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Materials and Methods 
Animal Studies  

All animal studies were approved by the University of Pennsylvania Institutional 
Animal Care and Use Committee. Mice were housed on a normal light-dark cycle (light 
on from 7 am to 7 pm) with constant access to normal chow (LabDiet, 5010) and water, 
except for special diets or periods of fasting where specified.  Experiments were initiated 
on mice of 6-13 weeks (typically 7-8 weeks) of age, unless otherwise stated. All 
experiments were performed with littermate controls. All mouse procedures were 
approved by the University of Pennsylvania Animal Care and Use Committee. Most 
studies involved either homozygous Flcnlox/lox mice (14, 54) or Flcnlox/lox mice also 
containing a loss-of-function whole-body Tfe3 mutation (14, 45). One breeding pair can 
yield 4 genotypes of mice: “control”, liver Flcn KO (“LiFKO”), Tfe3 whole-body 
knockout (“Tfe3 KO”), and liver Flcn KO and Tfe3 whole-body knockout together 
(double knockout, or “DKO”). To do this, we first cross Flcnlox/lox; Tfe3+/Y males (Tfe3 is 
X-linked, so these are wild-type for TFE3) with Flcnlox/lox; Tfe3+/- females, to yield males 
that are Flcnlox/lox and either Tfe3+/Y (wild-type for Tfe3) or Tfe3-/Y (KO for Tfe3).  

For most experiments (with the exception of the experiments described at the end 
of this section), these male mice were fed on normal chow (LabDiet, 5010) until 
adulthood then injected with ~1.5e11 genome copies/mouse of AAV8-TBG-GFP or 
AAV8-TBG-Cre (Penn Vector Core, AV-8-PV0146 and AV-8-PV1091) to yield control 
mice (Flcnlox/lox, Tfe3+/Y with GFP), LiFKO mice (Flcnlox/lox, Tfe3+/Y with Cre), Tfe3 KO 
mice (Flcnlox/lox, Tfe3-/Y with GFP), and DKO mice (Flcnlox/lox, Tfe3-/Y with Cre). Further 
experiments were subsequently begun about one week (occasionally 2-4 weeks) after 
virus injection and consisted of the following experimental paradigms (1) Mice were fed 
normal chow (LabDiet, 5010) and normal water, and euthanized either ad lib in the 
morning/afternoon (Fig. 1E, S7A, 3G, and normal chow ChIP-seq experiments) or after 
an overnight fast followed by 4 hours of normal chow refeeding (Fig. 1D, 1G, S1B). 
Livers were harvested for downstream analysis. Of note, the livers that were analyzed for 
DNL gene expression (Fig. S7A) were from mice that were injected with AAV at a range 
of 12 weeks to 6.5 months of age. (2) Mice were fed 7-9 days of FPC diet regimen, 
consisting of FPC diet chow (30) (Teklad, TD190142) as well as 42 g/L glucose (55%) 
and fructose (45%) in the drinking water, and euthanized after either an overnight fast 
followed by 4 hours of FPC diet regimen refeeding (diet: Teklad, TD190142) or ad lib at 
around 10 pm (Fig. 1H, 1I, 5A-C, S1C, S8B). Of note, FPC diet chow was always given 
with sugar water. (3) Mice were fed 16 weeks of normal chow or AMLN diet (28) 
(Research Diets, D09100301) and consequently underwent an oral GTT (see more details 
below). The mice were then fed 1-2.5 more weeks of normal chow and AMLN diet and 
euthanized after a 4-6 hour fast (Fig. 2A-E, 3A-C, 3E, 4A-B, S2B-F, S2H-J, S5A-B, 
S8A-B, S12A, S12C). (4) Mice were fed 16 weeks of normal chow/normal water or an 
FPC diet/sugar water regimen (diet: Teklad, TD160785, FPC diet as mentioned before 
but with vitamin-free casein) and euthanized after removing their food (but not their 
normal or sugar water) for ~4-6 hours (Fig. 2F-J, 3D, 4C-D, S4C-G, S8B, S12B, S12D). 
(5) Mice were fed 5-6 days of GAN diet (Research Diets, D09100310), then subjected to 
a GTT as described below (Fig. S5C). The same mice were fed an additional 4-5 days of 
GAN diet then underwent a CLAMS experiment (Fig. S3, S6C). The mice were 
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continued on diet then euthanized at ~8 weeks of feeding after a 5 hour fast (Fig. S2G). 
(6) Mice fed on normal chow underwent a CLAMS experiment, then fed on 10 days of 
FPC diet regimen and subjected to an additional CLAMS experiment (Fig. S3, S4A-B, 
S6C). After 2.5 weeks of FPC diet feeding, mice were fasted overnight and plasma was 
collected for beta-hydroxybutyrate analysis (Fig. S6A). (7) Mice were fed 7-11 days of 
AMLN diet, and consequently underwent the 13C fructose gavage experiment, as 
described below (Fig. 4E). (8) Mice on normal chow underwent the 13C fructose gavage 
experiment, as described below (Fig. S7B). (9) For the D2O experiment, mice were fed 9 
days of FPC diet regimen, then injected with D2O and euthanized starting at midnight, in 
the fed state, as detailed below (Fig. 4F). Plasma was also collected for analysis of beta-
hydroxybutyrate (Fig. S6A). (7) For the LXR agonist rescue experiment, mice were fed 
~7.5-9.5 weeks of the FPC diet regimen (diet: Teklad, TD190142) with twice weekly 
vehicle or T0901317 injections and subsequently euthanized ad lib in the morning, all as 
described below (Fig. S8C-E). (9) For the NASH protection experiment, mice were fed 6 
weeks of normal chow or CDAA-HF diet (47) (Research Diets, A06071302), and 
euthanized after a 4-6 hour fast (Fig. 6A-E, S11). 

Other experiments deviated from the above injection scheme. For AAV-nSREBP-
1c experiments, male mice fed on normal chow were given either 2.5e11 genome 
copies/mouse of AAV8-TBG-GFP (control mice given control virus, referred to as 
“control”), 2.5e11 genome copies/mouse of AAV8-TBG-Cre (LiFKO mice given control 
virus, referred to as “LiFKO”), 1.5e11 genome copies/mouse of AAV8-TBG-GFP + 
1.0e11 genome copies/mouse of AAV8-ApoE/AAT-nSREBP-1c (control mice given 
nSREBP-1c virus, referred to as “control+1c”), or 1.5e11 genome copies/mouse of 
AAV8-TBG-Cre + 1.0e11 genome copies/mouse of AAV8-ApoE/AAT-nSREBP-1c 
(LiFKO mice given nSREBP-1c virus, referred to as “LiFKO+1c”). About a week after 
virus injection, mice were fed 9 days of FPC diet regimen (diet: Teklad, TD190142) then 
euthanized ad lib around 9-10 am (Fig. 5F-J and FPC diet ChIP-seq experiments). For the 
NASH reversal experiment, Flcnlox/lox male mice were fed 29 days of CDAA-HF diet, to 
induce NASH. Some were euthanized after a ~4-hour fast (non-injected). The rest were 
injected with either 1.5e11 GC/mouse of AAV8-TBG-GFP or -Cre, fed another 4 weeks 
of CDAA-HF diet, and subsequently euthanized after a ~4-hour fast (Fig. 6F-J, S11). For 
the control vs. Raptor KO subcellular fractionation experiment, mouse liver samples 
from the laboratory of Dr. Paul Titchenell were used. 6-10 week old Raptorlox/lox mice 
were fed normal chow and injected with 1.0e11 GC/mouse of either AAV8-TBG-GFP 
(control) or -Cre (“Rap KO” or “Raptor KO”), and euthanized 2 weeks later after an 
overnight fast followed by 4 hours of refeeding, as referenced in Quinn et al., 2017 (Fig. 
1F, S1A). For the control vs. Tsc1 KO subcellular fractional experiment, mouse liver 
samples from the laboratory of Dr. Sudha Biddinger were used. 8-9 week old female 
Tsc1lox/lox (control) mice or Albumin-Cre Tsc1lox/lox mice (Tsc1 KO) (63) were euthanized 
ad lib (Fig. 1J, S1D).  
 
Protein isolation from whole tissues.  

A small chunk of liver was combined with a steel bead and 1 mL of RIPA buffer 
(homemade or RPI R26200) containing cOmplete Mini, EDTA-free protease inhibitor 
(Roche, 11836170001) and PhosSTOP phosphatase inhibitor (Roche, 4906837001). The 
liver was then homogenized using the TissueLyser LT machine (Qiagen, 85600) at a 
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frequency of 50 Hz for 5 minutes followed by probe sonication, or using the Omni Bead 
Ruptor 12 (Omni,  SKU 19-050A) at a setting of 3.25 speed for 20 seconds, repeated 
twice. The mixture was spun at 10 minutes at maximum speed (~14,000 rpm) at 4 ºC, to 
pellet debris. The supernatant was then collected into a fresh tube, taking care to avoid 
any top lipid layer. If the lipid layer was disturbed, then the tubes were re-spun, and lipid-
free supernatant was collected again. Protein concentration was measured with BCA 
protein assay kit (Thermo Fisher, 23225) and protein concentrations were adjusted to the 
same concentration per sample. 
 
