

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202204711

Upregulation of Superenhancer-Driven LncRNA FASRL by USF1 Promotes De Novo Fatty Acid Biosynthesis to Exacerbate Hepatocellular Carcinoma

Jiang-Yun Peng, Dian-Kui Cai, Ren-Li Zeng, Chao-Yang Zhang, Guan-Cheng Li, Si-Fan Chen, Xiao-Qing Yuan and Li Peng*

Supporting Information

Upregulation of Superenhancer-driven LncRNA FASRL by USF1 Promotes *De Novo* Fatty Acid Biosynthesis to Exacerbate Hepatocellular Carcinoma

Jiang-Yun Peng, Dian-Kui Cai, Ren-Li Zeng, Chao-Yang Zhang, Guan-Cheng Li, Si-Fan Chen, Xiao-Qing Yuan, Li Peng^{*}

Supporting Figures

Figure S1. The screening process of superenhancer-associated lncRNAs with potential clinical value in HCC. (A) Venn diagram showing the superenhancer-associated lncRNAs shared by HepG2, Huh7, PLC and LM3 cells, excluding those in normal liver tissues. (B) Venn diagram exhibiting 3 superenhancer-associated lncRNAs, SETD5-AS1, AC016831.7 and FASRL, in the HCC cell lines that were upregulated in the HCC samples and their high expression was correlated with a worse prognosis.

Figure S2. Effect of siRNA-mediated SETD5-AS1 and FASRL interference on cell proliferation in HCC cell lines. (A, B) qRT–PCR assay detecting the knockdown effect on the (A) HepG2 and (B) LM3 cell lines transfected with siRNA pools targeting SETD5-AS1 and FASRL. (C, D) CCK-8 assay showing the proliferation of the (C) HepG2 and (D) LM3 cell lines transfected with siSETD5-AS1, siFASRL and siNC. The data are expressed as the mean \pm SD. **, p < 0.01; ***, p < 0.001

Figure S3. A novel superenhancer-related lncRNA, FASRL, was identified in HCC. (A) The location of FASRL in the genome, and the arrow indicates the FASRL transcription direction. (B) The relative expression of FASRL in the normal liver cell line LO2 and four HCC cell lines, Huh7, PLC, HepG2 and LM3. (C, D) The relative expression of FASRL in the (C) HepG2 and (D) LM3

cell lines treated with the CDK7 inhibitor THZ1. (E, F) The relative expression of FASRL in the (E) HepG2 and (F) LM3 cell lines treated with the BRD4 inhibitor JQ1. The data are expressed as the mean \pm SD. NS, non-significance; *, p < 0.05; **, p < 0.01; ***, p < 0.001

Figure S4. Screening for the upstream transcription factors of FASRL. (A, B) qRT–PCR assay showing the efficiency of the siRNA pool-mediated knockdown of 9 TFs in the (A) HepG2 and (B) LM3 cell lines. (C, D) qRT–PCR showing the expression of FASRL in the (C) HepG2 and (D) LM3 cell lines transfected with siRNA pool-mediated knockdown of 9 TFs. The data are expressed as the mean \pm SD. ***, p<0.001

Figure S5. Knockdown efficiency of USF1 shRNA in HCC cell lines. (A) qRT–PCR assay showing the mRNA level of USF1 in the (left) HepG2 and (right) LM3 cell lines with shRNA-mediated USF1 knockdown. (B) Western blot assay showing the protein content of USF1 in the (left) HepG2 and (right) LM3 cell lines after the shRNA-mediated USF1 knockdown. The data are expressed as the mean \pm SD. ***, p<0.001

Figure S6. ChIP–qPCR of H3K27ac and USF1 in HCC patient tissues. (A) ChIP–qPCR of H3K27ac of the superenhancer components in tumor and paired normal liver tissues from HCC patients. (B) ChIP–qPCR of USF1 of the superenhancer components in tumor and paired normal liver tissues from HCC patients. The data are expressed as the mean \pm SD. ***, *p*<0.001

Figure S7. Subcellular distribution of FASRL. (A, B) FASRL was distributed in the cytoplasm and nucleus in the (A) HepG2 and (B) LM3 cell lines. MT-CO1 is a marker of the cell cytoplasm, and MALAT1 is a marker of the cell nucleus. The data are expressed as the mean \pm SD.

