Supplementary Appendix

Supplement to: Davis-Gardner ME, Lai L, Wali B, et al. Neutralization against BA.2.75.2, BQ.1.1, and XBB from mRNA bivalent booster. N Engl J Med. DOI: 10.1056/NEJMc2214293

This appendix has been provided by the authors to give readers additional information about the work.

2 Supplementary Appendix

4 Contents

5	Supplemental Methods	. 2
6	Supplemental Figure S1	. 4
7	Supplemental Figure S2	. 5
8	Supplemental Figure S3	. 6
9	Supplemental Table S1:	. 7
10	Supplemental Table S2:	. 9
11	Supplemental Table S3:	10
12	Supplemental Table S4:	11
13	Supplemental Table S5:	12
14	References	13
15		

19 Supplemental Methods

20

Serum samples. All samples were collected at Emory University. Collection and processing were performed under approval from the University Institutional Review Board (#00002061 and #00058271). Adults ≥18 years were enrolled who met eligibility criteria under these protocols, were at least 1 week post-COVID booster vaccination, and provided informed consent. All patient samples were de-identified prior to inclusion in the study.

26 Cells and Viruses. Vero-TMPRSS2 cells were cultured in complete DMEM medium consisting 27 of 1x DMEM (VWR, #45000-304), 10% FBS, 2mM L-glutamine, and 1x antibiotic as previously 28 described¹. nCoV/USA WA1/2020 (WA/1), closely resembling the original Wuhan strain, was 29 propagated from an infectious SARS-CoV-2 clone as previously described². icSARS-CoV-2 was 30 passed once to generate a working stock. The BA.1 isolate has been previously described (Edara 31 Cell Reports 2022). Omicron subvariants were isolated from residual nasal swabs: BA.5 isolate 32 (EPI ISL 13512579), provided by Dr. Richard Webby (St Jude Children's Research Hospital), 33 BA.2.75.2 (EPI ISL 15146622), BQ.1.1 isolate (EPI ISL 15196219), BA.2.75 isolate 34 (EPI ISL 14393635), and XBB isolate (EPI ISL 15509864) provided by Dr. Benjamin Pinsky 35 (Stanford University). All variants were plaque purified and propagated once in VeroE6-TMPRSS2 36 cells to generate working stocks. Viruses were deep sequenced and confirmed as previously described⁷. 37

Focus Reduction Neutralization Assay. FRNT assays were performed as previously described³. Briefly, samples were diluted at 3-fold in 8 serial dilutions using DMEM in duplicates with an initial dilution of 1:10 in a total volume of 60 μl. Serially diluted samples were incubated with an equal volume of SARS-CoV-2 (100-200 foci per well) at 37° C for 1 hour in a roundbottomed 96-well culture plate. The antibody-virus mixture was then added to Vero cells and incubated at 37° C for 1 hour. Post-incubation, the antibody-virus mixture was removed and 100 μl of prewarmed 0.85% methylcellulose overlay was added to each well. Plates were incubated at 37° C for 18 to 40 hours, and the methylcellulose overlay was removed and washed six times
with PBS. Cells were fixed with 2% paraformaldehyde in PBS for 30 minutes. Following fixation,
plates were washed twice with PBS, and permeabilization buffer (0.1% BSA, 0.1% Saponin in
PBS) was added to permeabilize cells for at least 20 minutes. Cells were incubated with an antiSARS-CoV spike primary antibody directly conjugated to Alexa Fluor-647 (CR3022-AF647)
overnight at 4°C. Cells were then washed twice with 1x PBS and imaged on an ELISPOT reader
(CTL Analyzer).

Quantification and Statistical Analysis. Antibody neutralization was quantified by counting the number of foci for each sample using the Viridot program⁴ The neutralization titers were calculated as follows: 1 – (ratio of the mean number of foci in the presence of sera and foci at the highest dilution of the respective sera sample). Each specimen was tested in duplicate. The FRNT-50 titers were interpolated using a 4-parameter nonlinear regression in GraphPad Prism 9.2.0. Samples that do not neutralize at the limit of detection at 50% are plotted at 20 and used for geometric mean and fold-change calculations.

59

- 63 White boxes indicate wild-type sequence, colored box indicates amino acid substitution labeled
- 64 below. Receptor binding domain (RBD) and receptor binding motif (RBM) are indicated above.

