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S1. Proof of Theorem 2.1 (Torus graph model). To derive the
appropriate first- and second-order sufficient statistics that correspond to
first circular moments and to circular covariances, we first represent the
angles as unit modulus complex random variables (where i is the imaginary
unit):

Zj = eiXj .

The first circular moment is defined as

E[Zj ] = Rje
iµj

where µj is the mean direction and Rj is the resultant length, so the cor-
responding complex first order sufficient statistic for a single observation is
simply

zj = cos(xj) + i sin(xj)

which may be described as a real-valued sufficient statistic vector

S1
j (xj) = [cos(xj), sin(xj)]

T .

When considering second-order interactions between complex variables,
there are two types of covariance (Schreier and Scharf, 2010, Ch. 2.2). Ro-
tational covariance between Zj and Zk is described by

E[(eiXj −Rjeiµj )(eiXk −Rkeiµk)] = E[ei(Xj−Xk)]−RjRkei(µj−µk),
∗N.K. and J.O. contributed equally to this work.
†To whom correspondence should be addressed. E-mail: kass@stat.cmu.edu
Keywords and phrases: graphical models, circular statistics, network analysis

S1

mailto:kass@stat.cmu.edu


S2 KLEIN AND ORELLANA ET AL.

where Zk is the complex conjugate, while reflectional covariance is described
by

E[(eiXj − eiµj )(eiXk − eiµk)] = E[ei(Xj+Xk)]−RjRkei(µj+µk).

This shows that in addition to the first-order statistics, we additionally
need two more complex sufficient statistics to describe the second-order be-
havior:

ei(xj−xk) = cos(xj − xk) + i sin(xj − xk)
ei(xj+xk) = cos(xj + xk) + i sin(xj + xk).

These may be collected into a real-valued vector

S2
jk(xj , xk) = [cos(xi − xj), sin(xi − xj), cos(xi + xj), sin(xi + xj)]

T .

Therefore, the canonical exponential family distribution given the first
circular moments of each variable and the complete second-order interactions
(rotational and reflectional) between each variable coincides with that given
in Klein et al. 2019, Equation 2.3:

p(x) ∝ exp


d∑
j=1

φTj S1
j (xj) +

∑
j<k

φTjkS
2
jk(xj , xk)

(S1.1)

= exp


d∑
j=1

φTj

[
cos(xj)
sin(xj)

]
+
∑
j<k

φTjk


cos(xj − xk)
sin(xj − xk)
cos(xj + xk)
sin(xj + xk)


 .(S1.2)

Thus, the torus graph model is maximum entropy with respect to constraints
on the expected values of the sufficient statistics, that is, the circular first
moments and complex covariances Wainwright et al. (2008). We note that,
similar to the multivariate Gaussian distribution, the torus graph model only
contains sufficient statistics for circular first moments and covariances, but
it does not contain sufficient statistics corresponding to the second circular
moment of a single angle Xj (that is, it does not include interactions of the
form ZjZj); such a model was recently explored in Navarro, Frellsen and
Turner (2017).

The maximum entropy motivation for this model also offers some intuition
for interpretation of the parameters; in particular, we see that the subvec-
tor φjk,1:2 corresponds to rotational covariance while the subvector φjk,3:4
corresponds to reflectional covariance. However, the magnitude of each pa-
rameter is difficult to interpret directly because it depends not only on the
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covariance but also the marginal concentration of each variable (which is
related to the resultant lengths Rj and Rk) as well as the sum or difference
of the mean directions.

S2. Reparameterization to compare to previous work. While the
canonical exponential family form in Equation S1.2 is useful for understand-
ing the maximum entropy constraints of the model and for deriving score
matching estimators, it does not immediately appear similar to previous
work in multivariate circular statistics (such as the sine model). To obtain
another form that is easier to compare to previous work, we begin with an
alternate parameterization that is similar to the sine model, then show how
it can be transformed into our parameterization. Crucially, this transforma-
tion can also be reversed to potentially aid in interpretation of parameters.

Consider the mean-centered parameterization

p(x;θ) ∝ exp


d∑
j=1

κj cos(xj − µj) +
∑
j<k


λccjk
λcsjk
λscjk
λssjk


T 

cos(xj − µj) cos(xk − µk)
cos(xj − µj) sin(xk − µk)
sin(xj − µj) cos(xk − µk)
sin(xj − µj) sin(xk − µk)




where the parameters are θ = [µ,κ,λcc,λcs,λsc,λss] with the interpreta-
tion that µj ∈ [0, 2π) is the mean direction of xj , κj > 0 is the marginal
concentration of xj , and the λ parameters control interactions between an-
gles.