Immunoblotting 

The same amount of protein (5-16.66 µg) per sample was loaded to a 4-20% 
gradient Tris-polyacrylamide gel (Bio-Rad, 3450034) and electrophoresed at 100V for 1-
1.5 hours. The gels were transferred to PVDF membranes (IPVH00010) at 500 mA for 
60-80 minutes, which were then blocked in 5% non-fat dry milk in TBST for 30-60 
minutes and incubated with primary antibody overnight at 4 ºC. The next day, 
membranes were washed in TBST, and then incubated for 30-60 minutes with rabbit 
(Cell Signaling Technology, 7074) or mouse (Cell Signaling Technology, 7076) 
horseradish peroxidase (HRP)-conjugated secondary antibody diluted at 1:10,000 in 5% 
non-fat dry milk in TBST. The membranes were washed again in TBST, incubated for 
~30 seconds with enhanced chemiluminescent substrate for HRP (Thermo Fisher, 
34094), and imaged using a digital imager (GE Healthcare Life Sciences, ImageQuant 
LAS 400; or Amersham Imager 600). The following primary antibodies were used: anti-
FLCN (Abcam, ab124885), anti-HSP90 (Cell Signaling Technology, 4874), anti-TFE3 
(Millipore Sigma, HPA023881), anti-14-3-3 (Cell Signaling Technology, 8312), anti-pS6 
S240/4 (Cell Signaling Technology, 5364), anti-total S6 (Cell Signaling Technology, 
2217), anti-pS6K Thr389 (Cell Signaling Technology, 9234), anti-total S6K (Cell 
Signaling Technology, 2708), anti-p4E-BP1 S65 (Cell Signaling Technology, 9451), 
anti-p4E-BP1 Thr37/46 (Cell Signaling Technology, 2855), anti-total 4E-BP1 (Cell 
Signaling Technology, 9644), anti-total Lipin1 and anti-pLipin1 S106 (8), anti-beta actin 
(Cell Signaling Technology, 4970), anti-HDAC2 (Abcam, ab32117), anti-pAMPK T172 
(Cell Signaling Technology, 2535), anti-total AMPK (5831), anti-pACC S79 (Cell 
Signaling Technology, 11818), anti-total ACC (Cell Signaling Technology, 3676), anti-
pULK1 S555 (Cell Signaling Technology, 5869), anti-total ULK1 (Cell Signaling 
Technology, 8054), anti-pAKT S473 (Cell Signaling Technology, 9271), anti-total AKT 
(Cell Signaling Technology, 4691), anti-OXPHOS cocktail (Abcam, ab110413), anti-
LC3B (Abcam, ab192890), anti-FASN (Cell Signaling Technology, 3180), anti-ACSS2 
(Cell Signaling Technology, 3658), anti-ACLY (Cell Signaling Technology, 13390), 
anti-SREBP1 (Millipore Sigma, MABS1987), anti-HA (Cell Signaling Technology, 
3724), and anti-INSIG2 (64).  
 
Quantification of immunoblots 

Immunoblots were quantified using FIJI software. A rectangle of the same size 
was drawn around the band of interest in each lane, and another rectangle was drawn in 
an empty lane for a background measurement. Integrated density measurements were 
taken for each rectangle, and background integrated density was subtracted. For TFE3 
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immunoblot quantification, the rectangle included both the upper band, induced by 
LiFKO (at ~90 kDA), and the lower bands (at ~70 kDA).   
 
Subcellular fractionation followed by protein isolation and immunoblotting: Control, 
LiFKO, and Tfe3 KO livers 

370-425.7 mg of liver was minced with scissors. 4 mL of hypotonic buffer (10 
mM HEPES, 1.5 mM MgCl2, 10 mM KCl, with 1 mM of DTT and protease/phosphatase 
inhibitors) was then added to the tissue, and dounced with 10 strokes of pestle A followed 
by 20 strokes of pestle B (dounce tissue grinder set, Millipore Sigma, D9063). The 
sample was then vortexed and incubated on ice for 15 minutes.  640 uL of 12.5% 
IGEPAL CA-630 was added to the tube and vortexed for 10 seconds. The liver 
homogenate was then filtered through a 100-micron filter, and 100 µL of lysate was taken 
for the whole cell lysate fraction. The rest of the mixture was centrifuged for 10 minutes 
at 4 ºC at 3000 pm. The supernatant was collected as the cytoplasmic fraction. The pellet 
(nuclear fraction) was resuspended in extraction buffer (20 mM HEPES, 1.5 mM MgCl2, 
0.42 M NaCl, 0.2 mM EDTA, 25% glycerol, with 1 mM of DTT and 
protease/phosphatase inhibitors). The samples were incubated on ice for 30 minutes, 
vortexed at 10-minute intervals, and then spun at maximum speed for 30 minutes. The 
supernatant was collected as the nuclear fraction. The nuclear and whole cell lysate 
fractions were quickly sonicated, and subsequently all fractions were subjected to BCA 
protein assay for protein quantification. Whole cell lysate and cytoplasmic fractions were 
adjusted to 1 µg/µL, while the nuclear fraction as adjusted to 0.6 µg/µL with RIPA 
buffer. For immunoblotting, the same amount of protein was loaded for each sample in a 
fraction (8.33 µg for the whole cell and cytoplasmic fractions, 5 µg for the nuclear 
fraction); immunoblotting was then performed as described in the above section.  
 
Subcellular fractionation followed by protein isolation and immunoblotting: Control, 
Raptor KO, and Tsc1 KO livers 

A chunk of liver was minced with scissors. The rest of the fractionation protocol 
was as described above except the volumes were halved for most samples. All fractions 
were subjected to BCA protein assay for protein quantification, and proteins were diluted 
with the appropriate buffer (hypotonic buffer for whole cell and cytoplasmic fractions; 
extraction buffer for nuclear fraction). For immunoblotting, the same amount of protein 
was loaded for each sample in a fraction (Raptor KO experiment: 8.33 µg for the whole 
cell and cytoplasmic fractions, 5 µg for the nuclear fraction; Tsc1 KO experiment: 16.66 
µg for all fractions); immunoblotting was then performed as described in the above 
section. 
 
Total Lipin1 immunoprecipitation followed by immunoblotting. To conjugate antibodies, 
either (1) 3 µL of 0.247 mg/mL anti-total Lipin1 antibody (8) or (2) 0.247 µL of 3 
mg/mL rabbig IgG isotype control (Thermo Scientific, 10500C) was mixed with 15 µL 
protein A agarose (Invitrogen, 15918014) and 1 mL of lysis buffer (25 mM Tris HCl, 1 
mM EDTA, 1 mM EGTA, 0.1% Tween20, 1 mM DTT) containing 0.1% BSA, 1 
cOmplete Mini, EDTA-free protease inhibitor (Roche, 11836170001), and 1 PhosSTOP 
phosphatase inhibitor (Roche, 4906837001). The mixture was rotated for 60 minutes at 
room temperature. During antibody conjugation, ~50 mg of liver was then homogenized 
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in 1 mL lysis buffer using the Omni Bead Ruptor 12 at a setting of 3.25 speed for 20 
seconds, repeated twice. Liver lysates were then spun at 10 minutes at maximum speed 
(~14,000 rpm) at 4 ºC, to pellet debris. The supernatant was then collected into a fresh 
tube, taking care to avoid any top lipid layer. Protein concentration was measured with 
BCA protein assay kit (Thermo Fisher, 23225). After antibodies were conjugated to 
agarose beads, the beads were spun at 800g for 15 seconds, and supernatant was 
removed. 1 mL of lysis buffer was added to wash, and beads were then re-spun. 1.5 mg 
of liver lysate was added to the washed beads, and the mixture was rotated for 2 hours at 
4 ºC, for immunoprecipitation. The beads were then washed again 3 times, and finally 
resuspended in 50 µL of lysis buffer containing 4x Laemmli protein sample buffer (Bio-
Rad, 1610747) and 2-mercaptoethanol. To elute immunoprecipitated protein, the 
resuspended beads were heated to 70 ºC for 10 minutes, then supernatant was collected. 
10 µL of protein was subsequently loaded onto a gel for immunoblot as described above.  
 
Histology analysis 

Liver tissues were fixed in 4% paraformaldehyde for at least 16 hours, then 
dehydrated into 100% ethanol. Tissues were subsequently embedded in paraffin by the 
CVI Histology Core and sectioned. H&E staining was performed with CAT Hematoxylin 
(Biocare Medical, CATHE-M) and Edgar Degas Eosin (Biocare Medical, THE-MM). 
Sirius Red staining was performed with 0.1% Direct Red (Millipore Sigma, 365548) and 
0.1% Fast Green (Millipore Sigma, F72525) in a picric acid solution, followed by 
incubation in 0.5% acetic acid solution. Liver tissues were additionally placed in a plastic 
mold containing embedding media (optimal cutting temperature, OCT), and subsequently 
flash-frozen in a container of 2-methylbutane submerged in liquid nitrogen. Frozen 
blocks were sectioned with a cryostat and stained with Oil Red O (Abcam ab150678). 
For quantification of Sirius Red staining, 3-14 random areas of liver were imaged with 
the 20x objective (CDAA-HF prevention study) or the 10x objective (CDAA-HF reversal 
study). FIJI and ImageJ were used to quantify Sirius Red+ area. Images were split to 
RGB channels, and the green channel was thresholded with Yen automatic thresholding. 
%area was then quantified which corresponded to percent Sirius Red+ area. 
 
Liver triglyceride quantification 

A range of 12-110 mg of liver was combined with 10 µL/mg of 5% Igepal CA630 
and a steel bead. The livers were then homogenized using the TissueLyser LT machine 
(Qiagen 85600) at a frequency of 50 Hz for 5 minutes or using the Omni Bead Ruptor 12 
at a setting of 3.25 speed for 20 seconds, repeated twice. The samples were boiled for 10 
minutes at 80 ºC, with intermittent vortexing, cooled to room temperature, and then re-
boiled, for complete solubilization of triglycerides. Samples were spun at 10,000g for 10 
minutes at 4 ºC, and supernatant (including lipid layer) was collected. The supernatants 
were re-spun to remove any remaining debris, and once again supernatants (including 
lipid layer) were collected. The samples were diluted 1:20 in water for triglyceride 
measurement. 5 µL of each triglyceride standard (serial 1:1 dilutions starting from 200 
mg/dl, VWR, 10022-966) and sample was mixed with 200 µL of Infinity Triglyceride 
Reagent (Fisher Scientific, TR22421) in a clear 96 well plate, and then incubated for 15 
minutes at room temperature in the dark. The plate was read at an absorbance of 540 nm, 
and a standard curve was calculated using linear regression. Sample readings were 
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interpolated onto the standard curve to determine triglyceride concentration of liver 
lysates (mg/dL). These values were divided by 10 to determine triglyceride amount per 
gram of liver homogenized (mg/g).   
 