Two Monovalent Boosters- Long Interval

66

67 Supplemental Figure S2. Neutralizing responses against WA1/2020, BA.1, BA.5, BA.2.75.2, BQ.1.1, and XBB 70-100 days after two monovalent boosters. Shown is the neutralization 68 69 activity against SARS-CoV-2 variants among 11 individuals who received two monovalent 70 boosters 70-100 days prior to sample collection. The focus reduction neutralization test (FRNT₅₀) 71 [the reciprocal dilution of serum that neutralizes 50% of the input virus]) geometric mean titers for 72 each variant are shown above each panel along with ratios of GMT compared to WA1/2020. The 73 connecting lines between the variants represent matched serum samples. The horizontal lines 74 represent the limit of detection of the assay (FRNT₅₀ GMT 20). Red symbols in panels B and C 75 indicate individuals who self-reported prior SARS-CoV-2 infection. The connecting lines represent 76 matched samples, colored bars represent geometric mean, error bars represent 95% confidence 77 intervals that are not adjusted for multiplicity and may not be used for hypothesis testing.

79 Supplemental Figure S3. Neutralizing responses against WA1/2020 and BA.2.75. Shown is the 80 neutralization activity against SARS-CoV-2 variants among 12 individuals who received one 81 monovalent booster (Table S2) and 12 individuals who received two monovalent boosters (Table 82 S5). The focus reduction neutralization test (FRNT₅₀ [the reciprocal dilution of serum that 83 neutralizes 50% of the input virus]) geometric mean titers for each variant are shown above each 84 panel along with ratios of GMT compared to WA1/2020. The connecting lines between the 85 variants represent matched serum samples. Colored bars represent geometric mean, error bars 86 represent 95% confidence intervals that are not adjusted for multiplicity and may not be used for 87 hypothesis testing. The horizontal lines represent the limit of detection of the assay (FRNT₅₀ GMT 88 20).

89

Variant	Virus Name	GISAID	Amino Acid Substitutions
BA.1	hCoV-19/USA/GA-EHC- 2811C/2021	EPI_ISL_7171744	A67V, H69del, V70del, T95I, G142D, V143del, Y144del, Y145del, N211del, L212I, ins214EPE, S371L, S373P, S375F, G339D, K417N, N440K, G446S, Q493R, Q498R, S477N, T478K, E484A, G496S, N501Y, T547K, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F
BA.5	hcov- 19/USA/MD/HP30386/202 2	EPI_ISL_1351257 9	T19I, L24del, P25del, P26del, A27S, H69del, V70del, T76I, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K
BA.2.75	hCoV-19/USA/CA- Stanford-94_S13/2022	EPI_ISL_1439363 5	T19I, L24del, P25del, P26del, A27S, G142D, K147E, W152R F157L, I210V, V213G, G257S, G339H, S371F, S373P, S375F, T376A, D405N R408S, K417N, N440K, G446S, N460K, S477N, T478K, E484A, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K
BA.2.75. 2	hCoV-19/USA/CA- Stanford-105_S27/2022	EPI_ISL_1518148 6	T191, L24del, P25del, P26del,A27S,G142D,K147E,W152R,F157L,I210V,V213G,G257S,G339H,R346T,S371F,S375F,T376A,D405N,R408S,K417N,N440K,G446S,N460K,S477N,T478K,E484A,F486S,Q498R,N501Y,Y505H,D614G,H655Y,N679K,P681H,N764K,D796Y,Q954H,N969K,D1199N

Supplemental Table S1: Amino acid substitutions in spike protein of variants used in the study.

BQ.1.1	hCoV-19/USA/CA- Stanford-106_S04/2022	EPI_ISL_1519621 9	T19I, L24 A27S, G142D, R346T, S375F, R408S, K444T, S477N,	del, P25del, H69del, V213G, S371F, T376A, K417N, L452R, T478K,	P26del, V70del, G339D, S373P, D405N, N440K, N460K, E484A,
			F486V,	Q498R,	N501Y,
			P681H,	N679K,	N764K,
			D796Y, G	954H, N969	K
			T19I, L24	del, P25del,	P26del,
	hCoV-19/USA/CA- Stanford-109_S21/2022	EPI_ISL_1550986 4	A27S, V8	3A, G142D, `	Y144del,
			H146K,	Q183E,	V213E,
			G339H, R	(3461, L368)	, S371F,
			5373P, D405N	5375F, D4089	1376A, K417N
YBB			D403N, N440K	N4003, V///5D	C417N,
VDD			N460K	\$477N	04400, T478K
			F484A	F486S	F490S
			Q498R.	N501Y	Y505H.
			D614G,	H655Y.	N679K,
			P681H,	N764K,	D796Y,
			Q954H, N	1969K,	,

