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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): expert in Raman spectroscopy 

The paper “Rapid, label-free histopathological diagnosis of liver cancer based on Raman 

spectroscopy and deep learning” by Huang presents a strong technical study and demonstration 

for in vitro and intraoperative pathological diagnosis of liver cancer by Raman spectroscopy 

technology. The methods are clearly presented and validated, the combination of Raman 

spectroscopy with deep learning is exciting, and the demonstration of the portable handheld 

Raman system is impressive. The implication of this work to pathology and medical practice could 

be large. 

However, there are a few important technical issues that need clarification and re-examination. 

1. For in vitro studies, the area of the liver tissues is over mm^2. This is ordered of magnitude 

larger than what spontaneous Raman imaging can cover. How does this mismatch affect the 

result? 

2. For intraoperative diagnosis with the portable Raman system, again one can only acquire a 

limited number of Raman spectra on pre-selected points instead of mapping the entire region of 

interest. With such under-sampling, would one worry about that one might miss the actual lesion 

during the operation? 

Reviewer #2 (Remarks to the Author): expertise in liver cancer 

This is a translational research to develop and validate a workflow for in vitro and intraoperative 

pathological diagnosis of liver cancer by utilizing Raman spectroscopy to human hepatic tissue 

samples. The authors established the method to distinguish carcinoma tissue from non-tumor 

tissue by using Raman spectroscopy combined with deep learning. They also developed a portal 

handheld Raman system and applied for real-time intraoperative human liver cancer diagnosis. 

However, the following concerns need to be addressed from a clinical point of view: 

Major and minor comments 

1. On Page 7, the authors judged tumor stage and differentiation grade by using Raman 

spectroscopy and described the judgement is crucial for providing effective and appropriate cancer 

treatment. However, the size and the number of tumors and the presence of vascular infiltration 

determine the stage of liver cancer. Is it possible to determine these by Raman spectroscopy? In 

addition, tumor differentiation usually does not affect treatment strategy. 

2. On Page 10, the authors described tumor heterogeneity posed greater challenges to 

discrimination of different stages and differentiation grades of tumor tissues, with accuracies of 

79.2% and 75.7% and to judgement of the liver cancer subtypes HCC and ICC, yielding an 

identification accuracy of 86.3%. Are these results of diagnostic accuracy better than traditional 

CT, MRI and US? 

3. On Page 10, the authors mentioned about the sensitivity of serological AFP. It is well known 

that AFP alone is not enough to diagnose with HCC, which is usually diagnosed by US, CT or MRI. 

Is Raman spectroscopy superior to these modalities? 

4. In Figure 4, the authors showed cancer margin delineation. In HCC, the tumor capsule clearly 

distinguishes between cancerous and non-cancerous tissues. Boundaries were not smooth in 

Raman images like Fig. 4d and 4e. Can't you see the tumor capsule in Raman images? 

5. In Figure 6, the authors showed a preliminary result of usage of a handheld fibre-coupled 

Raman spectrometer. Do we need Raman spectrometer to observe tumors that can be seen by 

inspection or intraoperative ultrasound? Isn't it difficult to observe at the micro level because of 

camera shake and respiratory fluctuations? 

6. Liver cancer often occurs deep in the liver. How deep can you observe in Raman spectroscopy? 

7. On Page 22, the authors described that Ramanomics could distinguish different pathological 

tissues more cost-effectively. How much does it cost to observe in Raman spectroscopy? 



8. In Figure 2, legends of 2c and 2d are opposite. Fig. 2c is for tumor stage and Fig. 2d for tumor 

differentiation. 

9. “Tumor” and “tumor” are mixed in the article. 

Reviewer #3 (Remarks to the Author): expert in deep learning network analysis 

This paper proposed a new system for histopathological diagnosis of liver cancer based on 2 

Raman spectroscopy and deep learning. First, a CNN-based DL pipeline is used to classify the 

spectral data into paracancer or cancer tissues. The model is further used to differentiate different 

pathological types of liver cancer tissues. Last but not least, a portable Raman system was 

employed in surgery to validate this pipeline. 

While the whole work is very novel and potentially impactful to bring benefits in liver cancer 

diagnosis, the study suffers from the following limitations: 

1) The spectral data analysis. A liver tissue Raman database was established with 50 spectra per 

tissue sample, and a total of 12,000 spectra were obtained from 120 pairs of liver tissue samples. 

When training the VGG-model, the dataset is randomly splitted into 80% training, 10% validation 

and 10% test. However, due to the potential correlations of raman spectral data at the same 

tissue, a purely random split of training and testing data can cause label leakage, and therefore 

inflate the accuracy. A proper split would be following: take a random 100 pairs of liver tissue 

samples and all the raman spectral data on these tissue samples as training, and use the spectral 

data on the remaining 20 pairs of liver tissue sample as testing. This design will ensure the fair 

evaluation of DL-based models without potential label leakage. Further, the compared method, 

OPLS-DA is quite a weak comparison in my view. It would really demonstrate the power of DL-

based approach by comparing with stronger baselines such as random forest, xgboost. 

2) The subsequent experiments of CNNs are conducted to classify multiple clinical phenotypes such 

as tumor stages, HCC/ICC subtypes. Similar to the concerns of potential label leakage mentioned 

above, the data splits need to be re-considered to justify the results. Further, to better understand 

the method, details about how to preprocessing the images, and how to augment data, how to 

alleviate the imbalance of labels should be discussed. 

3) Tissue metabolomics analysis. The authors find a few metabolic features that can distinguish 

HCC and adjacent tissues. From Figure 3a, 3b, there are generally two types of metabolomics 

signatures: one is enriched in HCC and the other enriched in adjacent tissues. While the pattern is 

clear, the predictive power of these metabolomics is not explored. Further, it would be very 

interesting and informative to compare the predictive power of these metabolomic features with 

the deep learning models developed using the spectral data. 

4) The intraoperative liver cancer diagnosis using a portable Raman system is extremely 

impressive! However, while the authors show different patterns of spectral Raman shift for 

different cancer tissues, the connection with previously developed DL models is missing. It is 

unclear whether the authors had validated the trained DL models using this portable Raman 

system, which would be extremely valuable to do so as a true validation of generalization. 