Figure S8. Interference effect of siRNAs targeting FASRL in HCC cells. (A, B) The effects of 5 different siRNA sequences specifically targeting FASRL on FASRL expression in (A) HepG2 and (B) LM3 cell lines. The data are expressed as the mean \pm SD. **, p<0.01; ***, p<0.001

Figure S9. The effect of FASRL knockdown on cell proliferation in HCC cell lines. (A, B) The knockdown effect of lncRNA PCNAP1, lncTCF7, TUG1, HULC, GIHCG, LINC00662 and FARSL in the (A) HepG2 and (B) LM3 cell lines transfected with the corresponding siRNA pools. (C, D) CCK-8 assay revealing the effect of the siRNA pool-mediated knockdown of lncRNA PCNAP1, lncTCF7, TUG1, HULC, GIHCG, LINC00662 and FARSL on cell growth in the (C) HepG2 and (D) LM3 cell lines. The data are expressed as the mean \pm SD; NS, non-significance; *, p<0.05; **, p<0.01; ***, p<0.001

Figure S10. The effect of FASRL overexpression on the proliferation and migration of HCC cell lines. (A, B) The FARSL overexpression in (A) HepG2 and (B) LM3 cell lines. (C, D) CCK-8 assay revealing the growth of the (C) HepG2 and (D) LM3 cell lines with FARSL overexpression or its control. (E, F) EdU assay revealing the proliferation of (E) HepG2 and (F) LM3 cell lines

with FARSL overexpression or its control. (G, H) Transwell assay showing the cell migration ability of the (G) HepG2 and (H) LM3 cell lines with FARSL overexpression or its control, n=8 fields. OE, overexpression. The data are expressed as the mean \pm SD. *, p<0.05; ***, p<0.001

Figure S11. The effect of shRNA-mediated FASRL knockdown on HCC progression *in vitro*. (A) The relative expression of FASRL in the (A) HepG2 and (B) LM3 cell lines stably transfected with shFASRL#1, shFASRL#5 and control shNC. (B) CCK-8 assay showing the growth of the HepG2 and LM3 cell lines stably transfected with shFASRL#5 and control shNC. (C, D) Upper panel, the cell migration ability of the (C) HepG2 and (D) LM3 cell lines stably transfected with shFASRL#5 and control shNC as determined by a Transwell assay. Bottom, the corresponding statistical data of the results in the upper panel. The data are expressed as the mean \pm SD. ***, p < 0.001

Figure S12. The effect of FASRL knockdown on HCC survival in nude mice. (A, B) Kaplan–Meier survival curves of the shFASRL group and control shNC group of HCC xenograft tumors derived from the (A) HepG2 and (B) LM3 cell lines, n=8.

Figure S13. RNA-seq analysis after the knockdown of FASRL in HCC cell lines. (A, B) The knockdown effect of siRNA targeting FASRL in the (A) HepG2 and (B) LM3 cell lines. (C) The Venn diagram showing a total of 636 differentially expressed genes with |log2 (siFASRL/siNC)|≥1

and Q value<0.05 that were shared in the HepG2 and LM3 cell lines after FASRL knockdown. (D, E) Heatmap showing the cluster analysis results of genes with altered expression in (D) HepG2 and (E) LM3 cell lines after FASRL knockdown. (F, G) Volcano plot showing the upregulated genes (red dots), downregulated genes (blue dots) and genes with unchanged expression (gray dots) in fatty acid metabolism pathway in (F) HepG2 and (G) LM3 cell lines after FASRL knockdown. Up, upregulated; Down, downregulated. The data are expressed as the mean \pm SD. ***, p<0.001

Figure S14. Knockdown efficiency of ACACA shRNA in HCC cell line. Western blot assay showing the protein content of ACACA in the HepG2 cell line after the shRNA-mediated ACACA knockdown.