In the univariate terms, we use trigonometric sum and difference formulas
to rewrite

κj cos(xj − µj) = κj cos(µj) cos(xj) + κj sin(µj) sin(xj)

so that in the parameterization of Equation S1.2,

φj =

[
κj cos(µj)
κj sin(µj)

]
.

Therefore, we can clearly calculate φj for given κj and µj , and also, given
φj , we have (using the Pythagorean theorem and definition of tangent)

κj =
√
φ2
j,1 + φ2

j,2

µj = arctan

(
φj,2
φj,1

)
.
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Thus we have demonstrated a diffeomorphism between the two parameteri-
zations for the marginal terms.

Similarly, for the pairwise coupling terms, we consider without loss of
generality the pair {Xj , Xk} but for simplicity drop subscripts on the λ pa-
rameters; using trigonometric sum and difference identities and simplifying,
we find the pairwise coupling term is

1

2


(λcc + λss) cos(µj − µk) + (λcs − λsc) sin(µj − µk)
(λsc − λcs) cos(µj − µk) + (λcc + λss) sin(µj − µk)

(λcc − λss) cos(µj + µk) + (−λcs − λsc) sin(µj + µk)
(λcs + λsc) cos(µj + µk) + (λcc − λss) sin(µj + µk)


T 

cos(xj − xk)
sin(xj − xk)
cos(xj + xk)
sin(xj + xk)


so that it is straightforward to calculate φjk given µj , µk, κj , κk, and the
four λ parameters.

The λ parameters may be recovered as follows, where for brevity we use
µ−jk = µj − µk and µ+jk = µj + µk:

λcc = φjk,1 cos(µ−jk) + φjk,2 sin(µ−jk) + φjk,3 cos(µ+jk) + φjk,4 sin(µ+jk)

λcs = −φjk,2 cos(µ−jk) + φjk,1 sin(µ−jk) + φjk,4 cos(µ+jk)− φjk,3 sin(µ+jk)

λsc = φjk,2 cos(µ−jk)− φjk,1 sin(µ−jk) + φjk,4 cos(µ+jk)− φjk,3 sin(µ+jk)

λss = φjk,1 cos(µ−jk) + φjk,2 sin(µ−jk)− φjk,3 cos(µ+jk)− φjk,4 sin(µ+jk).

This shows we have a diffeomorphism between the parameterizations.
Theorem 4.2.2 of Kass and Vos (2007) states that a subfamily of a regular

exponential family is itself a (lower-dimensional) regular exponential family
if and only if the subspace of the natural parameter space corresponding to
the subfamily is an affine subspace of the natural parameter space. In the
mean-centered parameterization, the sine model has parameter constraints
λcc = λcs = λsc = 0. Given the equations above, the sine model corresponds
to a restriction of the natural parameter space of the torus graph density of
Equation S1.2:

φjk =
1

2
λss[cos(µ−jk), sin(µ−jk), − cos(µ+jk), − sin(µ+jk)]

T .(S2.1)

This implies that the pairwise interactions must follow a specific structured
form in the sine model, where the magnitude of interactions is governed
by λss and the following relationship between the parameters is observed
(regardless of µj and µk):

φ2
jk,1 + φ2

jk,2 = φ2
jk,3 + φ2

jk,4.(S2.2)
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Because of the nonlinear relationship between the parameters, the subspace
corresponding to the sine model is not an affine subspace of the natural pa-
rameter space. Therefore, the sine model is not itself a regular exponential
family. On the other hand, the uniform marginal model and the phase differ-
ence model both are defined by setting components of the natural parameter
to zero, as is the phase difference model with uniform marginals, so each of
these families is itself a regular exponential family. This proves Klein et al.
2019, Theorem 3.1.

S3. Proof of Corollary 2.1.1 (Torus graph properties).

1. Because exponential family models are maximum entropy models sub-
ject to constraints on the expected values of the sufficient statistics
(Wainwright et al., 2008), the torus graph is the maximum entropy
model subject to constraints on the first circular moments and com-
plex covariances between angles (following the derivation in Section
S1 that relates the sufficient statistics to circular first moments and to
complex covariances).

2. The torus graph density is positive and continuous on [0, 2π)d and
factorizes into pairwise interaction terms as shown in Equation S1.2.
By the Hammersley-Clifford theorem (Lauritzen, 1996), the random
variables Xj and Xk are conditionally independent given all other
variables if and only if φjk = 0.

S4. Derivations of phase differences in torus graph models. First,
we state the Harmonic Addition Theorem which will be very useful through-
out this set of derivations (see Weisstein (2017) for proof).