5) Transparency of reproducibility. The github link provided in the manuscript simply contains the 

codebase of plain VGG model training scripts. Without the spectral/imaging data, it is impossible 

for other researchers to validate the code or deploy the code. While I understand the privacy 

concerns of releasing patient data, I would highly encourage the authors to at least provide de-

identified or simulated data so that other researchers can test/validate the proposed methods. 

Reviewer #4 (Remarks to the Author): expert in metabolomics 

The manuscript by Huang et al, describes a methodology to use Raman spectroscopy and deep 

learning to identify liver cancer tissue. The goal is to apply this in the surgery theatre for 

intraoperative pathological diagnosis (compared to classical biopsy methods) to better resect 

cancer tissue. 



The analyses were also compared to metabolomics analyses. 

Focusing mainly on the Metabolomics analysis, the performed overall analysis looks robust. I have 

two comments: 

1. The data representation in e.g. panel 3d appears not very intuitive. I am wondering if a fold 

change representation of HCC sample over respective adjacent tissue would not be more intuitive 

(in such case, the signal for each metabolite from adjacent tissue would always be = 1). 

2. The analytical method is optimally suited for polar metabolites while lipids etc are barely 

retained by the used chromatographic method (all hydrophobic compounds elute at very early 

retention time). I am wondering if these compounds can be detected with confidence when barely 

separated? What are the measures applied to allow compound identification?
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Reviewer #1 (Remarks to the Author): expert in Raman spectroscopy 

The paper “Rapid, label-free histopathological diagnosis of liver cancer based on 

Raman spectroscopy and deep learning” by Huang presents a strong technical study 

and demonstration for in vitro and intraoperative pathological diagnosis of liver cancer 

by Raman spectroscopy technology. The methods are clearly presented and validated, 

the combination of Raman spectroscopy with deep learning is exciting, and the 

demonstration of the portable handheld Raman system is impressive. The implication 

of this work to pathology and medical practice could be large. 

However, there are a few important technical issues that need clarification and re-

examination. 

1. For in vitro studies, the area of the liver tissues is over mm^2. This is ordered of 

magnitude larger than what spontaneous Raman imaging can cover. How does this 

mismatch affect the result? 

[Response]:  

Thank you for your comment. As shown in Figure 4, the area selected for Raman 

imaging is 50×50 µm, the Raman scanning step size is 2 µm in x- and y-directions and 

the integration time of each acquisition is 2 s. In general, a large Raman imaging area 

usually means a longer scanning time. However, under the premise of ensuring the 

required imaging resolution and Raman signal-to-noise ratio, we can increase the 

scanning step size or reduce the integration time to achieve large-area imaging and 

shorten the imaging time. 

For example, in several recent studies, Raman imaging of tumours in vivo or in vitro 

in mice was performed with low-magnification objectives or fibre-optic probes at 

millimetre or submillimetre scan intervals (ACS Nano 2018, 12, 9669-9679 and ACS 

Nano 2017, 11, 1488-1497). Moreover, for liver tumour resection, the imaging 

resolution of the tumour boundary at the millimetre level can meet the clinical 

requirements. 

REPONSE TO REVIEWERS' COMMENTS 
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In order to demonstrate that a larger area of Raman imaging can be obtained, we used 

a 5× objective lens with a scanning interval of 50-100 µm to acquire Raman signals on 

the surface of the tumour block and obtained a Raman image of about 1.5 mm2 to 

delineate the tumour boundary with the assistance of the powerful image algorithm. 

Furthermore, the imaging of a larger area can be further obtained by imaging splicing 

or by using fibre optic probes. 

 

Figure R1-1. A liver cancer tissue block (a), and its bright-field image (b) and 

corresponding Raman image (c) revealing the cancer boundary. Raman spectra were 

acquired with a 5× objective (NA = 0.12, WD = 14 mm), equipped with a 532 nm laser, 

with 2.5 mW cm-2 laser power and 2 s exposure time for each data point. The Raman 

scans were collected with a resolution of 50 μm and 100 μm in the x- and y-directions 

(horizontal axis and vertical axis), respectively. 

   In addition, the development of emerging Raman technology is also expected to solve 

the above problems. For example, non-linear coherent Raman spectroscopy can be used 

for fast Raman imaging, and a large area of Raman imaging can be obtained in a short 

time. However, this also puts forward requirements of advanced/expensive 

spectroscopic equipment, which is not within the scope of the current study. 

[Action taken]:    

Supplementary Figure 8 (shown above as Figure R1-1) has been added to 

Supplementary information as follows. 

javascript:;
javascript:;
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Supplementary Figure 8. A liver cancer tissue block (a), and its bright-field image (b) 

and corresponding Raman image (c) revealing the cancer boundary. Raman spectra 

were acquired with a 5× objective (NA = 0.12, WD = 14 mm), equipped with a 532 nm 

laser, with 2.5 mW cm-2 laser power and 2 s exposure time for each data point. The 

Raman scans were collected with a resolution of 50 μm and 100 μm in the x- and y-

directions (horizontal axis and vertical axis), respectively. 

The sentence has been added in the last paragraph on page 16, “Furthermore, larger 

Raman images can also be obtained by using a low-magnification objective and/or 

increasing the scanning interval with the assistance of the powerful image algorithm 

(Supplementary Fig. 8).” 

 

2. For intraoperative diagnosis with the portable Raman system, again one can only 

acquire a limited number of Raman spectra on pre-selected points instead of mapping 

the entire region of interest. With such under-sampling, would one worry about that one 

might miss the actual lesion during the operation? 

[Response]:  

Thank you for pointing out this concern. This work provides proof-of-concept 

applications with the Raman system for intraoperative tumour diagnosis. However, for 

the large area of mapping, indeed one would rely on continuous point scanning.  

Therefore, at the current status, surgeons could employ imaging techniques such as 

intraoperative ultrasound or rely on their own experience to prejudge the lesion area.  