Blind scoring of mouse NAFLD/NASH pathology slides 

A pathologist from the Penn Vet Comparative Pathology Core blindly scored 
paraffin-embedded liver H&E slides for NAFLD activity score (NAS), consisting of the 
sum of the scores for steatosis grade, lobular inflammation, and ballooning degeneration. 
Paraffin-embedded liver Sirius Red slides were used for scoring of fibrosis stage, as 
referenced. Scoring was done as referenced (65). Briefly, the following scoring criteria 
were used: Steatosis grade (<5% = score of 0; 5-33% = score of 1; >33%-66% = score of 
2; >66% = score of 3); Lobular inflammation (no inflammatory foci = score of 0; <2 foci 
per 200x field = score of 1; 2-4 foci per 200x field = score of 2; >4 foci per 200x field = 
score of 3); Ballooning degeneration (none = score of 0; few/borderline = score of 1; 
many = score of 2); Fibrosis stage (none = score of 0; mild perisinusoidal fibrosis = score 
of 1A; moderate perisinusoidal fibrosis = score of 1B; portal/periportal fibrosis = score of 
1C; perisinusoidal and portal/periportal fibrosis = score of 2; bridging fibrosis = score of 
3; cirrhosis = score of 4). Of note, all livers studied either had fibrosis scores of 0 (no 
fibrosis) or 1A (mild perisinusoidal fibrosis).  NAS scores of 2 or less do not meet criteria 
for NASH, whereas scores of 5 or greater indicate presence of NASH. NAS scores of 3-4 
are in between cases: there was interobserver disagreement on whether the livers should 
be diagnosed as having no NASH, borderline steatohepatitis, or definitive NASH.   
 
Quantification of plasma triglycerides, non-esterified fatty acids, and cholesterol species  

For the normal chow vs. AMLN diet experiments, mice were fasted for 4 hours, 
and blood samples were collected by heparinized capillary tubes and centrifuged at 5000g 
at 4 ºC for 20 minutes. The plasma layer was collected and stored at -80 ºC until analysis. 
Plasma samples were analyzed by Axcel autoanalyzer (Alfa Wassermann Diagnostic 
Technologies). For the FPC diet experiments, retro-orbital blood was collected by 
heparinized capillary tubes from mice who had their food removed (but not their normal 
or sugar water) for 4-6 hours. Blood was centrifuged at 10,000g at 4 ºC for 10 minutes. 
The plasma layer was collected and stored at -80 ºC until analysis. For triglyceride 
measurements for these FPC diet samples, plasma was diluted 1:2, and standards were 
made using serial dilutions of a glycerol standard solution (Millipore Sigma, G7793). 5 
µL of plasma sample or standard was then mixed with either 200 µL of Infinity 
Triglyceride Reagent (Fisher Scientific, TR22421) or Free Glycerol Reagent (Millipore 
Sigma F6428) on a clear 96 well plate. The plate was incubated at room temperature for 
15 minutes and absorbance was read at 540 nm. Glycerol and triglyceride standard curves 
were then calculated using linear regression, and sample readings were interpolated onto 
the standard curve to determine glycerol or triglyceride concentrations. To account for 
potential background glycerol affecting triglyceride measurements, the measured glycerol 
concentration of each sample was subtracted from the measured triglyceride 
concentration, for a final plasma triglyceride concentration. For measurement of non-
esterified fatty acids for these FPC diet samples, a colorimetric assay (BioVision, K612) 
was used on 3 microliters of plasma. 
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Insulin measurements 
For the 16 week normal chow vs. AMLN diet experiment, mice were fasted 

overnight, and tail blood was collected by heparinized capillary tubes and centrifuged at 
5000g at 4 ºC for 20 minutes. For the 16 week FPC diet experiment, retro-orbital blood 
was collected by heparinized capillary tubes from mice who had their food removed (but 
not their normal or sugar water) for 4-6 hours. Blood was centrifuged at 10,000g at 4 ºC 
for 10 minutes. The plasma layer was collected and stored at -80 ºC until analysis. Insulin 
levels were then measured by ELISA (Crystal Chem, 90080). 
 
Quantification of blood/plasma glucose 

For the 16 week normal chow vs. AMLN diet experiment, mice were fasted 
overnight then blood glucose was measured from tail blood via a glucometer. For the 16 
week FPC diet experiment, retro-orbital blood was collected by heparinized capillary 
tubes from mice who had their food removed (but not their normal or sugar water) for 4-6 
hours. Blood was centrifuged at 10,000g at 4 ºC for 10 minutes. The plasma layer was 
collected and stored at -80 ºC until analysis. Plasma glucose was analyzed using a 
colorimetric assay (Crystal Chem, 81692). For glucose tolerance tests, blood glucose was 
also measured from tail blood via glucometer.  
 
Quantification of plasma beta-hydroxybutyrate 

Blood was collected by heparinized capillary tubes from mice either fasted 
overnight (tail blood) or ad lib fed around midnight (retro-orbital blood). Blood was 
centrifuged at 10,000g at 4 ºC for 10 minutes. The plasma layer was collected and stored 
at -80 ºC until analysis. Plasma was diluted 1:10 for ad lib fed samples and 1:30 for 
overnight fasted samples, and then beta hydroxybutyrate was measured using a 
colorimetric assay kit (Cayman Chemical Company, 700190). 
 
Radioactive palmitate tracing in isolated hepatocytes 

Primary hepatocytes were isolated, cultured overnight, and subjected to 
radioactive palmitate tracing for fatty acid oxidation measurements as referenced (42). 
The cells were incubated with 125 µM 3H-palmitate conjugated on BSA and 1 mM 
carnitine for an additional 2 hours with or without 100 µM etomoxir. The media was 
delipidated and 3H2O was measured by scintillation counting.   
 
Oral glucose tolerance test 

Mice were fasted overnight (Fig. S5B) or for 5 hours (Fig. S5C). The mice were 
then weighed and tail blood was collected to measure fasting glucose via a glucometer. 
Each mouse was gavaged with 20% D-Glucose (10 µL per gram of body weight; final 
dose: 2 g/kg). Blood glucose was then measured at serial time points as indicated. 
 
Whole body metabolism measurements 

Body composition (fat, lean, total mass) was measured via EchoMRI. The mice 
were then placed in metabolic cages via the Comprehensive Lab Animal Monitoring 
System (CLAMS) and monitored for 5 days. Energy expenditure, food consumption, 
water consumption, ambulatory activity levels, and locomotor activity levels were 
measured at around 40-minute intervals. Data for each mouse were collated into one 
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single file using CalR (66). The rest of the data processing was done using Python3. We 
excluded mice with several (5 or more) values less than -5 kilocalories of food intake 
from food or food-related calculations, as this indicated major food sensor issues. This 
ended up being 1 control and 1 LiFKO mice for normal chow; 2 LiFKO mice for FPC 
diet; and 2 LiFKO mice for GAN diet. We additionally excluded 1 value of -12 
kilocalories of food consumption from 1 of the LiFKO mice in the GAN diet study, as 
this indicated a food sensor issue at this time point (all other values were included). 1 of 
the LiFKO  mice in the normal chow cohort did not have a connected activity line for the 
first 27 hours of the study, so we did not include these measurements in activity 
calculations. Energy expenditure (kilocalories/hour) and respiratory exchange ratio 
(RER) values, recorded by 40-minute intervals, were then averaged over all of the light 
cycles of the study, all of the dark cycles, or the entire study overall (full day). For energy 
expenditure, ANCOVA was performed on these “per cycle” average values, using lean 
mass as a covariate. Student’s t-test was used to analyze RER values, as these have been 
reported not to vary by weight (66). Caloric food intake (kcal) was calculated by taking 
the measured food intake from the calorimeter (in grams) and multiplying by the 
physiological caloric content of the diet (3.42 kcal/gram for normal chow, 4.49 kcal/gram 
for GAN diet, and 5 kcal/gram for FPC diet). Energy balance was calculated for every 
time interval by subtracting energy expenditure (kcal) from kilocalories consumed, which 
was defined as caloric food intake plus any kilocalories consumed from water (only 
relevant for the FPC diet regimen which included sugar water; 0.1638 kcal/milliliter of 
water consumed). For water consumption, food consumption, energy balance, and 
activity measurements, values were summed either for all of the light cycles, all of the 
dark cycles, or the entire study overall (full day). The values were then divided by the 
number of light cycles, dark cycles, or full days of the study. For water consumption, 
food consumption, and energy balance, ANCOVA was performed on these “per cycle” 
average values, using lean mass as a covariate. Student’s t-test was used to analyze 
activity measurements, as these have been reported not to vary by weight (66). Values for 
each parameter were also plotted by each 40-minute interval in the study. 
  
RNA isolation 

A small chunk of liver (~50 mg) was combined with a steel bead and 1 mL of 
TRIzol (Thermo Fisher, 15596026) and homogenized using the TissueLyser LT machine 
at a frequency of 50 Hz for 5 minutes. The mixture was spun at 5 minutes at maximum 
speed (~14,000 rpm) at 4 ºC, to pellet debris. 800 µL of supernatant was then collected 
into a fresh tube and combined with 200 µL of extra TRIzol and 200 µL of chloroform. 
The tube was vortexed for 5 seconds and spun for 15 minutes at maximum speed at 4 ºC. 
400 µL of the subsequent aqueous layer was collected in a fresh tube and combined with 
400 µL of isopropanol and vortexed. The mixture was incubated for 10 minutes at room 
temperature, and then spun for 10 minutes at maximum speed at 4 ºC to pellet RNA. The 
RNA pellet was washed once with 70-80% ethanol, then resuspended in 100 µL of water 
and incubated for 15 minutes at 37 ºC. The RNA was consequently cleaned up with the 
RNeasy Mini kit (Qiagen, 74104): 350 µL of RLT and 250 µL 100% ethanol was added 
to the RNA, which was then loaded to a spin column and washed twice with either RPE 
or 80% ethanol. The RNA was finally eluted in 50-100 µL RNAse-free water and 
adjusted to 0.15-0.5 µg/µL concentration.  
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cDNA production and qRT-PCR 

Around 0.9-2 ng of RNA was then used for cDNA production using the High-
Capacity cDNA Reverse Transcription Kit (Fisher Scientific, 4368814) with RNAse 
inhibitor (Thermo Fisher, N8080119). cDNA was diluted 1:10, 1:25, or 1:50. For qRT-
PCR, 2 µL of diluted cDNA was then combined with 2.5 µL dsDNA binding dye (SYBR 
green, etc.) and 0.5 µL of forward and reverse primer (3 µM each). The BioRad CX384 
C1000 Thermal Cycler was used to run the qPCR reaction, which involved heating to 95 
ºC for 3 minutes, followed by 40 cycles at 95 ºC for 15 seconds then 60 ºC for 30 
seconds, and culminating with a melt curve reaction. For each sample, each CT value was 
normalized to the average CT amongst housekeeping genes (36b4, Tbp, and/or Hprt). For 
each gene, the resultant values were then normalized to the average CT amongst the 
biological replicates of control mice. These values (x) were then plugged into the formula 
2^-x to calculate relative expression. qRT-PCR primers are listed in Table S1.         
 
