Anticancer and Chemosensitization Effects of Cannabidiol in 2D and 3D cultures of TNBC: Involvement of GADD45α, Integrin-α5, -β5, -β1 and autophagy

Sunil Kumar Surapaneni^{a#}, Nilkumar Patel^{a#}, Li Sun^b, Nagavendra Kommineni^a, Anil Kumar Kalvala^a, Aragaw Gebeyehu^a, Peggy Arthur^a, Leanne C Duke^b, Ramesh Nimma^a, David G Meckes Jr^b and Mandip Singh^a*

^aCollege of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee,

FL, 32307, USA

^bDepartment of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA

[#] These authors contributed equally

*Corresponding Author:

Prof. Mandip Singh, Ph.D.

College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA.

Tel: +1- 850-561-2790 Fax: 850-599-3813; E-mail: mandip.sachdeva@gmail.com

Running Title: Cannabidiol induces apoptosis in TNBC by altering GADD45A

Journal name: Drug Delivery and Translational Research

Acknowledgments

We acknowledge National Institute on Minority Health and Health Disparities of National Institutes of Health, Grant/Award Number: U54 MD007582 and Consortium for Medical Marijuana Clinical Outcomes Research (Reference Award number: SUB00002097) for providing the funding for carrying out this study.

List of Materials included

- 1) Supplementary Figures
- 2) Supplementary Tables
- 3) Uncropped blots images

1) Supplementary Figures

Supplementary Fig. 1 High resolution heat map image of differentially expressed genes with CBD treatment in MDA-MB-231 cells

Supplementary Fig. 2 Immunocytochemical analysis of GADD45 α in MDA-MB-468 cells treated with CBD for 48 h.

Supplementary Fig. 3 Effect of CBD on cell cycle progression of triple negative breast cancer cell lines

Supplementary Fig. 3 Flow cytometry of cell cycle analysis. A & B) Representation of the flow histograms and bar graphs showing cell cycle analysis after staining with propidium iodide (PI) in MDA-MB-231 and MDA-MB-468 cells treated with CBD (2.5 μ M) and compared to control. All values are expressed as mean \pm SEM (n=3). *p<0.05, ***p < 0.001 v.s Control.

Supplementary Fig. 4 Effect of CBD on the expression of integrin- α 5 and integrin- β 5 in 3D cultures of MDA-MB-231 cells.

Supplementary Fig. 4 Immunoblots and densitometry data of integrin- α 5, integrin - β 5 and integrin- β 1 in CBD treated 3D cultures of MDA-MB-231 cells for 48 h. After checking the expression of Integrin β 5, we had performed stripping and reprobed the same blot with Integrin α 5 antibody. Uncropped images of the blots have been shown in supplementary information. *p < 0.05, **p < 0.01, ***p < 0.001 significant vs control.

Supplementary Fig. 5 Effect of CBD on the autophagy of MDA-MB-231 cells

Supplementary Fig. 5 Effect of CBD on the autophagy markers in MDA-MB-231 cells. A) Immunoblots and densitometry data of Beclin 1, ATG5, ATG7, and ATG16 in CBD treated MDA-MB-231 cells for 48 h. After checking the expression of Beclin 1 and ATG16, we had performed stripping and reprobed the same blots with ATG5, and β -actin antibodies respectively. Uncropped images of the blots have been shown in supplementary information. B) Quantitative real-time PCR of *BECN1* gene after treatment with CBD for 48 h in MDA-MB-231 cells. C) Immunocytochemical analysis of Beclin 1 in MDA-MB-231 cells treated with CBD for 48 h. D) Immunoblots and densitometry data of Beclin 1 and LC3A/B in 3D cultures of CBD treated MDA-MB-231 cells for 48 h. After checking the expression of Beclin 1, we performed stripping and reprobed the same blot with β -actin antibody. Uncropped images of the blots have been shown in supplementary information. *p < 0.05, **p < 0.01, ***p < 0.001 significant vs control.