Figure S15. The effect of FASRL knockdown on the LDL and HDL contents in HCC cell lines. (A, B) LDL levels in (A) HepG2 and (B) LM3 cells stably transfected with shFASRL and control shNC, n=4. (C, D) HDL levels in (C) HepG2 and (D) LM3 cells stably transfected with shFASRL and control shNC, n=4. The data are expressed as the mean \pm SD. NS, non-significance

Figure S16. The effect of FASRL knockdown on lipid droplets in HCC cell lines. (A) Oil red O staining showing the lipid droplet content in the shFASRL#1 group and control shNC group in (upper) HepG2 and (bottom) LM3 cell lines.

Figure S17. Graphical overview. USF1 binds at the promoter and superenhancer regions of FASRL to upregulate FASRL expression, which inhibits the phosphorylation of ACACA by the binding of FASRL to ACACA. This leads to an increase in *de novo* fatty acid synthesis and lipid accumulation, thus promoting HCC development.

Supporting Tables

NAME	MSigDB H(hallmark)	ES	NES	NOM p-	FDR q-
NAME	Term Desc	ES	INES	val	val
HALLMARK_BI	Genes involve in				
LE_ACID_META	metabolism of bile	-0.53329	-1.89798	0	0
BOLISM	acids and salts.				
	Genes encoding				
HALLMARK CO	components of blood				
AGULATION	coagulation system;	-0.47883	-1.73183	0	0.002771
AGULATION	also up-regulated in				
	platelets.				
HALLMARK_CH	Genes involved in				
OLESTEROL_HO	cholesterol	-0.48431	-1.63571	0.001164	0.007763
MEOSTASIS	homeostasis.				
ΗΛΙΙΜΑΡΚ ΕΛ	Genes encoding				
TTY ACID MET	proteins involved in	-0 42791	-1 56587	0	0.01/010
ABOLISM	metabolism of fatty	-0.42771	-1.50507	0	0.014717
	acids.				
HALLMARK_KR	Genes down-regulated				
AS_SIGNALING_	by KRAS activation	-0.3975	-1.46788	0.00105	0.045156
DN					
HALLMARK PE	Genes encoding				
ROXISOME	components of	-0.40777	-1.44068	0.007726	0.051031
	peroxisome.				
HALLMARK XE	Genes encoding				
NOBIOTIC MET	proteins involved in	-0.37322	-1.40133	0.007292	0.071562
ABOLISM	processing of drugs and				
	other xenobiotics.				
HALLMARK_ES	Genes defining late				
TROGEN_RESPO	response to estrogen.	-0.36401	-1.35743	0.013528	0.103394
NSE_LATE	1 0				

Table S1. GSEA of RNA-seq data in HepG2 cells with siRNA-mediated FASRL interference

NAME	MSigDB H(hallmark) Term Desc	ES	NES	NOM p- val	FDR q- val
HALLMARK_C HOLESTEROL_ HOMEOSTASIS	Genes involved in cholesterol homeostasis.	-0.58156	-1.76233	0	8.28E-04
HALLMARK_B ILE_ACID_ME TABOLISM	Genes involve in metabolism of bile acids and salts.	-0.52538	-1.64339	0	0.005273
HALLMARK_A PICAL_SURFA CE	Genes encoding proteins over-represented on the apical surface of epithelial cells, e.g., important for cell polarity (apical area).	-0.56679	-1.63811	0.002144	0.004164
HALLMARK_I NTERFERON_ ALPHA_RESPO NSE	Genes up-regulated in response to alpha interferon proteins.	-0.5151	-1.61158	0	0.003823
HALLMARK_F ATTY_ACID_M ETABOLISM	Genes encoding proteins involved in metabolism of fatty acids.	-0.49829	-1.57017	0	0.005537
HALLMARK_K RAS_SIGNALI NG_DN	Genes down-regulated by KRAS activation.	-0.48938	-1.55989	0	0.00594
HALLMARK_E STROGEN_RES PONSE_LATE	Genes defining late response to estrogen.	-0.47424	-1.50861	0	0.013324
HALLMARK_P EROXISOME	Genes encoding components of peroxisome.	-0.47269	-1.46464	0.00813	0.022892
HALLMARK_I NTERFERON_ GAMMA_RESP ONSE	Genes up-regulated in response to IFNG [GeneID=3458].	-0.45355	-1.4504	0	0.02554
HALLMARK_A PICAL_JUNCTI	Genes encoding components of apical	-0.44844	-1.43091	0.001	0.02838