RNA-sequencing 

RNA isolation was performed as above with the following differences: (1) liver 
homogenates were incubated at room temperature for 15 minutes in TRIzol before 
centrifugation, (2) samples were incubated with chloroform for 5 minutes at room 
temperature before centrifugation, (3) chloroform extraction was performed twice, and 
(4) the initial ethanol wash step was performed twice. Library preparation and sequencing 
was then conducted at GENEWIZ LLC. 15 µL of RNA at a concentration of 392.17 
ng/µL to 625.78 ng/µL was submitted to GENEWIZ, and then subjected to RNA 
quantification using Qubit 2.0 Fluorometer (Life Technologies), followed by examination 
of RNA integrity with Agilent TapeStation 4200 (Agilent Technologies). Library 
preparation was conducted using the NEBNext Ultra RNA Library Prep Kit for Illumina 
(New England Biolabs, E7530), followed by quantification and examination of RNA 
integrity as above as well as quantitative PCR. The libraries were then pooled, clustered 
on 1 lane of a flowcell, and sequenced on the Illumina HiSeq instrument (4000 or 
equivalent). The samples were sequenced using a 2x150 base pair paired end method. 
The HiSeq Control Software was used for image analysis and base calling, and Illumina’s 
bcl2fastq 2.17 software was used to make FASTQ files. For index sequence 
identification, up to one mismatch was allowed. 
 
RNA-seq analysis 

Trimmomatic v0.32 (67) was used to trim the adaptors and remove low-quality 
sequencing reads. STAR v2.6.0c (68) was used to align reads to the mm9 mouse genome 
assembly. Samtools v1.7 (69) view was used to filter aligned reads without a mapped 
mate and alignments with mapq score below 10(-F 4 -q 10). Counts per gene were 
quantified using Rsubread v1.6.1 (70) package’s featureCounts function with Ensembl 
v.67 mm9 gene annotation file. Genes with <1 count per million (CPM) in less than a 
quarter of samples were removed. Limma v3.40.6 (71) voom function was used to log2 
transform and normalize the count matrix. Limma was used to fit a linear model and 
perform differential gene expression analysis, creating log2(fold change) values between 
different genotypes. P-values were adjusted for multiple comparisons with the 
Benjamini–Hochberg procedure. Gene set enrichment analysis (GSEA) was then 
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performed using the CAMERA function (72) in the limma package with an inter-gene 
correlation value of 0.01, and using the C2 curated gene sets in the GSEA Molecular 
Signatures Database (MSigDB). To generate a volcano plot for differentially expressed 
genes between LiFKO and control livers in both normal chow and AMLN diet 
conditions, log2(fold change) was plotted against -log10(adjusted p value) using the 
EnhancedVolcano package (73) in R studio. Lysosomal (74) and mitochondrial (Broad, 
Reactome gene set TCA cycle and respiratory electron transport) (75) genes were 
signified in respective colors on the volcano plot. Heatmaps were generated with 
Morpheus software, visualizing normalized expression values. 
 
Measurement of de novo lipogenesis by 13C fructose gavage 

Mice were fasted from 9-10 am to 7 pm, then refed for 2 hours and subsequently 
gavaged with a mixture of 1:1 12C D-glucose:13C fructose (D-[UL-13C6] fructose; 
Omicron FRU-011; 2g/kg each). Mice were euthanized the next morning around 9-10 am 
and livers were flash frozen. ~20 mg of liver tissue was then saponified to extract lipids, 
which was then subjected to LC-MS as described (76). LC-MS yielded ion counts for 
isotopomers (M+i) of each fatty acid measured, with M being the parent ion mass and i 
having a range of 0 (no carbons labeled) to n (all carbons in that fatty acid labeled). For 
each isotopomer, ion counts were multiplied by i. These values were then added together 
for each fatty acid, divided by n and the total ion count, and then multiplied by 100 to 
yield %enrichment. 
 
Measurement of de novo lipogenesis by D2O injection 

Mice were injected intraperitoneally with 30 microliters per gram of body weight 
of 99.9% D2O (Sigma-Aldrich, 151882) with 0.9% NaCl. Injections began at 7 pm and 
lasted until 8:30 pm. 5 hours after each injection (from 12 am to 1:30 am), the mice were 
euthanized and livers were flash frozen. ~20 mg of liver tissue was then saponified to 
extract lipids, which was then subjected to LC-MS as described (76). LC-MS yielded ion 
counts for isotopomers (M+i) of each fatty acid measured, with M being the parent ion 
mass and i having a range of 0 (no hydrogens labeled) to n (all hydrogens in that fatty 
acid labeled). For each isotopomer, ion counts were multiplied by i. These values were 
then added together for each fatty acid, divided by n and the total ion count, and then 
multiplied by 100 to yield %enrichment. 
 
Injections of LXR agonist or vehicle control 

100 mg/mL T0901317 (Cayman Chemical, 71810; reconstituted in DMSO) was 
combined 1:1 with Cremophor (Millipore Sigma, 238470), and then combined 1:9 with 
5% mannitol solution. A vehicle mixture constituted of 1:1 DMSO:Cremophor, then 
combined 1:9 with 5% mannitol solution, as described (77). The mice were then injected 
intraperitoneally with T0901317 or vehicle at a volume of 10 µL per gram of body 
weight (50 mg/kg of T0901317) and started on FPC diet regimen (diet: Teklad, 
TD190142). Mice were injected twice weekly (Monday/Tuesday or Friday), as described 
(36). The last injection was given at ~9.5 weeks of FPC diet feeding around 4-6 pm, and 
mice were then euthanized 14 hours 10 minutes later, and livers were flash frozen. A 
small number of mice were euthanized at 7.5 or 8.5 weeks given the COVID-19 
pandemic.  
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Construction of AAV8-ApoE/AAT-HA-nSREBP-1c 

A constitutively nuclear SREBP-1c, based on the sequence used in Papazyan et 
al., 2016 (a gift from Dr. Mitch Lazar’s lab), was tagged N-terminally with a 3xHA tag 
from the pLJC5-Tmem192-3xHA vector (Addgene 102930) (78) and was cloned into the 
pGG2 vector (a gift from Dr. Mauro Giacca) (79) downstream of a liver-specific 
promoter, consisting of the ApoE enhancer upstream of the human alpha 1-antitrypsin 
promoter). Cloning was done using the In-Fusion cloning system (Takara, 638909), and 
DNA was amplified using TOP10 electrocompetent cells (Thermo Fisher, C404010) and 
NucleoBond Xtra Maxi Plus EF kit (Takara, 740426.10). AAV8 was then produced using 
Penn Vector Core.  
 
Normal chow TFE3 ChIP-seq 

116-335 mg of liver was minced with scissors, dounced with 10 strokes of pestle 
A (Millipore Sigma, D9063) in 15 mL of swelling buffer (10 mM HEPES, 2 mM MgCl2, 
3 mM CaCl2), and incubated on ice for 20 minutes. The livers were then dounced with 20 
strokes of pestle B (Millipore Sigma, D9063) and 15 mL more of swelling buffer was 
added. The liver mixture was passed through a 100 micron filter and then spun down at 
400g for 10 minutes at 4 ºC. The resulting pellet was resuspended in 5 mL of swelling 
buffer and 10% glycerol. The mixture was vortexed while 5 mL of lysis buffer (10% 
glycerol, 1% Igepal CA630, in swelling buffer) was added slowly. The samples were 
incubated on ice for 5 minutes, and then another 15 mL lysis buffer was added. Nuclei 
were then pelleted at 600g for 5 minutes at 4 ºC, washed once with 10 mL of lysis buffer, 
and the final nuclei pellet was resuspended in 1 mL of PBS. For fixation, 9 mL of PBS 
containing 0.28 mL 37% formaldehyde was then added and the samples were incubated 
at room temperature for 20 minutes with rotation. The fixation was quenched with 0.87 
mL of 2.5 M glycine and then incubated at room temperature for 5 minutes. Nuclei were 
then spun down, washed once with 10 mL HiC lysis buffer (10 mM Tris HCl, 10 mM 
NaCl, and 0.2% Igepal CA639), and resuspended in 100 µL ChIP dilution buffer (50 mM 
HEPES, 155 mM NaCl, 1.1% Triton X-100, 0.11% NaDeoxycholate, 1 mM EDTA) with 
0.1% SDS and protease inhibitor. The nuclei were then sonicated with the Diagenode 
Bioruptor for 30 minutes on the high setting with 30 seconds on and off. Samples were 
then spun at maximum speed for 15 minutes at 4 ºC, and the supernatant was transferred 
into a fresh tube. A BCA was performed and samples were then normalized to the lowest 
concentration sample. 100 µg of sonicated chromatin was diluted into 210 µL of ChIP 
dilution buffer with 0.1% SDS and protease inhibitor. 10 µL of that was then taken as the 
input after being added to 40 µL ChIP dilution buffer with 0.1% SDS and protease 
inhibitor as well as 200 µL SDS lysis buffer (50 mM Tris-HCl, 10 mM EDTA, 1% SDS), 
and this input mixture was stored at -20 ºC. The remaining 200 µL of sonicated 
chromatin was used for immunoprecipitation (IP): 8 µL of TFE3 antibody (Millipore 
Sigma, HPA023881 lot K115357) was added and the mixture was rotated at 4 ºC for 24 
hours. Protein G sepharose beads (Abcam, ab193259) were then washed twice with PBS 
and resuspended in 2 volumes of blocking solution (0.5% BSA in PBS). 75 µL of beads 
were then added to each IP sample, which were then rotated for 2 hours at 4 ºC. Beads 
were pelleted at 500g for 30 seconds at 4 ºC and supernatant was discarded. Beads were 
then washed in different 1 mL amounts of buffer as follows: ChIP dilution buffer 
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followed by a 30 second spin at 500g, ChIP dilution buffer followed by a 5 minute spin, 
ChIP dilution buffer plus an additional 500 mM NaCl followed by a 5 minute spin, ChIP 
wash buffer (10 mM Tris, 250 mM LiCl, 0.5% Igepal CA630, 0.5% NaDeoxycholate, 1 
mM EDTA) followed by a 5 minute spin, and finally TE followed by a 5 minute spin. 
After this final spin, the beads were resuspended in 250 µL SDS lysis buffer, and 
chromatin was eluted after a 15 minute incubation at 65 ºC followed by a 1 minute spin. 
Input and IP samples were then heated at 65 ºC overnight to reverse crosslinks. Samples 
were then spun at maximum speed for 2 minutes, and supernatant transferred to a fresh 
tube. 250 µL TE, 4 µL proteinase K (20 µg/µL) and 4 µL glycogen (20 µg/µL) were then 
added and samples were incubated at 37 ºC for 2 hours. 20 µL 5M NaCl was added to 
each sample and then transferred to a phase lock tube (VWR, 10847-800) with 500 µL 
phenol chloroform. Samples were shaken and spun at maximum speed for 5 minutes. The 
supernatant was transferred to a new phase lock tube and 500 µL chloroform was added. 
Samples were spun again at maximum speed for 5 minutes and supernatant was 
transferred to a new tube with 1 mL 100% ethanol and stored at -20 ºC for a few days. 
Samples were then spun at maximum speed for 30 minutes to pellet DNA, which was 
then washed with 750 µL 70% ethanol. Pellet was then resuspended in 50 µL TE and 
incubated at 37 ºC for 15-30 minutes. 
 
