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Supplementary Figures 

 

Figure S1. Summary of mutants of the various presynaptic proteins used in this study. (A) SNAP-25, 

synaptobrevin and syntaxin-1 mutants used for the PRE studies of Fig. 2. SNN and SNC refer to the N- and 

C-terminal SNARE motifs of SNAP-25, respectively. (B) SNAP-25 and synaptobrevin mutants used for the 

PRE studies of Fig. 5-7. (C) Synaptobrevin and SNAP-25 mutants used for the ITC studies of Fig. 3, 8, the 

NMR analysis of Fig. 4 and the PRE studies of Fig. 5-7. 

 

Figure S2. PRE analysis of Syt1 C2AB binding to the C-terminal half of the SNARE complex. The graphs show 

bar diagrams of the PREs measured for the methyl groups indicated in the x axis in 1H-13C HMQC 

experiments performed with 15N-2H–ILV-13CH3–labeled Syt1 C2AB and SNARE complex tagged with MTSL 

at residue 61 or 72 of syynaptobrevin (Syb61 and Syb72, respectively) (A, B), residue 239 of syntaxin-1 

(Syx239) (C), or residue 65, 187 or 197 of SNAP-25 (SNN65, SNC187 and SNC197, respectively) (D-F). These 

measurements were used to generate Fig. 2C-H. The vertical dashed lines mark the separation between 

the C2A and C2B domains. 

 

Figure S3. The C2BKA-Q mutant is properly folded and binds Ca2+. (A) Superposition of 1H-15N TROSY HSQC 

spectra of WT Syt1 C2B domain (black contours) and the C2BKA-Q mutant (red contours) in the presence of 

EDTA. (B) Superposition of 1H-15N TROSY HSQC spectra of the C2BKA-Q mutant in the presence of 1 mM 

EDTA (black contours) or 1 mM Ca2+ (red contours). 

 

Figure S4. The C2BKA-Q-LLQQ mutant is properly folded and binds Ca2+. (A) Superposition of 1H-15N TROSY 

HSQC spectra of the Syt1 C2BKA-Q mutant (black contours) and the C2BKA-Q-LLQQ mutant (red contours) in the 
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presence of EDTA. (B) Superposition of 1H-15N TROSY HSQC spectra of the C2BKA-Q-LLQQ mutant in the 

presence of 1 mM EDTA (black contours) or 1 mM Ca2+ (red contours). 

 

Figure S5. ITC analysis of interactions between C2BKA-Q and SNAREQ. The graphs show additional ITC data 

acquired with different preparations under conditions analogous to those of Fig. 3. The data in panel (A) 

were acquired in the Brunger lab and those of the other panels were acquired in the Rizo lab. The proteins 

used in each experiment and their concentrations in the cuvette or the syringe are indicated in each panel. 

The following groups of panels correspond to sets experiments performed on the same day with the same 

preparation: (B-C); (D-E); (F-G); and (H-J). The upper panels show the baseline- and singular-value-

decomposition-corrected thermograms for the respective experiments.  The circles in the lower panels 

are the integrated heats of injection, with the error bars representing estimated errors for these values. 

 

Figure S6. ITC analysis of interactions of Cpx1(48-73) with SNAREQ and C2BKA-Q. The panels show titrations 

of 10 µM SNAREQ with 120 µM Cpx1(48-73) (A) or 30 µM Cpx1(48-73) with 460 µM C2BKA-Q (B) monitored 

by ITC. The upper panels show the baseline- and singular-value-decomposition-corrected thermograms 

for the respective experiments.  The circles in the lower panels are the integrated heats of injection, with 

the error bars representing estimated errors for these values. The curves represent the fits of the data to 

a single binding site “A + B <-> AB” model. The thermodynamic parameters derived for binding of Cpx1(48-

73) to SNAREQ are indicated in the bottom panel of (A). 

 

Figure S7. Cross-peaks assignments of the 1H-15N HSQC spectrum of C2BKA-Q. Cross-peaks are labeled with 

the corresponding residue. 
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Figure S8. Analysis of potential tripartite Syt1-SNARE-complexin-1 complexes using PREs. The diagrams 

show the SNARE complex in light gray, complexin-1 in dark gray and two copies of the C2B domain bound 

through the primary interface (pink) or the tripartite interface (lime green). The locations of residues that 

were mutated to cysteine for labeling with MTSL, namely residue D44 of synaptobrevin (red spheres) (A, 

C, E) and residue E27 of SNAP-25 (green spheres) (B, D, F) are indicated. Residues colored in blue indicate 

PREs smaller than 0.8 in 1H-15N TROSY HSQC experiments acquired with samples containing 20 µM 15N,2H-

labeled C2BRKRR-EEQQ (A,B) or 15N,2H-labeled C2BRK-EE (D-F) in the presence of 110 µM MTSL-labeled SCCpx 

D44C (A, C), SCCpx E27C (B, D), SCQCpx D44C (E) or SCQCpx E27C (F) before and after reduction. The W404 

side chain, which exhibits PREs smaller than 0.8 in all experiments, is shown as a blue stick model. The 

data used to generate these diagrams are shown in Fig. 5-6. 

 

Figure S9. ITC analysis of interactions between C2BRK-EE and SNAREQ. The graphs show additional ITC data 

acquired with different preparations under conditions analogous to those of Fig. 8. The proteins used in 

each experiment and their concentrations in the cuvette or the syringe are indicated in each panel. The 

upper panels show the baseline- and singular-value-decomposition-corrected thermograms for the 

respective experiments.  The circles in the lower panels are the integrated heats of injection, with the 

error bars representing estimated errors for these values. 

 

Figure S10. Analysis of the localization of the Syt1 LLQQ and TGQQ mutants. (A) Representative 

immunoblot showing significant knockdown of Syt1, along with quantitative analysis of normalized Syt1 

expression from cultures infected with sham lentivirus vs lentivirus carrying Syt1 knockdown construct 

(bars represents average ± SEM; two-tailed non-paired t test; n=6/group, **** denotes p <0.0001). (B) 

Representative confocal images of different channels for synapsin (shown in green) and Syt1 (shown in 

blue), along with quantitative analysis of colocalization. Exogenously introduced (via lentivirus) WT Syt1 
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and Syt1 TGQQ and LLQQ mutants colocalize with synapsin to a similar extent as endogenously expressed 

Syt1. Each data point represents analysis of a single image from a unique coverslip (n=5/group, graph 

shows average ± SEM). Pearson´s correlation coefficients of the mutant rescues are compared with those 

of WT rescue with two-tailed Mann-Whitney test (all non-significant with p>0.05). Scale bars = 20 µM. 
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