Table S2. GSEA of RNA-seq data in LM3 cells with siRNA-mediated FASRL interference

ON	junction complex.				
HALLMARK_X ENOBIOTIC_M ETABOLISM	Genes encoding proteins involved in processing of drugs and other xenobiotics.	-0.44209	-1.42514	0	0.028045
HALLMARK_C OAGULATION	components of blood coagulation system; also up-regulated in platelets.	-0.44525	-1.39686	0.008065	0.036904
HALLMARK_M YOGENESIS	Genes involved in development of skeletal muscle (myogenesis).	-0.42119	-1.35342	0.003006	0.057993
HALLMARK_G LYCOLYSIS	Genes encoding proteins involved in glycolysis and gluconeogenesis.	-0.41083	-1.33025	0.006024	0.07305
HALLMARK_E STROGEN_RES PONSE_EARLY	Genes defining early response to estrogen.	-0.40459	-1.30413	0.013026	0.092804
HALLMARK_A DIPOGENESIS	Genes up-regulated during adipocyte differentiation (adipogenesis)	-0.39696	-1.28479	0.025075	0.109706
HALLMARK_N OTCH_SIGNAL ING	Genes up-regulated by activation of Notch signaling. Genes encoding	-0.46063	-1.25678	0.162281	0.142596
HALLMARK_C OMPLEMENT	components of the complement system, which is part of the innate immune system.	-0.38471	-1.23245	0.042084	0.174151
HALLMARK_M TORC1_SIGNA LING	Genes up-regulated through activation of mTORC1 complex.	-0.37652	-1.21526	0.061122	0.197975
HALLMARK_H EDGEHOG_SIG NALING	Genes up-regulated by activation of hedgehog signaling.	-0.42904	-1.20407	0.216667	0.212501
HALLMARK_K RAS_SIGNALI	Genes up-regulated by KRAS activation.	-0.37612	-1.19856	0.081162	0.213797

Gene name	Forward primer (5'-3')	Reverse primer (5'-3')	Application	Manuf acturer
GAPDH	CTGGGCTACACTGAGC	AAGTGGTCGTTGAGG	qRT-PCR	IGE
	ACC	GCAATG		
FASRL	GGCCCATACAACACAC	AAATAACAGGCGGGC	qRT-PCR	IGE
	TTCC	TTCAC		
SETD5-	ATGAGGTCTTGCTGTG	GCAACATGGCAAGAT	qRT-PCR	IGE
AS1	TTGC	CCTGT		
HSF1	CCATGAAGCATGAGAA	CTTGTTGACGACTTTC	qRT-PCR	IGE
	TGAGGC	TGTTGC		
SIRT6	GTGCCAAGTGTAAGAC	CCTTGCCTTAGCCAC	qRT-PCR	IGE
	GCAG	GGT		
NELFE	CAAGGTGGTGTCAAAC	CTTCCCCTCAAGGGTT	qRT-PCR	IGE
	GCTC	CGAG		
IRF3	GGACTTTTCCCAGCCA	TGGGGCCAACACCAT	qRT-PCR	IGE
	GACA	GTTAC		
USF1	TCCCAGACTGCTCTAT	CGGTGGTTACTCTGC	qRT-PCR	IGE
	GGAGA	CGAAG		
POLR3G	TAGGGAGCAGTGCCTT	CCTCTTCCTTTATTCC	qRT-PCR	IGE
	TCAGAAT	CAGCCAT		
XRCC4	ATGTTGGTGAACTGAG	GCAATGGTGTCCAAG	qRT-PCR	IGE
	AAAAGCA	CAATAAC		
TRIM28	TGAGACCTGTGTAGAG	CGTTCACCATCCCGA	qRT-PCR	IGE
	GCG	GACTT		
ZNF263	CAGTTGCCTGAGAGCT	TGACTGGGAATGTGA	qRT-PCR	IGE
	TAGAGG	GACTCC		
MAX	CCGAGGTTTCAATCTG	GAGGTCGTCAATATC	qRT-PCR	IGE
	CGG	TTGCTGG		
ALDH3A1	CTCGTCATTGGCACCT	CTCGCCATGTTCTCAC	qRT-PCR	IGE
	GGAACT	TCAGCT		
IDI1	GCCGCAGACTGTGCTC	CCTGTTGCTTGTCGAG	qRT-PCR	IGE
	AAAGC	GTGGTT		