Meanwhile, the Raman spectra can be used as assistance for the diagnosis of suspected 
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lesions to obtain more accurate information about tumour boundaries or lesion regions 

to avoid the miss of lesions.    

Besides, in another follow-up work, we are building an automatic robot system 

handling the optical fibre probe to automatically scan the patient tissue for 

intraoperative Raman mapping. The robot gripper holding the optical fibre probe can 

move point by point on the plane according to previously set commands. The system is 

equipped with a laser distance sensor, which helps to adjust the probe height according 

to the surface roughness thus fixing the distance between the probe and tissue surface 

during scanning to obtain the Raman spectra of the tissue surface. We expect the follow-

up work could carry out Raman mapping during surgery, and help doctors achieve more 

accurate lesion identification. 

[Action taken]:   

The following sentences have been added on page 25, “Besides, the limited spectral 

collection points with handheld Raman probe may lead to the miss of lesions during 

surgery, while the respiratory fluctuations may affect the spectral quality even though 

the Raman integration time is more than 10-fold shorter than the respiratory period. We 

expect that an intelligent robot collaboration system can be used to assist in the 

intraoperative Raman imaging to solve such issues in our follow-up work.”   
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Reviewer #2 (Remarks to the Author): expertise in liver cancer 

This is a translational research to develop and validate a workflow for in vitro and 

intraoperative pathological diagnosis of liver cancer by utilizing Raman spectroscopy 

to human hepatic tissue samples. The authors established the method to distinguish 

carcinoma tissue from non-tumor tissue by using Raman spectroscopy combined with 

deep learning. They also developed a portal handheld Raman system and applied for 

real-time intraoperative human liver cancer diagnosis. However, the following 

concerns need to be addressed from a clinical point of view: 

Major and minor comments 

1. On Page 7, the authors judged tumor stage and differentiation grade by using Raman 

spectroscopy and described the judgement is crucial for providing effective and 

appropriate cancer treatment. However, the size and the number of tumors and the 

presence of vascular infiltration determine the stage of liver cancer. Is it possible to 

determine these by Raman spectroscopy? In addition, tumor differentiation usually 

does not affect treatment strategy. 

[Response]:  

Thank you for your comment. Clinical staging of HCC is mainly diagnosed based on 

imaging characteristics, including the number and size of HCC nodules, the presence 

of vascular invasion and extrahepatic metastases. In this study, Raman spectra collected 

from tissue samples can reveal the alterations of the biochemical molecules in the tissue 

during carcinogenesis, which could be various for different tumour stages and 

differentiation types. However, it is not easy to directly show the size and number of 

nodules at the macro level only through spectral information.   

Vascular invasion includes macrovascular invasion (MaVI) and microvascular 

invasion (MVI), where microvascular invasion is usually identified based on 

microscopy. As cancer progresses, the biochemical composition of cancer tissue 

changes accordingly. There are studies demonstrating that serum and tissue biomarkers, 

such as α-fetoprotein (AFP) and des-γ-carboxy-prothrombin (DCP), could be used to 
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predict MVI (Liver Int. 2014, 34, 937-941 and J. Cancer. Res. Clin. Oncol. 2017, 143, 

293-303). The Raman signal of these biomarkers may be collected from tissue samples 

to enable the judgement of MVI based on spectral analysis.   

Therefore, we supplemented the data analysis of Raman spectroscopy for MVI 

judgment. In all 120 patients with liver cancer, we obtained the MVI status of 84 

patients, of which 61 were M0 (without MVI), and the remaining 23 were M1 or M2. 

We tried to judge the presence of MVI in patients by Raman spectra of tissues. The 

accuracy to differentiate M0 and M1/M2 is 66.9% based on the deep learning model 

and the AUC value is 0.694 (Figure R2-1). Given that Raman spectra were collected 

from local tissue blocks, further broadening the sources of the spectral collection might 

improve the ability of Raman spectroscopy to determine the presence of vascular 

infiltration in liver tissue. 

In this study, we expected to explore the relationship between the biochemical 

composition of tissue samples and cancer stage by Raman spectra. The results show 

that Raman spectroscopy has feasibility for the discrimination of HCC stage and 

differentiation grade.   

 

Figure R2-1. The ROC curve of the classification of the grade of microvascular 

invasion (MVI) based on Raman spectra and the VGG-16 model. In all 120 patients 

with liver cancer, the MVI statuses of 84 patients were indicated, of which 61 were M0 

(without MVI), and the remaining 23 were M1 or M2. The accuracy to differentiate M0 

and M1/M2 is 66.9% based on the deep learning model and the ROC value is 0.694.   
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Tumour differentiation grade is one of the factors for evaluating the recurrence and 

prognosis of liver tumours. Although differentiation grade results may not directly 

affect treatment strategy, to better evaluate the ability of Raman spectroscopy to reveal 

pathological conditions, we also include tumour differentiation grades into the scope of 

the study. 

[Action taken]:    

Supplementary Figure 6 (shown above as Figure R2-1) has been added to 

Supplementary information as follows. 

 

Supplementary Figure 6. The ROC curve of the classification of the grade of 

microvascular invasion (MVI) based on Raman spectra and the VGG-16 model. 

In all 120 patients with liver cancer, the MVI statuses of 84 patients were indicated, of 

which 61 were M0 (without MVI), and the remaining 23 were M1 or M2. The accuracy 

to differentiate M0 and M1/M2 is 66.9% based on the deep learning model and the 

ROC value is 0.694. 

The sentences have been added in the last paragraph on page 10, “Besides, imaging 

modalities such as CT and MRI are recommended the first-line diagnostic methods to 

identify and predict different pathological states of HCC36,37. For example, clinical 

staging of HCC is mainly diagnosed based on imaging characteristics, including the 

number and size of HCC nodules, and the presence of vascular invasion. Here, Raman 
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spectra have also shown feasibility for the determination of microvascular invasion with 

an accuracy of about 67% and the AUC value of 0.694 based on 84 patients 

(Supplementary Fig. 6). The results may be improved with a further increase in sample 

numbers and spectral collections.” 

