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Figure S1. Cerebellum as decoupling machine in feedforward multi-area networks. (a) Illustration of decoupling feedback
processing. The cerebellum makes predictions of the feedback expected by brain area 2, decoupling the main network from down-
stream brain areas (dashed red arrow). (b) Case of decoupling feedforward processing. The cerebellum predicts the forward activity
expected by brain area 3, thereby approximating (and decoupling) the forward computations between brain area 1 and 3 (dashed
black arrow). Note that the cerebellum could, in principle, approximate feedback and feedforward processing across many more
brain areas (i.e. brain area 2 could be expanded in multiple brain areas).

Table S1. Relationship between the internal models of the cerebellum with decoupling machines1. The properties of the
forward model of the cerebellum can be set against those of feedback decoupling (blue); similarly, the properties of the inverse
model of the cerebellum can be set against those of forward decoupling (red). The internal models here focus on the classical
motor control setting but can be extended to cognition, where for example a “mental model” replaces the “controlled object”2.
Abbreviations: MM, main model; temp., temporal; spat. spatial.

Forward Model Feedback Decoupling Inverse Model Forward Decoupling

controller
cerebral

(motor) cortex
main model (MM) cerebellum synthesiser

input
motor

state/command
area state*

sensory/desired
state

(temp.) area state*
(spat.) upstream state*

output
prediction

future state (temp.) future gradient
(spat.) downstream gradient

motor command (temp.) future state
(spat.) downstream state

output
destination

cerebral
(motor) cortex

MM: same area
controlled
object

(temp.) MM: same area
(spat.) MM: downstream area
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Figure S2. Cerebro-cerebellar model improves learning and output behaviour when using a point-mass model in the line
drawing sensorimotor task. (a) Error between model output and desired target trajectories for cerebellar RNN (gray, cRNN) and
cerebro-cerebellar RNN (orange, ccRNN) over learning. Insets: Model trajectory produced for all cues after learning. (b) Dysmetria
score for cRNN and ccRNN. The dysmetria score quantifies how smooth the movement is after learning (Methods). (c) Normalized
modelmean squared error (MSE) after learning for different cerebral feedback horizons. Feedback horizon is denoted as percentage
of the total task sequence. Arrow indicates feedback horizon used by the cerebral network in the other panels. (d) Difference in
training error between for varying degrees of task feedback interval (ns denotes not significant: 0.394 (40%) and 0.661 (50%)). (e)
Difference in dysmetria score between ccRNN and cRNN for varying degrees of task feedback intervals (ns denotes not significant:
p=0.098 (40%) and 0.744 (50%)). Task feedback interval given as a percentage of the total task time. **: p<0.01, ***: p<0.001, ****:
p<0.0001 (two-sided paired t-test). Error bars represent mean± SEM across 10 different initial conditions. Source data are provided
as a Source Data file.
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Figure S3. cRNN and ccRNN models compared to a fixed RNN with fixed weights (equivalent to a reservoir RNN) and a
model with only the feedforward cerebellar network across tasks. For the lone cerebellar network there is no recurrency in
the network at all and must directly translate the current external input to desired output; for the simple line drawing task which
requiresmemory of the initial cue this removes the possibility of any learning at all (optimal case shown). Error bars representmean
± SEM across 10 different initial conditions. Source data are provided as a Source Data file.
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Figure S4. Learning for different cerebral feedback horizons for the line drawing task (cf. Fig. 2d). Feedback horizon is given
as percentage of task duration (10 time steps). Results presented in main text (Fig. 2b) shown on top row along with RNN trained
with full horizon (i.e. cerebral feedback horizon = 100%). Error bars represent mean ± SEM across 10 different initial conditions.
Source data are provided as a Source Data file.
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Figure S5. Demixed PCA of cRNN network at the beginning and end of learning (cf. Fig. 2e,f). Early and late learning corre-
sponds to training session 1 (top a-d) and 200 (bottom e-h), respectively. (a, e) Cumulative variance explained by PCA (black) and
dPCA (red) components. (b, f) Demixed principal components for cue, time and cue/time interaction task variables. In each subplot
there are 7 lines corresponding to the 7 cues (cf. Fig. 2a). (c, g) Explained variance for individual demixed principal components.
Pie chart shows how the total variance is split between different task variables. (d, h) Dot product between all pairs of the first 15
demixed principal components (upper-right triangle) and correlations between all pairs of the first 10 demixed principal compo-
nents (bottom-left triangle). Stars denote statistical significance of the two PC axes being significantly non-orthogonal3 (p<0.001,
one-sided paired t-test for f1 · f2 > 3.3