Table S3. List of the primer pairs used for qRT–PCR and ChIP–qPCR

DLD	GGGACTAGAAGAGCTG	CATCCTCTGCTTTGTG	qRT-PCR	IGE
	GGAATTG	AGCCAG		
HMGCS1	AAGTCACACAAGATGC	TCAGCGAAGACATCT	qRT-PCR	IGE
	TACACCG	GGTGCCA		
CPOX	TGAAGGAGGCTTGTGA	AGCGAAACACCTCCT	qRT-PCR	IGE
	CCAGCA	CCTTGGA		
TP53INP2	TTCGTGTCGGAGGAGG	AACCAGCTCTCGTCC	qRT-PCR	IGE
	ATGAAG	ATCAAGG		
E4A	GGGAGTCGCGTGTGTA	CCGCCCTTGTAGGCT	ChIP-qPCR	IGE
	GTGC	GTCCA		
E4B	GACCCAACGCCTGAAT	CCAGCCCCGAGAGAC	ChIP-qPCR	IGE
	CCTG	TTTTC		
E4C	GGGAGGGGGATTGTAGG	CTCTTGGGACGACTT	ChIP-qPCR	IGE
	GGTG	CCACC		
E4D	AGTCCAGGGATCAAGT	CTTCCAAATCCGCAG	ChIP-qPCR	IGE
	GGGCA	TCACAG		

Table S4. Deposited Data table

Deposited Data	Source	Identifier
H3K27ac ChIP-seq in	EMBL-EBI (https://www.ebi.ac.uk/)	SRR2002343
Normal liver tissues		
H3K27ac ChIP-seq in HepG2	UCSC	wgEncodeBroadHiston
cells	(http://genome.ucsc.edu/ENCODE/do	eHepg2H3k27acStdRa
	wnloads.html)	wDataRep2
H3K27ac ChIP-seq in Huh7	EMBL-EBI (https://www.ebi.ac.uk/)	SRR4453268
cells		
H3K27ac ChIP-seq in PLC	This paper	
cells		
H3K27ac ChIP-seq in LM3	https://www.ncbi.nlm.nih.gov/geo/quer	GSM5510395
cells	y/acc.cgi?acc=GSE181753	
USF1 ChIP-seq in HepG2	https://www.ncbi.nlm.nih.gov/geo/quer	GSM803527
cells	y/acc.cgi?acc=GSE32465	
ChIA-PET in human HepG2	ENCODE	ENCSR146FPM
cells	(https://www.encodeproject.org)	
RNA-seq in HCC cells	CCLE	CCLE_ID: _LIVER
	(https://portals.broadinstitute.org/ccle)	