FPC diet TFE3 and HA-nSREBP-1c ChIP-seq 

Around 200 mg of liver was minced with scissors, dounced with 10 strokes of 
pestle A in 15 mL of swelling buffer (10 mM HEPES, 2 mM MgCl2, 3 mM CaCl2 with 
protease inhibitor), and incubated on ice for 20 minutes. The livers were then dounced 
with 20 strokes of pestle B and 15 mL more of swelling buffer was added. The liver 
mixture was passed through a 100 micron filter and then spun down at 400g for 10 
minutes at 4 ºC. The resulting pellet was resuspended in 5 mL of swelling buffer and 10% 
glycerol with protease inhibitor. The mixture was vortexed while 5 mL of lysis buffer 
(10% glycerol, 1% Igepal CA630, in swelling buffer with protease inhibitor) was added 
slowly. The samples were incubated on ice for 5 minutes, and then another 15 mL lysis 
buffer was added. Nuclei were then pelleted at 600g for 5 minutes at 4 ºC, washed once 
with 10 mL of lysis buffer, and the final nuclei pellet was resuspended in 1 mL of PBS. 
For fixation, 9 mL of PBS containing 0.28 mL 37% formaldehyde was then added and 
the samples were incubated at room temperature for 20 minutes with rotation. The 
fixation was quenched with 0.87 mL of 2.5 M glycine and then incubated at room 
temperature for 5 minutes. Nuclei were then spun down, washed once with 10 mL HiC 
lysis buffer (10 mM Tris HCl, 10 mM NaCl, and 0.2% Igepal CA639 and protease 
inhibitor), and resuspended in 100 µL ChIP dilution buffer (50 mM HEPES, 155 mM 
NaCl, 1.1% Triton X-100, 0.11% NaDeoxycholate, 1 mM EDTA) with 0.1% SDS and 
protease inhibitor. The nuclei were then sonicated with the Diagenode Bioruptor for 30 
minutes on the high setting with 30 seconds on and off. Samples were then spun at 
maximum speed for 15 minutes at 4 ºC, and the supernatant was transferred into a fresh 
tube. A BCA was performed and samples were then normalized to the lowest 
concentration sample. For input control, 10.476 µg of sonicated chromatin was diluted 
into a final volume of 50 µL of ChIP dilution buffer with 0.1% SDS and protease 
inhibitor, and added to 200 µL of SDS lysis buffer (50 mM Tris-HCl, 10 mM EDTA, 1% 
SDS), and this input mixture was stored at -20 ºC. 209.524 µg of sonicated chromatin 
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was used for each IP: the sample received either 8 µL of TFE3 antibody (Millipore 
Sigma, HPA023881 lot O118166) or 60 µL HA-agarose beads (Millipore Sigma, 
A2095). The IP’s were rotated at 4 ºC overnight. For the TFE3 ChIP, protein G sepharose 
beads (Abcam, ab193259) were washed twice with PBS and resuspended in 2 volumes of 
blocking solution (0.5% BSA in PBS). 75 µL of beads were then added to each IP 
sample, which were then rotated for 2 hours at 4 ºC. Both sets of IP samples were then 
spun at 500g for 30 seconds at 4 ºC to pellet sepharose/agarose beads, and supernatant 
was then discarded. Beads were then washed in different 1 mL amounts of buffer with 
rotation at 4 ºC  for different amounts of time as follows, all followed by a 30 second spin 
at 500g at 4 ºC: ChIP dilution buffer briefly, ChIP dilution for 5 minutes, ChIP dilution 
buffer containing 500 mM NaCl (instead of the usual 155 mM NaCl) for 5 minutes, ChIP 
wash buffer (10 mM Tris, 250 mM LiCl, 0.5% Igepal CA630, 0.5% NaDeoxycholate, 1 
mM EDTA) for 5 minutes, and finally TE for 5 minutes. After this final spin, the beads 
were resuspended in 250 µL SDS lysis buffer, and chromatin was eluted after a 15 
minute incubation at 65 ºC followed by a 1 minute spin. Input and IP samples were then 
heated at 65 ºC overnight to reverse crosslinks. Samples were then spun at maximum 
speed for 2 minutes, and supernatant transferred to a fresh tube. 250 µL TE, 4 µL 
proteinase K (20 µg/µL) and 4 µL glycogen (20 µg/µL) were then added and samples 
were incubated at 37 ºC for 2 hours. 20 µL 5M NaCl was added to each sample and then 
transferred to a phase lock tube (VWR, 10847-800) with 500 µL phenol chloroform. 
Samples were shaken and spun at maximum speed for 5 minutes. The supernatant was 
transferred to a new phase lock tube and 500 µL chloroform was added. Samples were 
spun again at maximum speed for 5 minutes and supernatant was transferred to a new 
tube with 1 mL 100% ethanol and stored at -20 ºC for 1 hour. Samples were then spun at 
maximum speed for 30 minutes to pellet DNA, which was then washed with 750 µL 70% 
ethanol. Pellet was then resuspended in 50 µL TE and incubated at 37 ºC for 15-30 
minutes. 
 
ChIP-seq library preparation and sequencing 

ChIP input and IP DNA was measured with the Qubit dsDNA high sensitivity kit 
(Thermo Fisher, Q32854), and then subjected to library prep based on that concentration 
using the NEBNext Ultra II DNA Library Prep Kit for Illumina (E7645S). NEBNext set 
1 and 2 indexes (E7335S and E7500S) were used. Library fragment sizes were assessed 
with high sensitivity Bioanalyzer assay (Agilent, 5067-4626). To remove any remaining 
high molecular weight peaks, libraries were size selected an additional time: 37.5 µL 
(0.75x volume) of Ampure XP beads (Beckman Coulter, A63880) or RNAClean XP 
(Beckman Coulter, A63987) beads were added to 50 µL of library. Samples were 
incubated for 5 minutes at room temperature, placed on a magnetic rack, and the beads 
were discarded. To the remaining supernatant, 7.5 µL of more beads were added (0.15x 
volume). After another incubation, the supernatant was discarded. The beads were 
washed and ultimately resuspended in 30 µL of 0.1x TE buffer. The subsequent libraries 
were analyzed for fragment size with Bioanalyzer using the Agilent High Sensitivity 
DNA kit, and DNA concentration was measured using Qubit dsDNA HS assay. The 
libraries were subsequently pooled, using the same DNA amount per library, determined 
by the library with the lowest concentration. Pooled libraries were subsequently 
quantified using NEBNext Library Quant Kit for Illumina (New England Biolabs, 
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E7630S). 20 picomoles of pooled library DNA was subsequently denatured in a 1:1 ratio 
of 0.2N NaOH and incubated for 5 minutes at room temperature. 200 mM Tris was then 
added to the mixture (1:1 ratio of Tris to starting library volume). The denatured libraries 
were then diluted to 20 pM with HT1 Hybridization Buffer (Illumina, 20024906), and 
subsequently diluted to 1.8 pM in HT1. The final libraries were then sequenced using the 
NextSeq 500/550 High output Kit v2.5 (75 cycles) (Illumina, 20024906) using single-
read sequencing on a NextSeq 550. 
 