Theorem S4.1 (Harmonic Addition Theorem). The weighted sum of
cosine functions with the same period and arbitrary phase shifts is the cosine
function

n∑
i=1

ai cos(x− δi) = A cos(x−∆)
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where

bx =

n∑
i=1

ai cos(δi)

by =

n∑
i=1

ai sin(δi)

A =
√
b2x + b2y

∆ = arctan

(
by
bx

)
.

Throughout these derivations, when we use the arctangent function arctan(·),
it is understood that the angular value is chosen to fall in the same interval
as the random variables (in this case, [0, 2π), though other intervals such as
[−π, π) could be chosen). We will use the notation φjk = [αjk, βjk, γjk, δjk]

T

to refer to elements of the pairwise coupling parameter vector.
For the bivariate torus graph model, we derive the distribution of phase

differences to compare with bivariate phase coupling measures, which depend
on the distribution of phase differences. Let θ = X1 − X2 be a random
variable with support (−2π, 2π) (as X1 ∈ [0, 2π) and X2 ∈ [0, 2π)) and let
pX1,X2(x1, x2) denote the bivariate phase difference model density. Applying
the change of variables θ = X1 − X2 and trigonometric identity sin(θ) =
cos
(
θ − π

2

)
yields

pθ,X2(θ, x2) = pX1,X2(θ + x2, x2)

∝ exp {κ1 cos(x2 − (µ1 − θ)) + κ2 cos(x2 − µ2)}×
exp

{
α12 cos(θ) + β12 cos

(
θ − π

2

)}
.

Applying Theorem S4.1 to each factor,

pX1,X2(θ + x2, x2) ∝ exp {A1 cos(θ −∆1)} exp {A2 cos(x2 −∆2)}

where

A1 =
√
α2
12 + β212

∆1 = arctan
(
β12
α12

)
A2(θ) =

√
κ21 + κ22 + 2κ1κ2 cos(θ − (µ1 − µ2))

∆2(θ) = arctan
(
κ1 sin(µ1−θ)+κ2 sin(µ2)
κ1 cos(µ1−θ)+κ2 cos(µ2)

)
,
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and we use the notation A2(θ),∆2(θ) to indicate that these are functions of
θ.

To obtain the marginal density of θ, we need to integrate over x2 and
also wrap the resulting distribution back to the support [0, 2π) (though we
could choose a different support of length 2π, such as [−π, π), if desired).
Notice that pX1,X2(θ + x2, x2) has constraints X1, X2 ∈ [0, 2π), implying
that 0 ≤ θ + X2 < 2π so −θ ≤ X2 < 2π − θ. This means that when θ < 0,
X2 ∈ [−θ, 2π) and when θ > 0, X2 ∈ [0, 2π−θ), so the marginal distribution
of θ is defined piecewise:

pθ(θ) ∝

{
1(θ∈[−2π,0])g(θ)

∫ 2π
−θ exp {A2(θ) cos(x2 −∆2(θ))} dx2

1(θ∈[0,2π])g(θ)
∫ 2π−θ
0 exp {A2(θ) cos(x2 −∆2(θ))} dx2

where g(θ) = exp {A1 cos(θ −∆1)}.
Define W = θ (mod 2π) to be the wrapped version of θ so that W ∈ [0, 2π)

has the wrapped distribution

pW (w) = pθ(w) + pθ(w − 2π)

∝ g(w)

∫ 2π−w

0
exp {A2(w) cos(x2 −∆2(w))} dx2

+ g(w − 2π)

∫ 2π

2π−w
exp {A2(w − 2π) cos(x2 −∆2(w − 2π))} dx2

Using the fact that g, A2, and ∆2 are 2π-periodic functions and the definition
of I0 (the modified Bessel function of the first kind), we obtain

pW (w) ∝ g(w)

∫ 2π

0
exp {A2(w) cos(x2 −∆2(w))} dx2 = g(w)I0(A2(w)).

Thus, g(w) is the direct coupling term and f(w) = I0(A2(w)) is the marginal
concentration term.

The derivation for phase differences from the trivariate torus graph model
uses similar techniques. Consider a trivariate torus graph with κ1 = κ2 =
κ3 = 0 for simplicity; applying trigonometric identities yields

p(x1, x2, x3) ∝ exp


∑

(i,j)∈E


αij
βij
γij
δij


T 

cos(xi − xj)
sin(xi − xj)
cos(xi + xj)
sin(xi + xj)




= exp


∑

(i,j)∈E


αij
βij
γij
δij


T 

cos(xi − xj − 0)
cos(xi − xj − π/2)
cos(xi + xj − 0)

cos(xi + xj − π/2)
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where E = {(1, 2), (1, 3), (2, 3)}. Apply the variable transformation θ12 =
x1 − x2 and expand the expression above:

p(θ12, x2, x3) ∝ exp



α12

β12
γ12
δ12


T 

cos(θ12 − 0)
cos(θ12 − π/2)

cos(θ12 + 2x2 − 0)
cos(θ12 + 2x2 − π/2)