RNA-seq in TCGA LIHC TCGA (https://cancergenome.nih.gov/) LIHC

samples

RNA-seq in HepG2 and LM3 This paper

cells transfected with

siFASRL and siNC

Tuble 55. List of the shell (A sequences of this genes					
Gene	Targets	Sense (5'-3')	Antisense (5'-3')	Applic	Manufacturer
name	Tugets	Sense (5°5)	Thirdsense (5°5)	ation	minitiation
EVEDI	#1	GCUCCGUGGAG	AAAUUCGUCUC	siRNA	GenePharma
PASIC		ACGAAUUUTT	CACGGAGCTT		
	#2	GCCAUGGGACA	AACUGGACUGU	siRNA	GenePharma
		GUCCAGUUTT	CCCAUGGCTT		
	#3	GCCCGCCUGUU	AUGGAAAUAAC	siRNA	GenePharma
		AUUUCCAUTT	AGGCGGGGCTT		
	#4	GGCCAGACGCC	AUUGGAUGGGC	siRNA	GenePharma
		CAUCCAAUTT	GUCUGGCCTT		
	#5	UCUGGAAGCGU	AAAUCCCAACG	siRNA	GenePharma
		UGGGAUUUTT	CUUCCAGATT		
SETD5-	#1	GTGATGACATCC	TCAATGAGGAT	siRNA	GenePharma
AS1		TCATTGATT	GTCATCACTT		
	#2	GAATGGTGCTAT	TTCAAGTATAGC	siRNA	GenePharma
		ACTTGAATT	ACCATTCTT		
	#3	CAGGACAGTTCT	AGCCATAAGAA	siRNA	GenePharma
		TATGGCTTT	CTGTCCTGTT		
USE1	#1	UGAGAACAUCA	UUUCCUCUUGA	siRNA	RiboBio
пэгт		AGAGGAAA	UGUUCUCA		
	#2	CAUUCCAUGCC	UAUACUUGGGC	siRNA	RiboBio
		CAAGUAUA	AUGGAAUG		
	#3	UCGUCAACAAG	UGAAUGAGCUU	siRNA	RiboBio
		CUCAUUCA	GUUGACGA		
SIDTC	#1	AGUCUUCCAGU	AACACCACACU	siRNA	RiboBio
51610		GUGGUGUU	GGAAGACU		
	#2	GGAACAUGUUU	UCUUCCACAAA	siRNA	RiboBio
		GUGGAAGA	CAUGUUCC		

Table S5. List of the siRNA sequences of target genes

	#3	GUAGAAACUGU	AAGAAUCCACA	siRNA	RiboBio
		GGAUUCUU	GUUUCUAC		
NEI EE	#1	GCCUUCGUCAC	UUUCAUAGGUG	siRNA	RiboBio
NELFE		CUAUGAAA	ACGAAGGC		
	#2	AAGUCAACAUA	UUUCGGGCUAU	siRNA	RiboBio
		GCCCGAAA	GUUGACUU		
	#3	ACCAAGAACUC	UGAAGCCUGAG	siRNA	RiboBio
		AGGCUUCA	UUCUUGGU		
IDE2	#1	UGGAGAAUACU	AGGUCCACAGU	siRNA	RiboBio
ΙΚΓΟ		GUGGACCU	AUUCUCCA		
	#2	CACCACCUCAA	UUUAUUGGUUG	siRNA	RiboBio
		CCAAUAAA	AGGUGGUG		
	#3	AGACAUUCUGG	UAACUCAUCCA	siRNA	RiboBio
		AUGAGUUA	GAAUGUCU		
USF1	#1	AGACGCACUAU	AAGUAAGUAUA	siRNA	RiboBio
USIT		ACUUACUU	GUGCGUCU		
	#2	CGAGACAAGAU	AGUUGUUGAUC	siRNA	RiboBio
		CAACAACU	UUGUCUCG		
	#3	GAGAUACAAAG	UUGGAGGUCUU	siRNA	RiboBio
		ACCUCCAA	UGUAUCUC		
POLR3	#1	GGCUGUUGGAU	UUUGCUAAAUC	siRNA	RiboBio
G		UUAGCAAA	CAACAGCC		
	#2	UGAAACACCUG	UCUUUCUUCAG	siRNA	RiboBio
		AAGAAAGA	GUGUUUCA		
	#3	CCACUCAUCUG	AGUUAUACCAG	siRNA	RiboBio
		GUAUAACU	AUGAGUGG		
XRCC4	#1	GCCTGATTCTTC	GCCTGATTCTTC	siRNA	RiboBio
ARCCT		ACTACCT	ACTACCT		
	#2	GCAATCTGTTCT	TCATTTCAGAAC	siRNA	RiboBio
		GAAATGA	AGATTGC		
	#3	CACTGATATTGC	CACTGATATTGC	siRNA	RiboBio
		ACCAAGT	ACCAAGT		
TRIM28	#1	GCAACAGUGCU	UUUGGAGAAGC	siRNA	GenePharma
1111120		UCUCCAAATT	ACUGUUGCTT		
	#3	GGGACAAACAU	AAUGUUGCAUG	siRNA	GenePharma
		GCAACAUUTT	UUUGUCCCTT		