Normal chow TFE3 ChIP-seq analysis 

Trimmomatic (v0.32) was used to trim the adaptors and remove low-quality 
sequencing reads in FASTQ files. Reads were aligned to the mm9 reference genome 
using Bowtie2 v2.2.8 (80) to generate bam files. The bam files were sorted and duplicates 
were consequently removed via Samtools (v1.7). Bam files were then converted to bed 
files by bedtools v2.27.0 and v2.27.1 (81); reads aligning to blacklist regions (82) and to 
chrM were also removed. Tag directories were then generated for each sample using 
HOMER v4.11 (83). The HOMER program getDifferentialPeaksReplicates.pl (v4.11) 
was used twice for each genotype group (control and LiFKO) to call peaks (using default 
settings: at least a fold-change of 4 and FDR of 0.001) over either (1) each genotype’s 
respective input sample or (2) the 2 TFE3 ChIP samples done in the Tfe3 KO genotype. 
The option -all was used on this program to output all peaks called. The 2 peaksets were 
then merged using mergePeaks (HOMER, v4.11), and overlapping peaks were designated 
as the final peakset for each genotype. Enriched motifs were found in the above peaksets 
via findMotifsGenome.pl (HOMER, v4.11). Motif HTML files were cleaned up using the 
Beautiful Soup python library, then a screenshot was taken for visualization. Enriched 
pathways were found in the peaksets via findGO.pl (HOMER, v4.11); specifically the 
most enriched Reactome pathways were depicted in this paper. bedGraph files were 
generated using HOMER, normalized to 1e7 reads per sample and input control, and the 
bedGraphtoBigWig v4 (84) program was used to create a bigWig file. WashU 
Epigenome Browser (85) was used for visualization of these bigWig files. To determine 
TFE3 enrichment at normal chow nSREBP-1c peaks, publicly available nSREBP-1c 
peaks (GSM2287950) were annotated using HOMER annotatepeaks.pl. Then, using the -
hist option on annotatePeaks.pl, TFE3 enrichment (in 10 bp bins) was determined 
surrounding (1) all nSREBP-1c peaks, (2) just peaks within 5kb of a TSS, and (3) peaks 
within 5kb of TSS’s of de novo lipogenesis genes (specifically, Fasn, Mlxipl, Srebf1, 
Scd1, Acaca, Acacb, Acly, Acss2); enrichment was calculated within 1000 bp from peak 
center, using TFE3 bedGraph files. TFE3 enrichment (within 1000 bp from peak center) 
on all GSM2287950 nSREBP-1c peaks was also determined with deepTools v3.3.0 (86) 
using the computeMatrix (reference-point mode) and plotHeatmap commands on TFE3 
bigWig files.. Other publicly available liver ENCODE ChIP-seq bigwig files were also 
visualized on the WashU Epigenome Browser, namely PolII (GSM918738; GSE49847), 
H3K27ac (GSM1000140; GSE31039), H3K4me1 (GSM769015; GSE31039), H3K4me3 
(GSM769014; GSE31039), and H3K9ac (GSM1000153; GSE31039). 
 
FPC diet TFE3 and HA-nSREBP-1c ChIP-seq analysis  

Trimmomatic  (v0.36) was used to trim the adaptors and remove low-quality 
sequencing reads in FASTQ files. The quality of trimmed reads was checked using 
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FASTQC (v0.11.7). Reads were aligned to the mm9 reference genome using Bowtie2 
v2.2.6 to generate bam files. The bam files were sorted and duplicates were consequently 
removed via Samtools (v0.1.19). Bam files were then converted to bed files via bedtools2 
v2.25.0; reads aligning to blacklist regions and to chrM were also removed. Tag 
directories were then generated for each sample using HOMER v4.4. For the TFE3 ChIP, 
the HOMER program getDifferentialPeaksReplicates.pl (v4.11) was used twice for each 
genotype group (control, LiFKO, control+1c, LiFKO+1c) to call peaks over either (1) 
each genotype’s respective input sample or (2) the 1 TFE3 ChIP samples done in the Tfe3 
KO genotype. For the HA ChIP, getDifferentialPeaksReplicates.pl was used twice for 
each genotype group (control+1c, LiFKO+1c) to call peaks over either (1) each 
genotype’s respective input sample or (2) the HA ChIP samples done in control or 
LiFKO mice not injected with HA-nSREBP-1c virus (non-HA control). The option -all 
was used on this program to output all peaks called, and default settings were used (at 
least a fold-change of 4 and FDR of 0.001). The 2 peaksets generated for each genotype 
group were then merged using mergePeaks (HOMER, v4.11), and overlapping peaks 
were designated as the final peakset for each genotype. To determine differentially 
regulated peaks in one genotype vs. a second genotype (i.e,. HA peaks in LiFKO+1c vs. 
control+1c livers as in Fig. S10B, or TFE3 peaks in LiFKO+1c vs. LiFKO livers, as in 
Fig. S10C-D), getDifferentialPeaksReplicates.pl was used using the 1st genotype as the -t 
(target) option and the 2nd genotype as the -b (background) option. The 1st genotype’s 
input sample was used as the -i (input) option. Using getDifferentialPeaksReplicates.pl, 
the 1st genotype’s peaks were first called over input (using default settings: at least a fold-
change of 4 and FDR of 0.001) as above, followed by differential expression analysis 
between the 1st and 2nd genotypes, to determine differentially regulated peaks with at least 
a 2-fold change and FDR of 5% (the default settings). Enriched motifs were found in the 
above peaksets via findMotifsGenome.pl (HOMER, v4.11). Motif HTML files were 
cleaned up using the Beautiful Soup python library, for visualization. Enriched pathways 
were found in the peaksets via findGO.pl (HOMER, v4.11); specifically the most 
enriched Reactome pathways were depicted in this paper. bedGraph and bigWig files 
were generated via HOMER makeUCSCfile and bedGraphtoBigWig, and they were 
normalized to 1e7 reads per sample and input control. WashU Epigenome Browser was 
used for visualization of these bigWig files. To determine TFE3 enrichment near the 
TFE3 peakset determined in the control genotype, the HOMER program annotatePeaks.pl 
(v4.11) was used on bedGraph files, using the -hist (histogram) option to determine 
enrichment in 10 basepair (bp) bins within 1000 bp of the TFE3 peaks. This method was 
also used to determine HA-nSREBP-1c enrichment near the HA peakset determined in 
the control+1c condition. To determine TFE3 enrichment at HA-nSREBP-1c peaks under 
FPC diet conditions, the HA peakset generated for the control+1c mice was annotated 
using HOMER annotatepeaks.pl. Then, using the -hist option on annotatePeaks.pl again, 
TFE3 enrichment (in 10 bp bins) was determined on (1) all nSREBP-1c peaks, (2) just 
peaks within 5kb of a TSS, and (3) peaks within 5kb of TSS’s of de novo lipogenesis 
genes (specifically, Fasn, Mlxipl, Srebf1, Scd1, Acaca, Acacb, Acly, Acss2); enrichment 
was calculated within 1000 bp from peak center, using TFE3 bedGraph files. TFE3 
enrichment (within 1000 bp from peak center) on all nSREBP-1c peaks was also 
determined with deepTools v3.3.0 using the computeMatrix (reference-point mode) and 
plotHeatmap commands on TFE3 bigwig files.  
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All other quantification, statistical analysis, and figure creation  