×

exp



α13

β13
γ13
δ13


T 

cos(x1 − x3 − 0)
cos(x1 − x3 − π/2)
cos(x1 + x3 − 0)

cos(x1 + x3 − π/2)


×

exp



α23

β23
γ23
δ23


T 

cos(x2 − x3 − 0)
cos(x2 − x3 − π/2)
cos(x2 + x3 − 0)

cos(x2 + x3 − π/2)




To get the marginal distribution of θ12, we need to integrate out other
variables, which is not tractable analytically for the full torus graph model,
so we consider the phase difference model which corresponds to setting γ =
δ = 0 for all pairs. This has the effect of making the density depend only on
phase differences.

p(θ12, x2, x3) ∝ exp

{[
α12

β12

]T [
cos(θ12 − 0)

cos(θ12 − π/2)

]}
×

exp

{[
α13

β13

]T [
cos(x1 − x3 − 0)

cos(x1 − x3 − π/2)

]}
×

exp

{[
α23

β23

]T [
cos(x2 − x3 − 0)

cos(x2 − x3 − π/2)

]}
.

Similarly to the bivariate case, we apply Theorem S4.1 to each factor; the
first factor, g(θ12) = exp {A1 cos(θ12 −∆1)}, has the same form as in the
bivariate case and represents the direct coupling between X1 and X2. The
second factor may also be written as

exp {A13 cos(x1 − x3 −∆13}

where A13 =
√
α2
13 + β213 and ∆13 = arctan(β13/α13), and the third factor

may also be written as

exp {A23 cos(x2 − x3 −∆23} ,
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where A23 =
√
α2
23 + β223 and ∆23 = arctan(β23/α23). Next we apply Theo-

rem S4.1 again to combine the second and third factors:

p(θ12, x3) ∝ exp {A1 cos(θ12 −∆1)} × exp {A3(θ12) cos(x3 −∆3)} ,

where A3(θ12) is

A3(θ12) =

[(
A13 cos(x1 −∆13) +A23 cos(x2 −∆23)

)2
+
(
A13 sin(x1 −∆13) +A23 sin(x2 −∆23)

)2]1/2
.

Because we will integrate out x3, the form of ∆3 is not important (it will
not affect the integral on this circular domain).

Expanding the squares, simplifying, and using a trigonometric sum iden-
tity yields

A3(θ12) =
√
α2
13 + β213 + α2

23 + β223 + 2t cos(θ12 − u)(S4.1)

where

t =
√

(α2
13 + β213)(α

2
23 + β223)

u = ∆13 −∆23 = arctan

(
β13
α13

)
− arctan

(
β23
α23

)
.

Similar to the bivariate case, we integrate over x3 and wrap the result-
ing distribution to obtain the marginal distribution of the wrapped phase
difference W = θ12 (mod 2π):

p(w) ∝ exp {A1 cos (w −∆1)}
∫ 2π

0
exp {A3(w) cos (x3 −∆3)} dx3

∝ exp {A1 cos (w −∆1)} I0(A3(w))

where A1 =
√
α2
12 + β212, ∆1 = arctan(β12/α12), and A3(w) is given in

Equation S4.1. Thus, g(w) is the direct coupling term, and h(w) is the
indirect coupling term.

S5. Proof of Theorem 5.1 (Score matching estimators for torus
graphs). Let pX(x) be the unknown d-dimensional circular data density
and p(x;φ) = 1

Z(φ)q(x;φ) be a d-dimensional model density with parameter
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vector φ ∈ Rm. Define the log model density gradient ψ : [0, 2π)d → Rd as
ψ(x;φ) = ∇x log q(x;φ); similarly, let ψX(x) = ∇x log pX(x).

To prove Klein et al. 2019, Theorem 5.1, make the following regularity
assumptions:

A. For all i ∈ {1, ..., d}, ψ(x;φ) is differentiable with respect to xi on
[0, 2π).

B. For all φ, Ex

[
||ψ(x;φ)||2

]
and Ex

[
||ψX(x)||2

]
are finite.

These assumptions clearly hold for torus graphs as the log density is com-
prised of finite linear combinations of sine and cosine functions of x, each
of which is infinitely differentiable with derivatives bounded within [−1, 1].
Note that we need one less assumption than the original formulation of score
matching in Hyvärinen (2005) due to the circular nature of the density.

Proof of Theorem 5.1. First, we show that the score matching objec-
tive function only depends on the unknown data density through an expec-
tation.