The following reference was added in References section:  

36. Choi, J. Y., Lee, J. M. & Sirlin, C. B. CT and MR imaging diagnosis and staging of 

hepatocellular carcinoma: part II. Extracellular agents, hepatobiliary agents, and 

ancillary imaging features. Radiology 273, 30-50 (2014). 

37. Jiang, H. Y. et al. Noninvasive imaging of hepatocellular carcinoma: From diagnosis 

to prognosis. World J Gastroenterol 24, 2348-2362 (2018). 

 

2. On Page 10, the authors described tumor heterogeneity posed greater challenges to 

discrimination of different stages and differentiation grades of tumor tissues, with 

accuracies of 79.2% and 75.7% and to judgement of the liver cancer subtypes HCC and 

ICC, yielding an identification accuracy of 86.3%. Are these results of diagnostic 

accuracy better than traditional CT, MRI and US? 

[Response]:  

Thank you for pointing out this concern. First of all, unlike traditional imaging 

modalities, Raman spectroscopy is mainly employed for histopathological 

identification, especially the distinction between cancer tissue and adjacent tissue. 

Furthermore, we expect that the Raman spectra can reveal the alterations of biochemical 

components of pathological tissues, so as to identify tumour subtypes, cancer stages 

and differentiation levels. Noninvasive imaging approaches, such as dynamic 

multiphasic CT and MRI, are considered the firstline diagnostic modalities for HCC. 

A biopsy may be reserved in cases of indeterminate nodules that do not meet radiologic 

criteria for HCC.  
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HCC and ICC are the two most common primary liver cancers. It is essential to 

differentiate between HCC and ICC, which may affect the choice of treatment modality 

and subsequent treatment outcome. However, ICC may have a similar radiological 

appearance to HCC on CT and MRI, leading to misdiagnosis of ICC (BMC Cancer. 

2019, 19, 1041). Recently, a study evaluated the association of specific pre-operative 

imaging characteristics in patients with histologically proven resected ICC (91 patients) 

(World J. Surg. 2020, 44, 3862-3867). The results showed that 24.3% of patients with 

ICC showed both two imaging characteristics of HCC (arterial phase 

hyperenhancement and non-peripheral venous washout) among those with no risk 

factors for HCC, while between 20.0 and 33.3% of patients with pure ICC fulfilled the 

imaging criteria for HCC among patients with risk factors for HCC. In another 

retrospective study, contrast-enhanced ultrasonography (CEUS) was used for the 

diagnosis of cirrhotic ICC patients. In 25 patients with small ICC, the misdiagnosis rate 

of HCC was 52% based on CEUS, while the misdiagnosis rates of CT (performed in 24 

ICC) and MRI (11 ICC) were 4.2% and 9.1%, respectively (Liver Int. 2013, 33, 771-

779).  

Generally, the prognosis of solid tumours is greatly affected by the tumour stage. 

According to different classification principles, several staging systems have been 

proposed, and different classification systems may get different staging results. Most 

current systems incorporate radiologic staging, referring to the imaging-based 

identification of the number and size of HCC nodules, the presence of vascular invasion, 

as well as extrahepatic metastases. Among them, Barcelona Clinic Liver Cancer (BCLC) 

classification is currently the most widely accepted in many countries as the standard 

staging system for HCC (Hepatology 2011, 53, 1020-1022). However, according to a 

study comparing long-term survival in 1713 prospectively enrolled HCC patients based 

on 5 different staging systems, BCLC may lack the ability to differentiate the prognosis 

in patients at a very early stage (Cancer, 2010, 116, 3006-3014). 

The pathological grade is one of the factors influencing intrahepatic recurrence. 

High-grade HCC tumours usually have a higher intrahepatic recurrence rate. 
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Traditionally, a pathological examination is required to determine tumour grade, but 

there have been some reports using preoperative imaging analysis for grade prediction. 

For example, non-contrast-enhanced MRI-based radiomics signatures were used to 

preoperatively predict HCC grade. Radiomics signatures, including the extracted 

information of T1-weighted imaging (WI) and T2WI, could categorise high-grade and 

low-grade HCC cases (170 patients), with accuracies of 60-70% (Eur. Radiol. 2019, 29, 

2802-2811). In another single-centre retrospective study, contrast-enhanced computed 

tomography (CECT)–based radiomics signatures were performed for preoperative 

prediction of pathological grades of HCC via machine learning. The accuracy was 

53.33% for differentiating high-grade and low-grade HCC (297 subjects) (Eur. Radiol. 

2020, 30, 6924-6932). Table R2-1 summarizes the diagnostic results of liver cancer 

with different pathological types based on imaging modalities. 

In conclusion, in terms of accuracy, Raman spectroscopy is comparable to or even 

better than traditional imaging modalities in identifying different pathology types in the 

current study, although the two techniques have different application scenarios. 

 

Table R2-1 Comparison of diagnostic results of liver cancer based on traditional 

imaging modalities and Raman spectroscopy in this study. 

Pathological 

categories 
Diagnostic results References 

HCC/ICC 

misdiagnosis rate of HCC for ICC 

patients with no risk factors for HCC 

was 24.3% (36 ICC) by CT and MRI 
World J. Surg. 2020, 44, 

3862-3867 
misdiagnosis rate of HCC for ICC 

patients with any risk factors for 

HCC was between 20.0 and 33.3% 

(54 ICC) by CT and MRI 

HCC/ICC 

misdiagnosis rate of HCC was 52% 

(25 ICC) by CEUS, 4.2% (24 ICC) 

and 9.1% (11 ICC) by CT and MRI  

Liver Int. 2013, 33, 771-779 

High-grade and 

low-grade HCC 

accuracies are 60-70% (170 

patients) based on non-contrast-

enhanced MRI 

Eur. Radiol. 2019, 29, 

2802-2811 

an accuracy of 53.33% (297 Eur. Radiol. 2020, 30, 



11 

 

subjects) based on contrast-

enhanced CT  

6924-6932 

HCC the sensitivities of US were 63-65% 
Aliment. Pharmacol. Ther. 