√
N , where f1, f2 are the respective axes and N the dimension of the the ccRNN cerebral

network). Source data are provided as a Source Data file.
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Figure S6. Demixed PCA of ccRNN cerebral network at the beginning and end of learning (cf. Fig. 2e,f). Early and late learning
corresponds to training session 1 (top a-d) and 200 (bottome-h), respectively. (a, e) Cumulative variance explainedby PCA (black) and
dPCA (red) components. (b, f) Demixed principal components for cue, time and cue/time interaction task variables. In each subplot
there are 7 lines corresponding to the 7 cues (cf. Fig. 2a). (c, g) Explained variance for individual demixed principal components.
Pie chart shows how the total variance is split between different task variables. (d, h) Dot product between all pairs of the first 15
demixed principal components (upper-right triangle) and correlations between all pairs of the first 10 demixed principal components
(bottom-left triangle). Stars denote statistical significance of the two PC axes being significantly non-orthogonal3 (p<0.001, one-sided
paired t-test for f1 · f2 > 3.3

√
N , where f1, f2 are the respective axes andN the dimension of the the ccRNN cerebral network). Source

data are provided as a Source Data file.
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Figure S7. Demixed PCA of ccRNN cerebellar network at the beginning and end of learning (cf. Fig. 2g,h). Early and late
learning corresponds to training session 1 (top a-d) and 200 (bottom e-h), respectively. (a, e) Cumulative variance explained by PCA
(black) and dPCA (red) components. (b, f) Demixed principal components for cue, time and cue/time interaction task variables. In
each subplot there are 7 lines corresponding to the 7 cues (cf. Fig. 2a). (c, g) Explained variance for individual demixed principal
components. Pie chart shows how the total variance is split between different task variables. (d, h) Dot product between all pairs
of the first 15 demixed principal components (upper-right triangle) and correlations between all pairs of the first 10 demixed prin-
cipal components (bottom-left triangle). Stars denote statistical significance of the two PC axes being significantly non-orthogonal3
(p<0.001, one-sided paired t-test for f1 · f2 > 3.3

√
N , where f1, f2 are the respective axes and N the dimension of the the ccRNN

cerebral network). Source data are provided as a Source Data file.
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Figure S8. Linear regression over learning determines howmuch variation of the cerebellar activities are explained by the
inputs, targets and true feedback. (a) Three linear regression models for input, target and true feedback information during
learning of the simple linedrawing visuomotor task (orange) compared to shuffled data (black). (b) Same as in (a) for the online
linedrawing visuomotor task. Error bars represent mean ± SEM across 10 different initial conditions. Source data are provided as
a Source Data file.

Figure S9. Input activations across time for the simple line drawing (top; cf. Fig. 2) and online MNIST based tasks (bottom;
cf. Fig. 3). It is shown for task for 3 example stimuli; for theMNIST based tasks the activation shown is for one example pixel. Stimuli
are colour coded as in Figs. 2,3.
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Figure S10. Learning the online LD visuomotor (left), online DD visumotor (middle) and online visual discrimination (right)
tasks under varying degrees of input noise ω, where ω ∼ N (0,σ2). (a) Learning curves for low, medium and high levels of noise.
(b) (Total) training error across different noise levels (ns denotes not significant: online DD visuomotor p=0.052 (σ = 1), p= 0.865
(σ = 2); online visual discrimination p=0.153). **: p<0.01, ***: p<0.001, ****: p<0.0001 (two-sided paired t-test between cRNN and
ccRNN). Error bars represent mean ± SEM across 10 different initial conditions. Source data are provided as a Source Data file.
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Figure S11. Learning the online LD visuomotor (left) and online visual discrimination (right) tasks for different stimulus
(chunks of image) sizes. Since each MNIST image is of total size 784, the total sequence length of the task with input size N can
be calculated as 784