Sample #	Age	Sex	Exposure	Vaccine	Time from vaccination
	_		status	used	
1	40	Male	Naive	Pfizer	1 week after booster dose
2	28	Male	Naive	Pfizer	4 weeks after booster dose
3	33	Female	Naive	Pfizer	4 weeks after booster dose
4	31	Female	Naive	Pfizer	4 weeks after booster dose
5	29	Female	Naive	Pfizer	4 weeks after booster dose
6	54	Male	Naive	Pfizer	4 weeks after booster dose
7	51	Male	Naive	Moderna	4 weeks after booster dose
8	26	Female	Naive	Moderna	4 weeks after booster dose
9	27	Male	Naive	Pfizer	1 week after booster dose
10	26	Female	Naive	Moderna	4 weeks after booster dose
11	33	Female	Naive	Moderna	1 week after booster dose

Pfizer

1 week after booster dose

Female Naive

94 Supplemental Table S2: Demographic information for individuals in single monovalent booster
 95 group in Figure 1A.

96

12

27

Sample #	Age	Sex	Exposure status	Vaccine used	Time from vaccination
13	59	Male	Naïve	Pfizer	14 days after 2 nd booster
14	64	Female	Naïve	Pfizer	32 days after 2 nd booster
15	47	Female	Naïve	Moderna	33 days after 2 nd booster
16	43	Male	Naïve	NA	42 days after 2 nd booster
17	41	Female	Naïve	Moderna	30 days after 2 nd booster
18	35	Male	Recovered	Moderna	31 days after 2 nd booster
19	21	Female	Recovered	Moderna	6 days after 2 nd booster
20	59	Female	Recovered	Moderna	30 days after 2 nd booster
21	58	Female	Naïve	Moderna	12 days after 2 nd booster
22	62	Male	Naïve	Pfizer	54 days after 2 nd booster
23	59	Female	Naïve	Pfizer	57 days after 2 nd booster

98 Supplemental Table S3: Demographic information for double monovalent booster group in
 99 Figure 1B.

100

101 NA: Data not available

Sample #	Age	Sex	Exposure status	Vaccine used	Time from vaccination
24*	70	F	Naïve	Moderna	20 days after booster
24	47	Μ	Naïve	NA	20 days after booster
25	46	F	Naïve	Moderna	17 days after booster
26	41	F	Naïve	NA	21 days after booster
27	36	F	Naïve	Pfizer	17 days after booster
28	34	F	Naïve	Moderna	16 days after booster
29	46	F	Recovered	NA	28 days after booster
30	38	Μ	Naïve	NA	19 days after booster
31**	23	Μ	Naïve	NA	16 days after booster
32	32	Μ	Naïve	NA	17 days after booster
33	33	F	Naïve	NA	42 days after booster
34	40	Μ	Recovered	NA	36 days after booster

103 **Supplemental Table S4:** Demographic information for bivalent booster group in Figure 1C.

104

105 NA: Data not available

106 *This individual received two monovalent boosters prior to bivalent booster.

107 **This individual received a primary vaccination of Johnson and Johnson followed by one

108	monovalent booster and one bivalent booster.
100	

Supplemental Table S5: Demographic information for double monovalent booster group with
 longer interval since vaccination in Supplemental Figure 2.

Sample #	Age	Sex	Exposure status	Vaccine used	Time from vaccination
35	68	Female	Naive	Moderna	100 days after 2 nd booster
36	72	Female	Naïve	Moderna	92 days after 2 nd booster
37	69	Male	Naive	Moderna	92 days after 2 nd booster
38	72	Female	Naïve	Moderna	73 days after 2 nd booster
39	60	Female	Naïve	Moderna	100 days after 2 nd booster
40	64	Male	Naïve	Moderna	83 days after 2 nd booster
41	71	Male	Naïve	Moderna	70 days after 2 nd booster
43	60	Male	Naïve	Moderna	71 days after 2 nd booster
43	67	Female	Naïve	Moderna	71 days after 2 nd booster
44	70	Female	Naïve	Moderna	104 days after 2 nd booster
45	73	Male	Naïve	Moderna	74 days after 2 nd booster

114 **References**

115

116 1. Edara VV, Norwood C, Floyd K, et al. Infection- and vaccine-induced antibody binding and 117 neutralization of the B.1.351 SARS-CoV-2 variant. Cell Host Microbe 2021;29:516-21.e3.

118 2. Xie X, Muruato A, Lokugamage KG, et al. An Infectious cDNA Clone of SARS-CoV-2. Cell 119 Host Microbe 2020;27:841-8.e3.

Vanderheiden A, Edara VV, Floyd K, et al. Development of a Rapid Focus Reduction
 Neutralization Test Assay for Measuring SARS-CoV-2 Neutralizing Antibodies. Curr Protoc
 Immunol 2020;131:e116.

Katzelnick LC, Coello Escoto A, McElvany BD, et al. Viridot: An automated virus plaque
 (immunofocus) counter for the measurement of serological neutralizing responses with
 application to dengue virus. PLoS Negl Trop Dis 2018;12:e0006862.