2009, 30, 37-47 

HCC 

the sensitivities of dynamic CT and 

MRI were 63%-76% and 77%-90%, 

and the specificities were 87%-98% 

and 84%-97% 

World J. Gastroenterol. 

2018, 24, 2348-2362 

Per-lesion for 

nodular HCC 

sensitivity of MRI for nodular HCC 

of all sizes is 77%–100%, while that 

of CT is 68%–91% 

 

per-lesion sensitivities are 100% for 

both modalities for nodular HCCs 

larger than 2 cm, 44%–47% (MRI) 

and 40%– 44% (CT) for 1–2 cm 

HCCs 

 

and 29%–43% (MRI) and 10%–

33% (CT) for HCCs smaller than 1 

cm 

Radiology 2014, 273, 30-

50, Hepatology 2003, 38, 

1034-1042, and Gut 2010, 

59, 638-644 

Liver cancer / 

paracancer 

tissues 

sensitivity 90.8% 

specificity 94.6% 

accuracy 92.6% 

in this study 

HCC / ICC 

tissues 

sensitivity 82.6% 

specificity 81.5% 

accuracy 82.4% 

Early / 

Advantaged 

stage 

sensitivity 84.1% 

specificity 65.5% 

accuracy 78.3% 

Well and 

moderate / poor 

grade 

sensitivity 72.9% 

specificity 70.8% 

accuracy 72.3% 

 

[Action taken]:    

A new table has been added in Supplementary information as Supplementary Table 

4 (shown above as Table R2-1), as follows: 

Supplementary Table 4. Comparison of diagnostic results of liver cancer based on 

traditional imaging modalities and Raman spectroscopy in this study. 

Pathological 

categories 
Diagnostic results References 
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HCC/ICC 

misdiagnosis rate of HCC for ICC 

patients with no risk factors for HCC 

was 24.3% (36 ICC) by CT and MRI 
World J. Surg. 2020, 44, 

3862-3867 
misdiagnosis rate of HCC for ICC 

patients with any risk factors for 

HCC was between 20.0 and 33.3% 

(54 ICC) by CT and MRI 

HCC/ICC 

misdiagnosis rate of HCC was 52% 

(25 ICC) by CEUS, 4.2% (24 ICC) 

and 9.1% (11 ICC) by CT and MRI  

Liver Int. 2013, 33, 771-779 

High-grade and 

low-grade HCC 

accuracies are 60-70% (170 

patients) based on non-contrast-

enhanced MRI 

Eur. Radiol. 2019, 29, 

2802-2811 

an accuracy of 53.33% (297 

subjects) based on contrast-

enhanced CT  

Eur. Radiol. 2020, 30, 

6924-6932 

HCC the sensitivities of US were 63-65% 
Aliment. Pharmacol. Ther. 

2009, 30, 37-47 

HCC 

the sensitivities of dynamic CT and 

MRI were 63%-76% and 77%-90%, 

and the specificities were 87%-98% 

and 84%-97% 

World J. Gastroenterol. 

2018, 24, 2348-2362 

Per-lesion for 

nodular HCC 

sensitivity of MRI for nodular HCC 

of all sizes is 77%–100%, while that 

of CT is 68%–91% 

 

per-lesion sensitivities are 100% for 

both modalities for nodular HCCs 

larger than 2 cm, 44%–47% (MRI) 

and 40%– 44% (CT) for 1–2 cm 

HCCs 

 

and 29%–43% (MRI) and 10%–

33% (CT) for HCCs smaller than 1 

cm 

Radiology 2014, 273, 30-

50, Hepatology 2003, 38, 

1034-1042, and Gut 2010, 

59, 638-644 

Liver cancer / 

paracancer 

tissues 

sensitivity 90.8% 

specificity 94.6% 

accuracy 92.6% 

in this study 

HCC / ICC 

tissues 

sensitivity 82.6% 

specificity 81.5% 

accuracy 82.4% 

Early / 

Advantaged 

stage 

sensitivity 84.1% 

specificity 65.5% 

accuracy 78.3% 

Well and 

moderate / poor 

grade 

sensitivity 72.9% 

specificity 70.8% 

accuracy 72.3% 
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The sentences have been added on page 11, “In sum, in terms of accuracy, Raman 

spectroscopy is comparable to or even better than traditional imaging modalities (such 

as CT, MRI, and US) in identifying different pathology types in the current study 

(Supplementary Table 4), providing a powerful complement to existing pathology 

diagnostic techniques.” 

 

3. On Page 10, the authors mentioned about the sensitivity of serological AFP. It is well 

known that AFP alone is not enough to diagnose with HCC, which is usually diagnosed 

by US, CT or MRI. Is Raman spectroscopy superior to these modalities? 

[Response]:  

Thank you for your comment. As discussed in the previous question, Raman 

spectroscopy and traditional imaging modalities have different applicability and 

advantages. Raman spectroscopy is primarily used for histopathological analysis, 

including for tissue sections, ex vivo tissue blocks, and in vivo detection. The collected 

Raman spectra could reveal the type and content of biochemical molecules in the tissue. 

The biochemical composition of tissue may change during carcinogenesis, which could 

be reflected in the spectra. The advantage of Raman detection is that it can be easily 

detected at anytime and anywhere with high molecular specificity, rapid test and low 

to moderate cost.  

Imaging modalities are recommended for non-invasive diagnosis of patients before 

surgery. The diagnostic accuracy of different imaging modalities also varies greatly 

(Table R2-1). The sensitivity of US for the detection of small HCC is highly operator 

and patient-dependent. In expert settings, its sensitivity is about 80%, while in standard 

settings the sensitivity is closer to 65% (Aliment. Pharmacol. Ther. 2013, 38, 303-312). 

In addition, US may not be sensitive enough to detect early-stage HCCs, with a pooled 

sensitivity of 63% (Aliment. Pharmacol. Ther. 2009, 30, 37-47). 

Characteristic imaging features of HCC include hyperenhancement in the hepatic 

arterial phase and washout appearance in the portal venous and/or delayed phases 
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relative to the background liver (Hepatology 2018, 67, 358-380). According to recent 

meta-analyses, the sensitivities of dynamic CT and MRI were 63%-76% and 77%-90%, 

respectively, and the specificities were 87%-98% and 84%-97%, respectively (World J. 