Mice were randomized to experimental groups. Data are represented as mean +/- 
SEM for biological replicates, unless otherwise stated. Researchers were not blinded to 
experimental groups. Samples sizes were not pre-determined. For comparisons between 
control, LiFKO, Tfe3 KO, and DKO (or control, LiFKO, and DKO) genotypes under the 
same dietary condition, 1-way ANOVA with Tukey’s multiple comparison’s test was 
used. The same test was used when comparing genotypes in the NASH reversal 
experiment, comparing non-injected, control, and LiFKO mice. To compare body 
weights over time, and to analyze GTT, we used repeated measures 2-way ANOVA or 
mixed-effects ANOVA, with either Tukey’s multiple comparisons test for 3+ genotypes 
or Sidak’s multiple comparisons test for 2 genotypes. For energy expenditure, food 
consumption, water consumption, and energy balance measured with CLAMS, 
ANCOVA with covariate for lean mass was performed as stated above. To compare 
numbers of mice with fibrosis (only stage 1A was observed of all fibrosis stages) or 
without fibrosis via blinded histological evaluation, Fisher’s exact test was performed. 
For all other analyses, student’s two-tailed t-test was used between the genotypes 
indicated. Significance was determined as p<0.05. Python 3 was used for ANCOVA 
analysis; R was used for Fisher’s exact test; all other statistical analyses and graphing was 
done using Graphpad Prism 8. Next generation sequencing data is available through the 
GEO accession number GSE160292. Data figures were created using Prism 8 and R. 
Adobe Illustrator was used for figure formatting. ChIP-seq peaks were visualized with 
WashU Epigenome Browser. Deeptools was also used for ChIP-seq visualization (Fig. 
S10A). Morpheus was used for heatmaps. The Print Page Summary figure and 
schematics of mice and syringes (Fig. 1C, 4E, 4F, 5F, 6F, and S8C) were created with 
BioRender.com  
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Fig. S1. FLCN in hepatocytes selectively promotes mTORC1-mediated 
phosphorylation and cytoplasmic sequestration of TFE3 in mouse liver, without 
affecting canonical mTORC1 or AMPK signaling  
(A) Control and Raptor liver KO mice on normal chow were euthanized after an 
overnight fast followed by 4 hours of refeeding. Subcellular fractionation was performed 
as in Fig. 1E. Immunoblotting was done on cytoplasmic and whole cell fractions, with 
14-3-3 as a loading control. Quantification is depicted in Fig. 1F.   
(B-C) Control and LiFKO mice were fed either (B) normal chow or (C) 7-8 days of FPC 
diet (TD190142 and sugar water) and euthanized after an overnight fast followed by a ~4 
hour refeeding period. Livers were then subjected to immunoblotting and quantification 
of AMPK signaling, including phosphorylated AMPK, ULK1, and ACC1/2 (of note, the 
top ACC band was quantified). HSP90 (Fig. 1D) or beta actin (Fig. 1H) were loading 
controls. * < p=0.05, ** < p=0.01. Student’s two-tailed t-test were used to assess 
differences between control and LiFKO genotypes. Data are depicted as mean +/- SEM. 
(D) Whole cell lysates were examined for canonical mTORC1 signaling from livers of 
control and liver Tsc1 KO mice, euthanized ad lib. 14-3-3 (Fig. 1J) was a loading control.  
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Fig. S2. FLCN deletion in the liver protects against NAFLD and many aspects of 
metabolic syndrome 
(A) Blinded histological evaluation of liver H&E slides (for NAFLD activity score, 
steatosis, inflammation, and ballooning) and Sirius Red slides (for fibrosis; livers either 
exhibited no fibrosis or fibrosis stage 1A), from mice fed 16-17 weeks of normal chow 
and fasted for 4-6 hours (n=8-9) 
(B-F) Plasma measurements of (B) triglycerides, (C) non-esterified fatty acids, (D) total 
cholesterol, (E) non-HDL cholesterol, and (F) HDL cholesterol in control and LiFKO 
mice fed either 17-18.5 weeks of normal chow (n=7) or AMLN diet (n=8-9), and fasted 
for 4-6 hours. 
(G) Control and LiFKO mice (n=10-11) were fed 8 weeks of GAN diet then euthanized 
after a 5-hour fast. Weekly body weights were measured during the experiment, and 
hepatic triglycerides were quantified after euthanasia.  
(H-J) Plasma insulin (H) and blood glucose (I) measurements of control and LiFKO mice 
fed either 16-17 weeks of normal chow (n=7) or AMLN diet (n=8-9), and fasted 
overnight. (J) Homeostatic model assessment of insulin resistance (HOMA-IR) was 
calculated by multiplying the insulin values by glucose values and dividing by 405. 
* < p=0.05, ** < p=0.01, *** < p=0.001. Fisher’s exact test was used to compare number 
of livers with fibrosis between the genotypes. Mixed effects analysis with multiple 
comparisons test was used to compare control and LiFKO body weights, and the 
statistical value for the last time point is indicated. Student’s two-tailed t-test was used to 
compare control and LiFKO genotypes in all other analyses. Data are depicted as mean 
+/- SEM. 
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Fig. S3. FLCN deletion in the liver does not affect whole body energy metabolism in 
normal chow or GAN diet 
Control and LiFKO mice (n=9-10) were fed either (A, C) normal chow or (B, C) 9-10 
days of GAN diet. 
(A-B) EchoMRI was performed to measure fat and lean mass composition. Student’s 
two-tailed t-test was used for analysis.  
(C) CLAMS was performed to measure food consumption, water consumption, energy 
expenditure, energy balance, ambulatory activity, and locomotor activity at 40-minute 
intervals. The average interval energy expenditure was then calculated over all of the 
light cycles of the study, all of the dark cycles, or the entire course of the study (full day). 
For the rest of the parameters studied, values were summed either for all of the light 
cycles, all of the dark cycles, or the entire study overall (full day). The values were then 
divided by the number of light cycles, dark cycles, and days of the study, respectively. 
Control and LiFKO mice were compared using ANCOVA with covariate for lean mass 
on these “per cycle” average values, for water consumption, food consumption, energy 
expenditure, and energy balance. Student’s two-tailed t-test was used for activity 
measurements. 
* < p=0.05. Data are depicted as mean +/- SEM. 
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Fig. S4. FLCN deletion in the liver does not protect against metabolic syndrome in 
FPC diet conditions, and largely does not affect whole body energy metabolism 
(A-B) Control and LiFKO mice (n=9-10) were fed 10 days of FPC diet (TD190142) and 
sugar water.  
(A) EchoMRI was performed to measure fat and lean mass composition. Student’s two-
tailed t-test was used for analysis. 
(B) CLAMS was performed to measure food consumption, water consumption, energy 
expenditure, energy balance, ambulatory activity, and locomotor activity at 40-minute 
intervals. The average interval energy expenditure was then calculated over all of the 
light cycles of the study, all of the dark cycles, or the entire course of the study (full day). 
For the rest of the parameters studied, values were summed either for all of the light 
cycles, all of the dark cycles, or the entire study overall (full day). The values were then 
divided by the number of light cycles, dark cycles, and days of the study, respectively. 
Control and LiFKO mice were compared using ANCOVA with covariate for lean mass 
on these “per cycle” average values, for water consumption, food consumption, energy 
expenditure, and energy balance. Student’s two-tailed t-test was used for activity 
measurements. 
(C-G) Plasma measurements of (C) triglycerides, (D) non-esterified fatty acids, (E) 
insulin, and (F) glucose in control and LiFKO mice (n=8-11) fed 16 weeks of FPC diet 
regimen (TD160785 and sugar water) then fasted 4-6 hours (food removed but not sugar 
water). (G) HOMA-IR was calculated by multiplying the insulin values by the glucose 
values and dividing by 405. Student’s two-tailed t-test was used for analysis. 
** < p=0.01, *** < p=0.001. Data are depicted as mean +/- SEM. 
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Fig. S5. FLCN deletion in the liver does not increase gluconeogenesis genes or 
glucose intolerance 
(A) RNA-sequencing was performed on the livers of n=3 control, LiFKO, and DKO mice 
on 17-18.5 weeks normal chow or AMLN diet. The normalized expression values of 
gluconeogenesis genes were visualized via heatmap for all genotypes.   
(B) Control and LiFKO mice fed 16 weeks of normal chow (n=7) or AMLN diet (n=8-9) 
were fasted overnight then gavaged with 2g/kg of D-glucose, followed by serial blood 
glucose measurements (a glucose tolerance test, i.e. GTT). GTT data was plotted and area 
under the curve (AUC) was calculated to assess glucose tolerance.  
(C) Control and LiFKO mice fed 5-6 days of GAN diet (n=10-11) were fasted for 5 hours 
then gavaged with 2g/kg of D-glucose, followed by serial blood glucose measurements. 
AUC was calculated to assess glucose tolerance. 
* < p=0.05. 2-way repeated measures ANOVA with multiple comparison’s test was used 
to compare serial blood glucose measurements between control and LiFKO genotypes. 
AUC was analyzed with Student’s two-tailed t-test. Data are depicted as mean +/- SEM. 
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Fig. S6. FLCN deletion in the liver does not increase functional fatty acid oxidation 
(A) Plasma beta-hydroxybutyrate was measured in mice fed 2.5 weeks of FPC diet 
regimen (TD190142 and sugar water) and fasted overnight (n=9-10) or mice treated with 
9 days of FPC diet regimen (TD190142 and sugar water) and ad lib fed during the night 
time (n=9-11). Control and LiFKO mice that were fasted were compared using Student’s 
two-tailed t-test. Control, LiFKO, and DKO mice that were ad lib fed were compared 
using 1-way ANOVA with Tukey’s multiple comparisons test.  
(B) Respiratory exchange ratios from the same mice as in Fig. S3-S4. The average 
interval respiratory exchange ratio was calculated over all of the light cycles of the study, 
all of the dark cycles, or the entire course of the study (full day). Control and LiFKO 
mice were compared using Student’s two-tailed t-test on these “per cycle” average 
values. 
Data are depicted as mean +/- SEM. 
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Fig. S7. Hepatic FLCN deletion inhibits de novo lipogenesis activity on normal chow 
mildly 
(A) qRT-PCR of de novo lipogenesis genes in livers of control, LiFKO, and DKO mice 
fed normal chow and euthanized ad lib (n=5-6). 1-way ANOVA with Tukey’s multiple 
comparisons test was used to assess differences between control, LiFKO, and DKO 
genotypes.  
(B) Control and LiFKO mice (n=3) fed normal chow were fasted from 9am-7pm, refed 
for 2 hours, and gavaged a bolus of 13C-fructose and 12C-glucose. The mice were then fed 
overnight and euthanized the next morning. LC-MS was performed to examine the 
amount of 13C label incorporation into hepatic fatty acids. Student’s two-tailed t-test was 
used to compare genotypes. 
* < p=0.05, ** < p=0.01. Data are depicted as mean +/- SEM. 
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Fig. S8. TFE3 acts downstream of LXR to suppress DNL 
(A) RNA-sequencing was performed on the livers of n=3 control, LiFKO, and DKO mice 
on 17-18.5 weeks of normal chow or AMLN diet. The normalized expression values of 
LXR target genes were visualized via heatmap for all genotypes. 
(B) mRNA expression of LXR levels in livers of control, LiFKO, and DKO mice fed 
(left) normal chow (n=7) or 17-18.5 weeks of AMLN diet (B; n=3-9); (middle) normal 
chow (n=3) or 16 weeks of FPC diet regimen (TD160785 and sugar water; n=7-11); or 
(right) 9 days of FPC diet regimen and euthanized at 10 pm ad lib (TD190142 and sugar 
water; n=7-9). For normal chow controls for the AMLN diet experiment, Student’s two-
tailed t-test was used to compare control and LiFKO. In all other conditions, 1-way 
ANOVA with Tukey’s multiple comparisons test was used.  
(C-F) Control and LiFKO mice (n=7-9) were fed ~7.5-9.5 weeks of FPC diet regimen 
(TD190142 and sugar water) in conjunction with twice weekly intraperitoneal injections 
of vehicle or LXR agonist (T0901317). The mice were then euthanized ad lib in the 
morning. Student’s two-tailed t-test was used for analysis. 
(C) Schematic of LXR agonist rescue experiment. 
(D) Body weights of the mice. Mixed effects analysis with multiple comparisons test was 
used to compare control and LiFKO mice. Statistical analyses shown for weeks 7, 8, 9, 
and 9.5.   
(E) Measurement of liver triglycerides in control and LiFKO mice treated with either 
vehicle or T0901317. 
(F) qRT-PCR of core de novo lipogenesis genes, LXR target genes, and LXR levels in 
livers of these mice. 
* < p=0.05, ** < p=0.01, *** < p=0.001, **** < p=0.0001, ***** < p=0.00001.  Data are 
depicted as mean +/- SEM. 
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Fig. S9. TFE3 and HA-nSREBP-1c ChIP-seq unbiased pathway and motif analysis  
(Top) TFE3 ChIP-seq was performed on livers of control (n=4), LiFKO (n=4), and Tfe3 
KO (n=2) mice fed normal chow and euthanized ad lib in the morning/afternoon. Peaks 
were then called in the control and LiFKO conditions (over input and Tfe3 KO).  
(Middle and bottom) Using the liver samples from the nSREBP-1c rescue experiment 
(done in FPC regimen conditions; TD190142 and sugar water) described in Fig. 5F, both 
(middle) a TFE3 ChIP-seq and (bottom) an HA-nSREBP-1c ChIP-seq was performed. 
For the TFE3 ChIP-seq, peaks were called in each genotype tested: Control, LiFKO, 
Control+1c, LiFKO+1c (over input and Tfe3 KO). For the HA-nSREBP-1c ChIP-seq, 
peaks were called in the Control+1c and LiFKO+1c genotypes (over input control and 
livers not injected with HA-nSREBP-1c). Reactome pathway analysis and unbiased motif 
discovery was then performed on all peak sets via Homer. 
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Fig. S10. TFE3 synergistically occupies chromatin in close proximity to SREBP-1c 
genome-wide 
(A) Genome-wide SREBP-1c binding sites were identified from either publicly available 
data (GSM2287950; for normal chow) or from an HA-nSREBP-1c ChIP-seq performed 
in control+1c mice from Fig. 5F (for FPC diet; TD190142 with sugar water). TFE3 ChIP-
seq data was then used to map TFE3 binding to these SREBP-1c sites. Left: schematic. 
Middle and right: binding of TFE3 on or near SREBP-1c binding sites in livers from 
control, LiFKO, and Tfe3 KO mice maintained on normal chow (middle) or on FPC diet 
(TD190142 with sugar water) and co-infected where indicated with AAV8-ApoE/AAT-
HA-nSREBP-1c (“1c”; right). Depicted are binding intensity measurements from 1 
representative sample per genotype.  
(B) (left) Binding by HA-nSREBP-1c, in livers from n=3 control and LiFKO mice 
infected with AAV8-ApoE/AAT-HA-nSREBP-1c (“1c”) and maintained on FPC diet, 
near HA peaks identified in the control+1c condition. Data are depicted as mean +/- 
SEM. (right) Differentially expressed peaks between control+1c and LiFKO+1c livers, 
calculated with Homer getDifferentialPeaksReplicates, using an FDR cut-off of 5% and a 
fold-change cut-off of 2. 
(C) (left) Binding by TFE3, in livers from n=3 control and LiFKO mice infected with 
control virus or AAV8-ApoE/AAT-HA-nSREBP-1c (“1c”) and maintained on FPC diet, 
near TFE3 peaks identified in the control condition. (right) Differentially expressed peaks 
between LiFKO+1c vs. LiFKO livers, calculated with Homer 
getDifferentialPeaksReplicates, using an FDR cut-off of 5% and a fold-change cut-off of 
2. 
(D) Unbiased motif discovery of TFE3 binding sites enriched in livers from LiFKO mice 
infected with AAV8-HA-nSREBP-1c (“1c”), compared with LiFKO mice infected with a 
control virus.  
(E) Visualization of binding by TFE3 or HA-nSREBP-1c (as indicated) on the Acly and 
Acss2 promoter regions (left) or the Acly promoter region (right), in livers from control, 
LiFKO, control + 1c, or LiFKO + 1c mice maintained on normal chow diet (left) or FPC 
diet (right).  Depicted are tracks from 1 representative sample per genotype. 
(F) Binding of TFE3 on or near SREBP-1c binding sites (“All peaks”), SREBP-1c 
binding sites within 5kb of TSSs (“Peaks +/- 5kb TSS”), or SREBP-1c binding sites 
specifically near TSSs of DNL genes (“Peaks +/- 5kb of DNL gene TSS”) in livers from 
control, LiFKO, control + 1c, or LiFKO + 1c mice maintained on normal chow (n=4; 
left) or FPC diet (n=3; right). Data are depicted as mean +/- SEM. SREBP-1c binding 
sites were identified from either publicly available data (GSM2287950; for normal chow) 
or from the HA-nSREBP-1c ChIP-seq performed in control+1c mice from Fig. 5F (FPC 
diet). 
All binding intensity plots are normalized to 1e7 reads and normalized to each 
condition’s input control.  