N
×∆t (where ∆t = 0.1s). Note that online DD visuomotor variant is not included here since as the number of

timesteps decreases there is not enough time for themodel output to construct a digit. (a) Learning curves for long (as presented in
main text), medium and small task lengths. (b) (Total) training error across different input size (and therefore task lengths) values (ns
denotes not significant: online LD visuomotor; p=0.093 (0.2s), p= 0.859 (0.4s); online visual discrimination p=0.239). ****: p<0.0001
(two-sided paired t-test between cRNN and ccRNN). Error bars represent mean ± SEM across 10 different initial conditions. Source
data are provided as a Source Data file.
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Figure S12. Learning for different cerebral feedbackhorizons for the online visuomotor anddiscrimination tasks (cf. Fig. 3d).
Feedback horizon is given as percentage of task duration (28 timesteps). (a) Learning curves; results presented in main text (Fig. 3b)
shown on top row along with RNN trained with full horizon (i.e. cerebral feedback horizon = 100%). (b) (total) error during learning
across different feedback horizons. Error bars representmean± SEMacross 10 different initial conditions. Source data are provided
as a Source Data file.
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Figure S13. Learning of ccRNN in the online visual discrimination task without bootstrapping. (a) By removing the cerebellar
bootstrap, the cerebellum no longer uses its own estimates during training (i.e. the right hand side of Eq. 3 is removed). (b) Learning
curve for the ccRNN with no bootstrapping for the online visual discrimination task. For this task external feedback only comes at
the end, so bootstrapping is a critical component for cerebellar learning. Error bars representmean± SEM across 10 different initial
conditions. Source data are provided as a Source Data file.
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Figure S14. Pair-wise correlations over learning. (a) extension of Fig. 6b for top 5 principal components. (b) Variance explained
by each component (accumulation in orange). Data grouped across 10 different initial conditions, where for each condition we
sample 600 active pairs for the simple LD visuomotor task and 1000 active pairs for the online tasks (see Methods). Source data are
provided as a Source Data file.
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Figure S15. Pair-wise correlations over learningwith a fixed cerebellarmodule. (a) Box plot showing themean and distribution
of pair-wise cerebro-cerebellar correlations over learning. Mean correlation coefficient for the fully plastic ccRNN model (solid
black line) and fully fixed ccRNN (i.e. without any form of plasticity in both cerebral and cerebellar networks; dashed black line)
are given for reference. Boxplot shows median (horizontal dark orange line), interquartile range (IQR; box with centre at mean);
whiskers show respective quartiles extended by 1.5 × IQR, where circles denote individual outliers beyond this range. (b) Top 5
principal components. (c) Variance explained by each component (accumulation in orange). Data grouped across 10 different initial
conditions, where for each condition we sample 600 active pairs for the simple LD visuomotor task and 1000 active pairs for the
online tasks (see Methods). Source data are provided as a Source Data file.
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Figure S16. Generalisation of ccRNN (orange scatter) for feedback horizons K from 3 to 7. The change in loss is computed
with reference to the cRNN (i.e. ccRNN - cRNN). Training loss is calculated after training for a fair comparison with final validation
performance. Source data are provided as a Source Data file.

Figure S17. Example images and captions from the validation set with corresponding model captions (cRNN in grey and
ccRNN in orange) and gold standard captions (black). Here we show a combination of examples of how the models describe
the presented image. In some case all or some models fail to give an accurate description of the image. In other cases all models
are able to provide an accurate caption for the image, with each model displaying subtle differences in the generated captions. The
images shown here were generated on deepAI.org for illustration purposes only.
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