Gastroenterol. 2018, 24, 2348-2362). Besides, the diagnostic outcome of CT and MRI 

is largely dependent on tumour nodule size (Radiology 2014, 273, 30-50). The per-

lesion sensitivity of MRI for nodular HCC of all sizes is 77%–100%, while that of CT 

is 68%–91% (Radiology 2014, 273, 30-50, Hepatology 2003, 38, 1034-1042, and Gut 

2010, 59, 638-644). The per-lesion sensitivities, stratified by size, are 100% for both 

modalities for nodular HCCs larger than 2 cm, 44%-47% (MRI) and 40%-44% (CT) 

for 1-2 cm HCCs, and 29%-43% (MRI) and 10%-33% (CT) for HCCs smaller than 1 

cm (Radiology 2014, 273, 30-50, Hepatology 2003, 38, 1034-1042, and Gut 2010, 59, 

638-644).  

In this study, the accuracy for discriminating liver cancer and adjacent non-tumour 

tissue is over 90%, which is comparable to or even better than that of imaging 

modalities. Although imaging methods are recommended as the first line for non-

invasive preoperative diagnosis, histopathology is still the gold standard for the 

diagnosis of liver cancer. Here, Raman spectroscopic pathology provides a powerful 

supplement to traditional slice staining pathology analysis techniques. The advantage 

of Raman detection is that it can be easily detected at anytime and anywhere without 

complicated staining procedures, and it also has advantages of high molecular 

specificity, rapid test as well as low to moderate cost. 

[Action taken]: 

The sentences have been added in the last paragraph on page 10, “Besides, imaging 

modalities such as CT and MRI are recommended the first-line diagnostic methods to 

identify or predict different pathological states of HCC36,37. For example, clinical 

staging of HCC is mainly diagnosed based on imaging characteristics, including the 

number and size of HCC nodules, and the presence of vascular invasion. Here, Raman 

spectra have also shown feasibility for the determination of microvascular invasion with 

an accuracy of about 67% and the AUC value of 0.694 based on 84 patients 
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(Supplementary Fig. 6). The results may be improved with a further increase in sample 

numbers and spectral collections. In sum, in terms of accuracy, Raman spectroscopy is 

comparable to or even better than traditional imaging modalities (such as CT, MRI, and 

US) in identifying different pathology types in the current study (Supplementary Table 

4), providing a powerful complement to existing pathology diagnostic techniques.” 

A new table has been added in Supplementary information as Supplementary Table 

4 (as mentioned in the previous response). 

4. In Figure 4, the authors showed cancer margin delineation. In HCC, the tumor 

capsule clearly distinguishes between cancerous and non-cancerous tissues. Boundaries 

were not smooth in Raman images like Fig. 4d and 4e. Can't you see the tumor capsule 

in Raman images? 

[Response]:  

Thank you for sharing the comment. To demonstrate that Raman imaging can 

delineate tumour boundaries, we selected two tissue block samples as examples, one 

with an obvious tumour boundary and one with a relatively inconspicuous boundary. 

In Fig. 4d and 4e, the distinction between cancerous and non-cancerous regions was 

successfully achieved by Raman imaging.  

In HCC, there may be incomplete capsules and nonsmooth margins, especially in 

invasive tumours (Clin. Imaging 2021, 76, 77-82). Therefore, in such cases, the tumour 

boundary obtained by Raman spectroscopy may also be not smooth or the tumour 

capsule may not be observed. Moreover, the smoothness of the boundary in Raman 

images is related to the imaging scan resolution. It should be noted that the imaging 

range selected for this study was 50 × 50 μm, and the scanning interval was 2 μm. In 

such a micro size, it may be difficult to acquire completely smooth boundary imaging, 

especially for the invasive tumour.  

Raman spectroscopy has been shown to have the ability to image and identify 

different pathological tissue regions (Sci. Transl. Med. 2015, 7, 309 and Nat. Commun. 

2020, 11, 6172). As shown in Fig. 5, Raman images of liver tissue sections with typical 
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morphologies were also obtained, including normal, cancerous, steatohepatitis, fibrotic, 

and connective tissues. Likewise, we believe fibrous capsule structures can be observed 

in Raman imaging of tissue sections as well. 

  [Action taken]: 

The sentence has been inserted on page 16, “The tumour boundaries were not very 

smooth in the Raman imaging (Figs. 4d and 4e, upper panel), probably due to the thin 

tumour capsule and the small imaging area (50 × 50 μm) with micron-scale scanning 

interval (2 μm).” 

On page 16, the sentence “The second tissue showed a relatively poor cancer 

boundary in the displayed region, mixing with hepatic parenchyma that may indicate 

the presence of carcinoma infiltration, which was barely detectable in the brightfield 

images.” has been revised into “The second tissue showed a relatively poor border of 

cancer in the displayed area (Figs. 4d and 4e, bottom panel), intermingling with the 

liver parenchyma, probably due to the presence of cancerous infiltration, which was 

barely detectable in brightfield images.” 

 

5. In Figure 6, the authors showed a preliminary result of usage of a handheld fibre-

coupled Raman spectrometer. Do we need Raman spectrometer to observe tumors that 

can be seen by inspection or intraoperative ultrasound? Isn't it difficult to observe at the 

micro level because of camera shake and respiratory fluctuations? 

[Response]:  

Thank you for pointing out this concern. In this study, confocal Raman microscopy 

was used to visualize and examine tissue samples in ex vivo tissue sample testing, but 

for intraoperative applications, we employed a portable Raman device for spectral 

acquisition.  

A handheld fibre-coupled Raman spectrometer was used in open surgery for 

intraoperative navigation. During surgical resection, surgeons could employ imaging 
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techniques such as preoperative imaging, intraoperative ultrasound, or rely on 

inspection to prejudge the lesion area. Then, spectra are collected near suspected lesions 

to obtain more accurate information about tumour boundaries or lesion regions. Raman 

spectroscopy may also be able to detect lesions that cannot be determined by ultrasound 

with higher resolution. It can further be used to measure the excised tissue to confirm 

whether there is residual cancer tissue (Adv. Sci (Weinh). 2021, 8, 2002788).  