Expanding the squared difference gives

J(φ) =

∫ 2π

0
pX(x)

[
1
2 ||∇x log pX(x)||22

]
dx

+

∫ 2π

0
pX(x)

[
1
2 ||∇x log q(x;φ)||22

]
dx

−
∫ 2π

0
pX(x)[∇x log q(x;φ)]T [∇x log pX(x)] dx.

The first term does not depend on φ and the second term is already in terms
of an expectation over the data density, so we focus now on the third term
(call it A):

A = −
∫ 2π

0
pX(x)

[
d∑
i=1

ψi(x;φ)ψX,i(x)

]
dx

= −
d∑
i=1

∫ 2π

0

[∫ 2π

0
pX(x)ψi(x;φ)ψX,i(x) dxi

]
dx−i

= −
d∑
i=1

∫ 2π

0

[∫ 2π

0
pX(x)

∂

∂xi
log pX(x)ψi(x;φ) dxi

]
dx−i

= −
d∑
i=1

∫ 2π

0

[∫ 2π

0

∂

∂xi
pX(x)ψi(x;φ) dxi

]
dx−i.
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Applying integration by parts, the inner integral becomes

pX(x)ψi(x;φ)
∣∣∣xi=2π

xi=0
−
∫ 2π

0
pX(x)

∂

∂xi
(ψi(x;φ)) dxi.

Notice that because the variables are circular on [0, 2π),

pX(x)
∣∣
xi=0

= pX(x)
∣∣
xi=2π

ψi(x;φ)
∣∣
xi=0

= ψi(x;φ)
∣∣
xi=2π

Therefore, pX(x)ψi(x;φ)
∣∣xi=2π

xi=0
= 0, so A becomes

A = −
d∑
i=1

∫ 2π

0

[
−
∫ 2π

0
pX(x)

∂

∂xi
(ψi(x;φ)) dxi

]
dx−i

=

∫ 2π

0
pX(x)

[
d∑
i=1

∂

∂xi
(ψi(x;φ))

]
dx

Therefore, the score matching objective is

J(φ) = C +

∫ 2π

0
pX(x)

[
1
2 ||ψ(x;φ)||2

]
dx

+

∫ 2π

0
pX(x)

[
d∑
i=1

∂

∂xi
(ψi(x;φ))

]
dx

= C + Ex

{
1
2 ||ψ(x;φ)||2 +

d∑
i=1

∂

∂xi
(ψi(x;φ))

}(S5.1)

where C does not depend on φ and may be ignored without affecting the
minima of the objective function. This coincides with the form of score
matching given in Hyvärinen (2005) except with the integral over the circular
domain [0, 2π).

Next, we show the explicit form of the score matching estimator for torus
graphs. As shown in Forbes and Lauritzen (2015); Yu, Drton and Shojaie
(2018), for exponential families, this score matching estimator is quadratic
in the parameters. Specifically, the torus graph density in Klein et al. 2019,
Theorem 2.1 has a log density of the form

log q(x;φ) = φTS(x)

where φ are vectors of length m = 2d2 (the number of sufficient statistics).
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Therefore,

ψ(x;φ) = φTD(x)

where the Jacobian D(x) is m× d with i, jth element ∂
∂xj

Si. Thus the first

term inside the expectation in the score matching objective of Equation S5.1
may be written

1
2 ||ψ(x;φ)||2 = 1

2φ
TD(x)D(x)Tφ ≡ 1

2φ
TΓ(x)φ.

The elements of D(x) correspond to partial derivatives of the sufficient
statistics with respect to the data. The derivatives of the univariate sufficient
statistics S1 are given by

∂

∂x`
cos(xj) =

{
− sin(xj), ` = j

0, ` 6= j
,

∂

∂x`
sin(xj) =

{
cos(xj), ` = j

0, ` 6= j
.

Similarly, the derivatives of the pairwise sufficient statistics S2 may be cal-
culated as

∂

∂x`
cos(xj − xk) =


− sin(xj − xk), ` = j

sin(xj − xk), ` = k
0, ` 6∈ {j, k}

,

∂

∂x`
sin(xj − xk) =


cos(xj − xk), ` = j
− cos(xj − xk), ` = k

0, ` 6∈ {j, k}
,

∂

∂x`
cos(xj + xk) =

{
− sin(xj + xk), ` ∈ {j, k}

0, ` 6∈ {j, k} ,

∂

∂x`
sin(xj + xk) =

{
cos(xj + xk), ` ∈ {j, k}

0, ` 6∈ {j, k} .