Supplementary Fig. 6 Effect of CBD on the autophagy of MDA-MB-468 cells

B)

A)

Supplementary Fig. 6 Effect of CBD on the autophagy markers in MDA-MB-468 cells. A) Immunoblots and densitometry data of Beclin 1, ATG5, ATG7, and ATG16 in 2D cultures of CBD treated MDA-MB-468 cells for 48 h. After checking the expression of ATG7, we performed stripping and reprobed the same blots with ATG5, Beclin1, ATG16, and β -actin antibodies respectively. B) Immunoblots and densitometry data of Beclin 1 and LC3A/B in 3D cultures of CBD treated MDA-MB-468 cells for 48 h. After checking the expression of Beclin 1, we performed stripping and reprobed the same blot with β -actin antibody. Uncropped images of the blots have been shown in supplementary information. ***p < 0.001 significant vs control. C) Immunocytochemical analysis of Beclin 1 in MDA-MB-468 cells treated with CBD for 48 h.

Supplementary Fig. 7 Effect of CBD on the expression of LOX protein in both MDA-MB-231 and MDA-MB-468 cells

Supplementary Fig. 7 Immunoblots and densitometry data of LOX in 2D cultures of CBD treated MDA-MB-231 and MDA-MB-468 cells for 48 h. β After checking the expression of LOX, we performed stripping and reprobed the same blot with β -actin antibody. Uncropped images of the blots have been shown in supplementary information. ***p < 0.001 significant vs control.

2) Supplementary Tables

Combinations (µM)	Cytotoxicity	DRI	CI value	Conclusion
	(%; Mean)	(CBD; DOX)		
CBD(1) + DOX(0.39)	41.8	2.16; 5.77	0.635	Synergism
CBD(1) + DOX(0.78)	48.3	2.62; 3.55	0.662	Synergism
CBD(1) + DOX(1.56)	53.1	3.02; 2.06	0.814	Synergism
CBD(1) + DOX(3.12)	62.6	4.02; 1.40	0.959	Synergism
CBD(1) + DOX(6.25)	67.9	4.78; 0.84	1.394	Antagonism
CBD(1) + DOX(12.5)	70.8	5.28; 0.46	2.318	Antagonism
CBD (1) + DOX (25)	74.2	5.99; 0.26	3.889	Antagonism
CBD (2.5) + DOX (0.39)	44.3	0.93; 6.26	1.232	Antagonism
CBD (2.5) + DOX (0.78)	45.2	0.95; 3.22	1.354	Antagonism
CBD (2.5) + DOX (1.56)	57.8	1.39; 2.40	1.135	Antagonism
CBD (2.5) + DOX (3.12)	60.7	1.51; 1.31	1.416	Antagonism
CBD (2.5) + DOX (6.25)	69.7	2.03; 0.90	1.601	Antagonism
CBD (2.5) + DOX (12.5)	71.6	2.17; 0.48	2.524	Antagonism
CBD(2.5) + DOX(25)	76.4	2.61: 0.29	3.774	Antagonism

Supplementary Table 1: Combinatorial effects of CBD and DOX in MDA-MB-231 cells

Supplementary Table 1: Combinatorial effects of CBD and DOX in MDA-MB-231 cells. CI and DRI values were determined by using CI equation algorithms and DRI equation algorithms through CompuSyn software. CI=1, <1, and >1 represents an additive effect, synergism, and antagonism, respectively. DRI=1, >1, and <1 represent no dose reduction, favourable dose reduction, and unfavourable dose reduction respectively, for each drug in the combination. CI: combination index; DRI: dose-reduction index