During intraoperative detection, the probe is held above the tissue surface to acquire 

spectra through optical fibre, without additional camera devices. Although respiratory 

fluctuations may impair the spectral quality, given that a normal adult breathes about 

12-20 breaths per minute and the integration time of a single spectrum acquisition is 

0.2 s, respiratory fluctuations may not significantly affect spectral acquisition.  

However, to better solve this problem, in our follow-up work, we are building an 

automatic robot system handling the optical fibre probe to automatically scan the 

patient tissue for intraoperative Raman mapping. The robot gripper holding the optical 

fibre probe can move point by point on the plane according to previously set commands. 

The system is equipped with a laser distance sensor, which helps to adjust the probe 

height in real-time according to the distance between the surface and the probe, so that 

the spectra could be acquired at a fixed distance throughout the detection process. In 

addition, the probe can be controlled/moved according to the regular breathing 

fluctuations to avoid the influence of potential breathing fluctuations. Furthermore, for 

liver tumour resection and large area scanning, millimetre-level tumour boundary 

resolution can already meet the clinical requirements. Therefore, we expect the follow-

up work could help doctors achieve more accurate lesion identification.  

[Action taken]:    

The following sentences have been added on page 25, “Besides, the limited spectral 

collection points with handheld Raman probe may lead to the miss of lesions during 

surgery, while the respiratory fluctuations may affect the spectral quality even though 

the Raman integration time is more than 10-fold shorter than the respiratory period. We 
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expect that an intelligent robot collaboration system can be used to assist in the 

intraoperative Raman imaging to solve such issues in our follow-up work.”    

6. Liver cancer often occurs deep in the liver. How deep can you observe in Raman 

spectroscopy? 

[Response]:  

Thank you for your comment. Traditional Raman technique can probe depths beyond 

the near-surface tissue layers, typically several hundred micrometres deep to mm (ACS 

Cent. Sci. 2016, 2, 12, 885–895; Biomed. Opt. Express. 2020, 11, 762–774), which 

satisfies the spectral acquisition of tissue sections as well as superficial cancer tissues. 

In this study, a common confocal Raman microscope was employed for in vitro Raman 

measurements. The detection limit of the confocal Raman was about 200 μm depth 

under the 532nm laser for liver tissue measurements (Figure R2-2). Beyond this range, 

the Raman signal was nearly undetectable. Therefore, at the moment, the Raman 

spectroscopy as an auxiliary technology is limited for the measurement of superficial 

tissues and suspected lesions within 200 μm depth for the intraoperative diagnosis. 

However, with the advent of a range of specialist techniques based around spatially 

offset Raman spectroscopy (SORS), the Raman technology could non-invasively probe 

living tissue through depths up to 5 cm (Chem. Soc. Rev. 2021,50, 556-568). These 

techniques may be further incorporated into our system for the intraoperative diagnosis 

of deeper tissue. 
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Figure R2-2. Raman spectra of liver cancer collected in different depth. a Raman 

spectra were acquired in different depths of liver tissue block, with a depth interval of 

25 μm for each acquisition from the surface (0 µm) to 300 µm depth. b Depth-resolved 

Raman intensity contour plot of liver tissue. 

[Action taken]: 

Supplementary Figure 11 (shown above as Figure R2-2) has been added to 

Supplementary information as follows. 

 

Supplementary Figure 11. Raman spectra of liver cancer collected in different 

depth. a Raman spectra were acquired in different depths of liver tissue block, with a 

depth interval of 25 μm for each acquisition from the surface (0 µm) to 300 µm depth. 

b Depth-resolved Raman intensity contour plot of liver tissue. 

The sentence has been added on page 19, “In this study, the maximum detection 

depth of liver tissue by confocal Raman spectroscopy under 532 nm laser was about 

200 μm (Supplementary Fig. 11). For deeper tissue detection, the integration of 

spatially offset Raman spectroscopy (SORS) may be applied to achieve centimetre-

level depth detection49.” 

The following reference was added in References section: 

49.Nicolson, F., Kircher, M. F., Stone, N. & Matousek, P. Spatially offset Raman 

spectroscopy for biomedical applications. Chem. Soc. Rev. (2020). 
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7. On Page 22, the authors described that Ramanomics could distinguish different 

pathological tissues more cost-effectively. How much does it cost to observe in Raman 

spectroscopy? 

[Response]:  

Thank you for your comment. As far as we know, LC/MS-based metabolomic 

analysis typically requires complex sample preparation and testing workflows, costing 

$100-$300 for a single sample test. For traditional histopathological analysis, such as 

HE staining and immunohistochemical staining, additional staining reagents and related 

staining consumables need to be employed. However, for Raman spectroscopy 

measurement, most biological samples can be directly used for spectral testing without 

additional processing or other consumables. In our institute, confocal Raman 

microscopy tests cost around $9 per hour. However, for future applications, excluding 

the machine cost, the daily cost of Raman measurements is merely the electricity.  

Therefore, compared with the traditional metabonomic methods, Ramanomics is 

more cost-effective, with simple pretreatment, shorter detection time and without the 

requirement of additional consumables. 

[Action taken]: 

On page 23, the following sentence “The result was consistent with that of Raman 

analysis, demonstrating that Raman-based metabolomics, also known as Ramanomics51, 

could bring comprehensive and reliable biological information as traditional 

metabolomics, and distinguish different pathological tissues more conveniently and 

cost-effectively.” has been changed to “The result was consistent with that of Raman 

analysis, demonstrating that Raman-based metabolomics, also known as Ramanomics51, 

could bring comprehensive and reliable biological information as traditional 

metabolomics, and distinguish different pathological tissues more conveniently and 

cost-effectively without additional consumables.” 
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8. In Figure 2, legends of 2c and 2d are opposite. Fig. 2c is for tumor stage and Fig. 2d 

for tumor differentiation. 