Now we show that the second term inside the expectation in Equation
S5.1 may be written simply in terms of the sufficient statitsics. Notice that
the ith element of the gradient may be written in terms of columns of the
Jacobian:

ψi(x;φ) = φT [D(x)]·,i

so that

∂

∂xi
(ψi(x;φ)) = φT

∂

∂xi
[D(x)]·,i.
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Therefore, the second term inside the expectation in the score matching
objective may be written

d∑
i=1

∂

∂xi
(ψi(x;φ)) = φT

[
d∑
i=1

∂

∂xi
[D(x)]·,i

]
≡ φTH(x)

where

H(x) = [S1(x), 2S2(x)]T .

This relation holds because all nonzero elements of D(x) come from deriva-
tives of sines and cosines; due to the relations d

dx cos(x) = − sin(x) and
d
dx sin(x) = cos(x), taking the derivative again essentially converts the ele-
ments back to sufficient statistics.

S6. Proof of Theorem 2.2 (Conditional distributions in torus
graphs). We prove that the distribution of one angle conditional on the
other angles is von Mises as stated in Klein et al. 2019, Theorem 2.2, enabling
the use of Gibbs sampling for drawing samples from the distribution. We
will use the notation φjk = [αjk, βjk, γjk, δjk]

T to refer to elements of the
pairwise coupling parameter vector.

Proof. Let c−ij = cos(xi − xj), c+ij = cos(xi + xj), s
−
ij = sin(xi − xj), and

s+ij = sin(xi + xj). Factor the torus graph density into terms containing Xk

and not containing Xk:

p(x;φ) =C(φ) exp


∑
i 6=k

κi cos(xi − µi) +
∑

i<j,j 6=k


αij
βij
γij
δij


T 

c−ij
s−ij
c+ij
s+ij


×

exp {κk cos(xk − µk)}×

exp


∑
i<k


αik
βik
γik
δik


T 

c−ik
s−ik
c+ik
s+ik

+
∑
i>k


αki
βki
γki
δki


T 

c−ki
s−ik
c+ik
s+ik


 .

(S6.1)

Let the first factor (including the normalization constant) be denoted by
g(x−d;φ) and the second and third factors be denoted by f(x;φ). Then the
conditional distribution is

p(xk|x−k;φ) =
g(x−k;φ)f(x;φ)

g(x−k;φ)
∫
f(x;φ) dxk

=
f(x;φ)∫
f(x;φ) dxk

.
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Applying trigonometric identities to the third factor of Equation S6.1 and
simplifying, we have

exp


∑
i<k


αik
βik
γik
δik


T 

c−ik
s−ik
c+ik
s+ik

+
∑
i>k


αki
βki
γki
δki


T 

c−ki
s−ik
c+ik
s+ik




= exp


∑
i<k


αik
βik
γik
δik


T 

cos(xk − xi)
cos(xk − xi + π/2)

cos(xk + xi)
cos(xk + xi − π/2)


×

exp


∑
i>k


αki
βki
γki
δki


T 

cos(xk − xi)
cos(xk − xi − π/2)

cos(xk + xi)
cos(xk + xi − π/2)




= exp


∑
i 6=k


αik
βik
γik
δik


T 

cos(xk − xi)
cos(xk − xi + sgn(i− k)π/2)

cos(xk + xi)
cos(xk + xi − π/2)




where, with slight abuse of notation, we let, for instance, αik denote either
αik if i < k or αki if i > k, and sgn(·) is the signum function. Now we see
f(x;φ) is a sum of cosine functions with argument xk, so applying Theorem
S4.1, we have

f(x;φ) = exp(A cos(xk −∆))

where A =
√
b2x + b2y, ∆ = arctan (by/bx), defined as

bx =
∑
m

Lm cos(Vm)

by =
∑
m

Lm sin(Vm)

L =
[
κk,α·,k,β·,k,γ·,k, δ·,k

]
= [κk,φ·k]

V = [µk,x−k,x−k + sgn(i− k)π2 ,−x−k,−x−k + π
2 ]

= [µk,x−k,x−k + hπ
2 ,−x−k,−x−k + π

2 ],

with, for example, α·,k denoting all α parameters involving index k and
hj = −1 if j < k and hj = 1 otherwise. Then since

∫
f(x;φ) dxk = 2πI0(A)
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we find that the conditional density is von Mises with concentration A and
mean ∆.