Combinations (µM)	Cytotoxicity	DRI	CI value	Conclusion
	(%; Mean)	(CBD; DOX)		
CBD(1) + DOX(0.39)	38.3	2.15; 3.33	0.764	Synergism
CBD(1) + DOX(0.78)	39	2.21; 1.72	1.032	Additive
CBD(1) + DOX(1.56)	43.9	2.72; 1.06	1.302	Antagonism
CBD(1) + DOX(3.12)	56	4.48; 0.90	1.332	Antagonism
CBD (1) + DOX (6.25)	67.9	7.54; 0.77	1.421	Antagonism
CBD (1) + DOX (12.5)	73.2	9.79; 0.51	2.061	Antagonism
CBD (1) + DOX (25)	76.9	11.99; 0.31	3.251	Antagonism
CBD (2.5) + DOX (0.39)	41.8	0.99; 3.89	1.257	Antagonism
CBD (2.5) + DOX (0.78)	46.9	1.23; 2.43	1.220	Antagonism
CBD (2.5) + DOX (1.56)	53.1	1.59; 1.58	1.257	Antagonism
CBD (2.5) + DOX (3.12)	62.6	2.37; 1.20	1.248	Antagonism
CBD (2.5) + DOX (6.25)	67.9	3.01; 0.77	1.620	Antagonism
CBD (2.5) + DOX (12.5)	70.8	3.46; 0.44	2.514	Antagonism
CBD(2.5) + DOX(25)	74.5	4.19; 0.27	3.883	Antagonism

Supplementary Table 2: Combinatorial effects of CBD and DOX in MDA-MB-468 cells

Supplementary Table 2: Combinatorial effects of CBD and DOX in MDA-MB-468 cells. CI and DRI values were determined by using CI equation algorithms and DRI equation algorithms through CompuSyn software. CI=1, <1, and >1 represents an additive effect, synergism, and antagonism, respectively. DRI=1, >1, and <1 represent no dose reduction, favourable dose reduction, and unfavourable dose reduction respectively, for each drug in the combination. CI: combination index; DRI: dose-reduction index.

3) Uncropped western blot images

1) Fig. 3A (MDA-MB-231 2D)

lane, second lane and the third lane indicate Control, CBD (2.5 μ M) and CBD (5 μ M) treated groups respectively in the above represented blots.

2) Fig. 4A (MDA-MB-231 2D)

β-actin

Integrin-a5

Fig. 4B (MDA-MB-468 2D)

75 kDa -

150 kDa 100 kDa Integrin-β5 150 kDa

Integrin-β1

β-actin

Fig. 4C (MDA-MB-468 3D)

Note: The first lane, second lane, third lane and the fourth lane indicate Control, CBD (10 μ M), CBD (25 μ M) and CBD (50 μ M) treated groups respectively in the above represented blots.

Fibronectin

Fig. 5C (MDA-MB-468 2D)

Fibronectin

4) Fig. 6F (MDA-MB-468 2D)

Note: The first lane, second lane, third lane and the fourth lane indicate Control, CBD (1 μ M), DOX (1 μ M) and CBD (1 μ M) + DOX (1 μ M) treated groups respectively in the above represented blots.

5) Supplementary Fig. 4 (MDA-MB-231 3D)

Note: The first lane, second lane, third lane and the fourth lane indicate Control, CBD (10 μ M), CBD (25 μ M) and CBD (50 μ M) treated groups respectively in the above represented blots.

β-actin

Supplementary Fig. 5D (MDA-MB-231 3D)

Note: The first lane, second lane, third lane and the fourth lane indicate Control, CBD (10 μ M), CBD (25 μ M) and CBD (50 μ M) treated groups respectively in the above represented blots.

7) Supplementary Fig. 6A (MDA-MB-468 2D)

Supplementary Fig. 6B (MDA-MB-468 3D)

ATG5

Note: The first lane, second lane, third lane and the fourth lane indicate Control, CBD (10 μ M), CBD (25 μ M) and CBD (50 μ M) treated groups respectively in the above represented blots.

8) Supplementary Fig. 7 (MDA-MB-231 and MDA-MB-468 2D)

MDA-MB-231 2D

Note: The first lane, second lane and the third lane indicate Control, CBD (2.5 μ M) and CBD (5 μ M) treated groups respectively in the above represented blots.

MDA-MB-468 2D

Note: The first lane, second lane and the third lane indicate Control, CBD (2.5 μ M) and CBD (5 μ M) treated groups respectively in the above represented blots.