 
 

38 
 

0

2

4

6

8

S
co

re

**
**

0

1

2

3

4

S
co

re

*
*

0

1

2

3

4

S
co

re

0

1

2

S
co

re

Control
LiFKO
DKO

0

2

4

6

8

S
co

re

***
**

0

1

2
S

co
re

0

1

2

3

4

S
co

re

**

0

1

2

3

4

S
co

re

**
**

CDAA-HF diet (Prevention of NASH): 
Blinded histological evaluation

BallooningInflammationNAFLD activity score Steatosis

CDAA-HF diet (Reversal of NASH): 
Blinded histological evaluation

BallooningInflammationNAFLD activity score Steatosis

Non-injected (4 weeks)
Control (8 weeks)
LiFKO (8 weeks)

0.0

0.2

0.4

0.6

0.8

1.0

*

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o

rt
io

n
 o

f 
m

ic
e

w
it

h
 f

ib
ro

si
s

Fibrosis

P
ro

p
o

rt
io

n
 o

f 
m

ic
e

w
it

h
 f

ib
ro

si
s

Fibrosis



 
 

39 
 

Fig. S11. Blinded histological evaluation reveals FLCN liver deletion protects mice 
from NASH 
Blinded histological evaluation of liver H&E slides (for NAFLD activity score, steatosis, 
inflammation, and ballooning) and Sirius Red slides (for fibrosis; livers either exhibited 
no fibrosis or fibrosis stage 1A), from (A) mice from the prevention of NASH experiment 
(n=5-8) (Fig. 6A-E) or (B) the reversal of NASH experiment (n=8) (Fig. 6F-J). Fisher’s 
exact test was used to compare number of livers with fibrosis between the genotypes. 1-
way ANOVA with Tukey’s multiple comparisons test was used for all other statistical 
analyses. * < p=0.05, ** < p=0.01, *** < p=0.001. Data are depicted as mean +/- SEM. 
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Fig. S12. FLCN deletion protects mice from NASH in several diets  
(A-B) mRNA expression of NASH gene markers in livers of control, LiFKO, and DKO 
mice fed (A) normal chow (n=7) or 17-18.5 weeks of AMLN diet (n=3-9); or (B) normal 
chow (n=3) or 16 weeks of FPC diet regimen (TD160785 with sugar water; n=7-11). For 
normal chow controls for the AMLN diet experiment, student’s t-test was used to 
compare control and LiFKO. In all other conditions, 1-way ANOVA with Tukey’s 
multiple comparisons test was used. 
(C-D) Blinded histological evaluation of liver H&E slides (for inflammation and 
ballooning) and Sirius Red slides (for fibrosis; livers either exhibited no fibrosis or 
fibrosis stage 1A), from control, LiFKO, Tfe3 KO, and/or DKO mice fed (C) 17-18.5 
weeks of AMLN diet (n=3-9); or (D) 16 weeks of FPC diet regimen (TD160785 with 
sugar water; n=5-8). For inflammation and ballooning, 1-way ANOVA with Tukey’s 
multiple comparisons test was used. Fisher’s exact test was used to compare numbers of 
livers with fibrosis between the genotypes. 
* < p=0.05, ** < p=0.01. Data are depicted as mean +/- SEM. 
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Table S1. qRT-PCR primers 
Gene Forward Reverse Reference 

(if 
applicable) 

36b4  GGAGCCAGCGAGGCCACACTGCTG CTGGCCACGTTGCGGACACCCTCC  
Tbp ACCCTTCACCAATGACTCCTATG TGACTGCAGCAAATCGCTTGG  
Hprt GTTAAGCAGTACAGCCCCAAA AGGGCATATCCAACAACAAACTT  
Srebp1a GCGCCGGCGCCATGGACGAGCTGGCC GTTGTTGATGAGCTGGAGCATGTC  
Srebp1c 
(AMLN diet) 

CGGACCACGGAGCCATGGATTGCAC GTTGTTGATGAGCTGGAGCATGTC  

Srebp1c (all 
other qRT-
PCR 
experiments) 

CGGAGCCATGGATTGCACATT CTGTCTCACCCCCAGCATAG  

Acly CAGCCAAGGCAATTTCAGAGC CTCGACGTTTGATTAACTGGTCT  
Acss2 ACCAGTTAAGAGGCCATGTC GTACAAGATGAAGAGTGGGTCC  
Fasn GGAGGTGGTGATAGCCGGTAT TGGGTAATCCATAGAGCCCAG  
Chrebpa  CGGACTCGGATACGGACTTG GAAGTGTCCGCTGTGGATGA  
Chrebpb  GAAGGCGCGGGGTGAG GCTCGGATCCTGGGACCT  
Scd1 GGTGAACAGTGCCGCGCATCTC GTGTGGTGGTAGTTGTGGAAGCC  
Acaca ATGGGCGGAATGGTCTCTTTC TGGGGACCTTGTCTTCATCAT  
Cyp7a1 AGCAACTAAACAACCTGCCAGTACTA GTCCGGATATTCAAGGATGCA (87) 
Abca1 CCCAGAGCAAAAAGCGACTC GGTCATCATCACTTTGGTCCTTG (88) 
Lxra CAGGCAGGCATGAGGGAG GAGGAGGTGAGGACACCCTT  
Lxrb GGTGCAGTCATGAGCCCC CACGGGAGTGTCCAGAGAAC  
Insig1  TCACAGTGACTGAGCTTCAGCA TCATCTTCATCACACCCAGGAC (89) 
Insig2 CGTGACACTTTTTCCACCAG GGGTACAACAGCCCAATCAC (42) 
Insig2a CCCTCAATGAATGTACTGAAGGATT TGTGAAGTGAAGCAGACCAATGT  
Insig2b CCGGGCAGAGCTCAGGAT GAAGCAGACCAATGTTTCAATGG (89) 
Col1a1 GCTCCTCTTAGGGGCCACT CCACGTCTCACCATTGGGG  
Col1a2 GTAACTTCGTGCCTAGCAACA CCTTTGTCAGAATACTGAGCAGC (30) 
Col3a1 CCTGGCTCAAATGGCTCAC 

 
CAGGACTGCCGTTATTCCCG 
 

 

Col4a1 CTGGCACAAAAGGGACGAG ACGTGGCCGAGAATTTCACC (30) 
Timp1  ATATCCGGTACGCCTACACC GCCCGTGATGAGAAACTCTT  
Vim TTTCTCTGCCTCTGCCAAC TCTCATTGATCACCTGTCCATC (30) 
Des CTAAAGGATGAGATGGCCCG GAAGGTCTGGATAGGAAGGTTG (30) 
Tnfa CTTCTGTCTACTGAACTTCGGG CAGGCTTGTCACTCGAATTTTG (30) 
Mcp1 TTAAAAACCTGGATCGGAACCAA GCATTAGCTTCAGATTTACGGGT (30) 
Tgfb1 CTCCCGTGGCTTCTAGTGC GCCTTAGTTTGGACAGGATCTG (30) 
Acta2 ATGCTCCCAGGGCTGTTTTCCCAT GTGGTGCCAGATCTTTTCCATGTCG (30) 
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