S7. Measures of positive and negative circular dependence. The
dependence between two circular variables can be measured using a correla-
tion coefficient, ρc, analogous to the Pearson correlation coefficient for linear
analysis Jammalamadaka and Sarma (1988),

ρc =
E{sin(Xi − µi) sin(Xj − µj)}√

Var(sin(Xi − µi))Var(sin(Xj − µj))

where µ represents a mean circular direction. Using variance properties and
trigonometric identities we have

ρc =
E{cos(Xi −Xj − (µi − µj))− cos(Xi +Xj − (µi + µj))}

2
√
E{sin2(Xi − µi)}E{sin2(Xj − µj)}

.(S7.1)

The first component of the numerator measures the positive correlations
from the concentration of Xi − Xj − (µi − µj) and the second component
measures the negative (or reflectional) correlations from the concentration of
Xi−(−Xj)−(µi−(−µj)). Analogous to the real-valued data, it is important
to note that both positive and negative circular correlations are possible and
both are needed to fully define circular dependence between two variables.

The numerator of Equation S7.1 can be rewritten as

E

{[
cos(Xi −Xj)
sin(Xi −Xj)

]T [
α
β

]
−
[
cos(Xi +Xj)
sin(Xi +Xj)

]T [
γ
δ

]}

where α = cos(µi−µj), β = sin(µi−µj), γ = cos(µi +µj), δ = sin(µi +µj).
This shows that the dependence between angles may be decomposed into
a four-term linear combination involving the sines and cosines of the phase
differences and phase sums, where the phase difference terms correspond to
the positive correlation and the phase sum terms correspond to the neg-
ative correlation. This corresponds to the phase sum and phase difference
terms that appear in the torus graph density, reinforcing the interpretation
of the different pairwise coupling parameters as reflecting positive and neg-
ative rotational dependence. To illustrate the distinction between positive
and negative rotational dependence, we show bivariate torus graphs with
positive, negative, or both kinds of dependence in Figure S1, and show what
trial-to-trial rotational and reflectional covariance would look like in Figure
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S2. For the case of uniform marginal distributions, the circular correlation
coefficient becomes Jammalamadaka and Sengupta (2001):

ρc =
RXi−Xj −RXi+Xj

2
√
E{sin2(Xi − µi)}E{sin2(Xj − µj)}

where RXi−Xj ≡ |E{exp(i(Xi − Xj))}| corresponds to the positive corre-
lation and RXi+Xj ≡ |E{exp(i(Xi + Xj))}| corresponds to the negative
correlation. The theoretical Phase Locking Value (PLV), for which an esti-
mator is given in Klein et al. 2019, Equation 4.1, is equal to RXi−Xj . This
shows that PLV is similar to a measure of positive circular correlation under
the assumption of uniform marginal distributions (when the denominator of
the circular correlation coefficient would be equal to 1).

Positive correlation Negative correlation

x
1

x
2

Positive and negative correlation

A

C

B

−π π

−
π

π

x
1

x
2

Superposition

Fig S1. Bivariate torus graph densities with uniform marginal distributions shown on the
torus and flattened on [−π, π] under positive, negative, or both kinds of circular covariance.
(A) Coupling parameters chosen to induce only positive correlation (coupling based on
phase differences). (B) Coupling parameters chosen to induce only negative correlation
(coupling based on phase sums). (C) Equal amounts of positive and negative coupling
result in a distribution with two isotropic modes; the superposition figure (left) is shown
to provide intuition about the resulting distribution (right).
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Fig S2. Intuition about rotational and reflectional dependence. A) Illustration of 120◦

rotational (positive) and 120◦ reflectional (negative) dependence across three hypothetical
observations. Rotational dependence implies a consistent phase offset between oscillations
across trials (shaded gray angles) while reflectional dependence implies a consistent phase
sum (shaded blue angles) that corresponds to a consistent phase offset between oscillations
after one of the oscillations has been reflected with respect to 0◦. B) Example of an os-
cillation (blue) and its reflection with respect to 0◦ (dashed red). The reflected signal is
leading in time, i.e. φ = 150◦, whereas the blue signal is lagging in time, i.e. φ = −150◦.
This demonstrates that we can think of the reflected signal as moving across time in the
opposite direction. In neural data this phenomenon could arise, for example, if there was
bidirectional communication. C) The lines indicate dependence between phase angles used
in panel A, with rotational dependence on the left and reflectional dependence on the right
and trials shown in panel A marked with stars. When phases have uniform marginal dis-
tributions across trials, but exhibit phase coupling, positive dependence is observed in the
bivariate relationship on the left as a line with fixed orientation at 45◦; rotation produces
a shift along the anti-diagonal. On the other hand, negative dependence is observed in the
bivariate relationship on the right as a line with fixed orientation at 135◦; reflection pro-
duces a shift along the diagonal. In the current example, the respective shifts are at 120◦;
see Figure S1 to compare with the case of 0◦. Weaker dependence blurs the relationship
line but does not change the orientation.
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Fig S3. In data simulated from a bivariate torus graph, the average MSE over all param-
eters is shown in panel (A) as a function of sample size and marginal concentration. The
MSE is higher overall when marginal concentration is high. (B) ROC curves averaged over
200 simulations, half of which had no edge and half of which had an edge between the vari-
ables, as a function of marginal concentration for a fixed sample size (N=50), suggesting
that structure recovery is also diminished when high marginal concentration is present.
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Fig S4. Further detail on the simulation results shown in Figure 5 of Klein et al. (2019)
for a sample size of 840 (matching the real LFP data). Top row: ROC curves colored by
dimension for two different underlying edge densities (averaged across 30 simulations).
Bottom row: averaged precision curves corresponding to the same densities as the top row.
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Fig S5. (A) Scatter plot of data from two channels in dentate gyrus (DG). The angles
follow a pattern of positive dependence similar to the simulated data of Figure 1 Klein
et al. (2019), which was used to demonstrate the need for circular wrapping when modeling
dependent phase angles. (B) Fitted torus graph density on the plane and torus.
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A B