	#5	GGAUGACAGUG	AAUGGUGGCAC	siRNA	GenePharma
		CCACCAUUTT	UGUCAUCCTT		
7NE262	#1	GAACCCACGTTT	GAACCCACGTTT	siRNA	RiboBio
200		CCTGTCA	CCTGTCA		
	#2	GTGCAACATTTG	TTTTCCGCAAAT	siRNA	RiboBio
		CGGAAAA	GTTGCAC		
	#3	GGAAGGTGTTCC	GGAAGGTGTTCC	siRNA	RiboBio
		GTCTGTA	GTCTGTA		
MAY	#1	CAAAGACAGCU	ACUGUGAAAGC	siRNA	GenePharma
MAA		UUCACAGUTT	UGUCUUUGTT		
	#3	GGAGAGCGACG	UUGCUCUUCGU	siRNA	GenePharma
		AAGAGCAATT	CGCUCUCCTT		
	#5	GCAGCACCAUC	AAGGCAGAGAU	siRNA	GenePharma
		UCUGCCUUTT	GGUGCUGCTT		

Table S6. List of the shRNA sequences

Gene	Targets	Sequence (5'-3')	Application	Manufacturer
Name				
FASRL	#1	CCGGGCTCCGTGGAGACGAAT	shRNA	IGE
		TTCTCGAGAAATTCGTCTCCAC		
		GGAGCTTTTTGAATT		
	#5	CCGGTCTGGAAGCGTTGGGAT	shRNA	IGE
		TTCTCGAGAAATCCCAACGCTT		
		CCAGATTTTTGAATT		
USF1		CCGGCGAGACAAGATCAACAA	shRNA	IGE
		CTCTCGAGAGTTGTTGATCTTG		
		TCTCGTTTTTGAATT		
ACACA		CCGGTACAAGGGATACAGGTA	shRNA	IGE
		TTTACTCGAGTAAATACCTGTA		
		TCCCTTGTATTTTTGAATT		

Table S7. List of the FASRL enhancer sequences inserted into the pGL3-promoter vector

Enhancer	Secure (51.21)
Name	Sequence (5-5)
NC	CTGAGGCAGGAGAATGGCATGAACCCAGGAAGCGGAGCTTGCAG

CTCCAGGAAGGGAGGGAGCCTGGGGGGATGAAGGAGGGGCCTCTC CACTCTCACCCGCCGGAGCAACTGGTGGAAGTCAAGAAAAGTCTC CTCAAAAATCTGGCTGGGGGGGGGGGGGGGGGGGCAAGCCCATCTGCGCAC TGTGCCCTGAGGTGCAAGAGGATGCAGGGTGGAAGTCGTCCCAA GAGAGTCCAGGGATCAAGTGGGCATGCCCTTTTAGCCTTGGCACG AAATGGAGCAGAAAAAGAGCCGGATGCGGATTACTGTGGTGCCC TAGGCTCAGATTCTGCTGAGTCACTGTGACTGCGGATTTGGAAG TACAACACACTTCCCTGGGTGCATGCCACTGCACCACCCCTGCTC CTCAAGGCAGGTAATGGGGGGAACTAATTGGTTTTGTTTCCCATGA GCTAAGGCAAGGCTGGTGTGGAGATAGCAGTTATAGGGAAGCAT ATTAAAGAATAGCCAAAACGGGACCAGGCGCGGTGGCTCACGCC TGTAATCCCAGCAATATGGGAGGCCGAGGTGGGTGGATCACCTG AGGTCAGGAGTTCGAGACCAGCCTGGCCAACCTGGTGAAGCCCC GTCTGTACTGAAAAATTAGCTGGGCGTGATGGCGGGGCGCCTGTAA GTCCCAGCTACTCGGGAGGCTGAGG

E5