signature enrichment score for each 

signature was generated for each sample.  

 

Clinical data analysis 

For each cancer type, samples were split into PRS value quartile groups. For survival 

analysis, Kaplan-Meier plots were visualized using survival and survminer R packages. Cox 
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Proportional Hazards model was used to compare PRS value quartiles in each cancer type. 

Gleason score (PRAD), histological grade (ESCA, UCEC, and OV), and sidedness 

(COADREAD) information were obtained from original cancer type-specific studies or TCGA 

PanCan Atlas studies (21,22,45–47). These clinical features were compared between four 

PRS value quartiles. 

 

Validation using the Pan-Cancer Analysis of Whole Genomes (PCAWG) PRAD cohorts 

For non-TCGA PCAWG cohorts, files of consensus somatic variant calls, germline variant 

calls, copy number calls, donor clinical information, and ancestry calls were obtained from 

ICGC Data Portal (https://dcc.icgc.org/). The consensus germline single-nucleotide variant 

call was used for PRS calculation. To identify germline pathogenic variants, we selected 

coding variants of 152 cancer predisposition genes compiled by TCGA (25). We then filtered 

for rare variants with ≤ 0.05% allele frequency in 1000 Genomes and Exome Aggregation 

Consortium (release r0.3.1). Among them, ‘pathogenic’ or ‘likely pathogenic’ variants 

annotated by Cancer Predisposition Sequencing Reporter (48) were considered as germline 

pathogenic variants. We excluded individuals of non-European ancestry from our analysis. 

Germline–somatic associations were evaluated in the same manner as TCGA analysis, 

except that subtypes were not considered in generalized linear model due to lack of subtype 

information for non-TCGA samples. 
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