−π π −π π −π π −π π
−π

π

Fig S6. Similar to Klein et al. (2019), Figure 9, but using the sine model as the theoretical
distribution. The sine model fails to accurately fit this data set, which is evident in the
bivariate dependence and sufficient statistics. (A) Along the diagonal are the marginal
distributions of the three phase angles, where the real data is represented by blue histograms
and the theoretical marginal densities from the sine model are overlaid as solid red traces.
Two-dimensional distributions (off-diagonal) show bivariate relationships, with theoretical
densities above the diagonal and real data represented using two-dimensional histograms
below the diagonal. The multimodal behavior of the sine model is apparent in the two-
dimensional distributions, which do not appear to match the real data. (B) Plots along
the diagonal same as panel A. Below the diagonal are distributions of pairwise phase
differences and above the diagonal are distributions of pairwise phase sums, represented by
histograms for the real data and by solid red density plots for the theoretical torus graph
model. In contrast to the torus graph model, the sine model fails to accurately capture the
distributions of the sufficient statistics from these data.
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Fig S7. (A) Adjacency matrices for the three-dimensional LFP analysis with entries col-
ored by p-value. PLV p-values are very small for all connections, while torus graph p-values
reflect finer structure, such as PFC-Sub coupling that is apparently more salient than PFC-
DG coupling. The adjacency matrix for the trivariate network is a representative combi-
nation of channels reflecting the pattern that dominates in all trivariate combinations.
(B) Same as (A) but for the five-dimensional LFP analysis, where the torus graph reveals
nearest-neighbor structure along the linear probe in CA3 that PLV misses. (C) Edgewise
p-values for each edge in each possible trivariate graph (composed of each combination of
electrodes from each of the three areas). Note that channels 6 and 7 (boxed region) of DG
are on the border between DG and CA3 and may be picking up signals from CA3; omitting
these channels gives stronger evidence of an overall lack of connections between DG and
PFC (corresponding to the adjacency matrix in (A)).
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Fig S8. Adjacency matrix for PLV graph with edgewise p-values determined using
Rayleigh’s test of uniformity on the circle for each pairwise phase difference. Entries are
colored by p-value and, compared to the torus graph adjacency matrix (Klein et al., 2019,
Figure 8.C), there is very little noticeable structure in the graph even for very small p-value
thresholds (aside from a lack of edges between CA3 and DG).
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Fig S9. For the 24-dimensional real LFP data, the diagonal shows univariate histograms
which appear to have low concentration in all cases. Below the diagonal are histograms of
phase differences between pairs of angles, showing some highly concentrated distributions
suggesting rotational dependence; above the diagonal are histograms of phase sums, showing
very little concentration, suggesting there is not strong evidence for reflectional dependence
in these data.
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Fig S10. Examples of simulated and real data to demonstrate the validity of the simulation
process. Upper right: histograms and pairwise scatter plots, bottom left: estimated PLV
matrices (color scale 0.2 to 1, with red indicating higher PLV values). (A) Simulated 5-
channel data with linear probe structure. (B) Real 5-channel data from CA3. (C) Simulated
3-channel data. (D) Real 3-channel data from separate regions (DG, Sub, and PFC).
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Fig S11. Investigation of False Positive Rate (FPR) and False Negative Rate (FNR) for
graphs of varying dimensions as sample size increases. (A) FPR and FNR for PLV (left)
and torus graphs (right) using an alpha level of 0.05 for the edgewise hypothesis tests with
no Bonferroni correction for the number of edges. PLV has high FPR for all sample sizes
while torus graphs control the FPR; on the other hand, PLV has low FNR, but torus graphs
is more conservative and for low sample sizes may be missing some edges. (B) Same as
A, but with Bonferroni correction.
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