[Response]:  

We apologize for the typo. As per the reviewer's suggestion, we have modified and 

included it in the revised manuscript. 

[Action taken]:     

The caption of Figure 2 has been revised as “a-d The average Raman spectra of 120 

carcinoma and 120 paracarcinoma tissue samples (a), cancer tissue samples of patients 

with HCC and ICC (b), HCC tissue samples at different tumour stages (c), and HCC 

tissue samples with different cancer cell differentiation grades (d). The shaded areas 

represent the standard deviations of the means.”   

9. “Tumour” and “tumor” are mixed in the article. 

[Response]:  

Thank you for your comments. We have checked and unified with “tumour” 

throughout the paper. 
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Reviewer #3 (Remarks to the Author): expert in deep learning network analysis 

 

This paper proposed a new system for histopathological diagnosis of liver cancer based 

on Raman spectroscopy and deep learning. First, a CNN-based DL pipeline is used to 

classify the spectral data into paracancer or cancer tissues. The model is further used to 

differentiate different pathological types of liver cancer tissues. Last but not least, a 

portable Raman system was employed in surgery to validate this pipeline. 

While the whole work is very novel and potentially impactful to bring benefits in liver 

cancer diagnosis, the study suffers from the following limitations: 

1) The spectral data analysis. A liver tissue Raman database was established with 50 

spectra per tissue sample, and a total of 12,000 spectra were obtained from 120 pairs of 

liver tissue samples. When training the VGG-model, the dataset is randomly splitted 

into 80% training, 10% validation and 10% test. However, due to the potential 

correlations of raman spectral data at the same tissue, a purely random split of training 

and testing data can cause label leakage, and therefore inflate the accuracy. A proper 

split would be following: take a random 100 pairs of liver tissue samples and all the 

raman spectral data on these tissue samples as training, and use the spectral data on the 

remaining 20 pairs of liver tissue sample as testing. This design will ensure the fair 

evaluation of DL-based models without potential label leakage. Further, the compared 

method, OPLS-DA is quite a weak comparison in my view. It would really demonstrate 

the power of DL-based approach by comparing with stronger baselines such as random 

forest, xgboost. 

[Response]:   

Thank you for the above constructive suggestions. We accordingly take your advice 

and use a random 100 pairs of liver tissue samples as the training and validation set 

(with a ratio of 8:2), and the remaining 20 pairs of liver tissue samples as the test set. 

The remaining three groups (HCC/ICC subtype, tumour stages, and differentiation 

grades) were also re-splitted (as discussed in the next question). The VGG model was 
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used for the re-evaluation of this new data set. As shown in Figure R3-1, in the 

differentiation of paracancer and cancer tissue, the diagnostic accuracy is 92.6%, which 

is consistent with the previous results (92.2%). The AUC value was 0.965, which is 

slightly lower than before (0.976). 

 

Figure R3-1. i,j Cross-entropy loss (i) and accuracy (j) in iterative training of the CNN. 

Cross entropy represents the mean square error between the predicted value and the true 

value. k Binary confusion matrices for the classification of four tissue categories based 

on the CNN algorithm in percent (%). l ROC curves and corresponding AUC values. 

 

As per the reviewer's suggestions, we have compared the power of the VGG model 

with other different baselines, including PLS-DA, random forest, and XGBoost. As 

listed in Table R3-1, compared with other common machine learning algorithms, the 

deep learning approach shows superior computational performance with higher 

accuracy in tissue identification of different pathological types. Especially, it has better 

performance in dealing with imbalanced data. 
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Table R3-1. Comparison of the capability of the VGG model and machine learning 

algorithms to identify different pathological types of liver tissue. 

 Model Accuracy (%) Sensitivity (%) Specificity (%) 
 

Carcinoma  

PLS-DA 84.8 95.2 73.3  

XGboost  87.9  91.8  83.5    

Random forest 86.4 87.5 85.2  

VGG-16 92.6  90.8  94.6    

      

HCC 

PLS-DA 76.9 93.5 10.5  

XGboost  77.8 86.8 42.0  

Random forest 77.0 79.0 69.0  

VGG-16 82.4 82.6 81.5  

      

Advanced 

stage 

PLS-DA 63.3  4.2  94.6   

XGboost  73.8  31.5  93.0   

Random forest 75.5  75.4  75.5   

VGG-16 78.3  65.8  84.1   

      

Poor  

PLS-DA 76.5 52.4 87.5  

XGboost  69.6 24.0 90.4  

Random forest 71.1 71.6 70.9  

VGG-16 72.3 70.8 72.9  

 

[Action taken]:      

Figure 2 has been updated as follows.  
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Fig. 2 Raman analysis of liver tissues and histopathological diagnosis based on 

deep learning. a-d The average Raman spectra of 120 carcinoma and 120 

paracarcinoma tissue samples (a), cancer tissue samples of patients with HCC and ICC 

(b), HCC tissue samples at different tumour stages (c), and HCC tissue samples with 

different cancer cell differentiation grades (d). The shaded areas represent the standard 

deviations of the means. e–f Typical photographs of paracancer tissue (left) and liver 
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cancer tissue sample (right) (e) and the corresponding images of the H&E-stained 

tissues (f) tested in this study. g Raman testing of liver tissue with a micro-Raman 

spectrometer. h The architecture of the VGG-16-based deep learning model. Raman 

data consisting of 12,000 spectra were fed into the initial convolutional layer with 64 

filters. Each convolutional layer had a kernel size of 3, connecting with a ReLU 

activation layer. A drop-out layer was utilized in full connection layers, following the 

basic blocks. Max-pooling (size 2, stride 2) was employed between blocks to reduce 

data length. The numbers below each block refer to the length and the number of 

channels of output respectively. i,j Cross-entropy loss (i) and accuracy (j) in iterative 

training of the CNN. Cross entropy represents the mean square error between the 

predicted value and the true value. k Binary confusion matrices for the classification of 

four tissue categories based on the CNN algorithm in percent (%). l ROC curves and 

corresponding AUC values.” 

 

A new table has been added in supplementary information as Table 3 (shown above 

as Table R3-1), as follows. 

Supplementary Table 3. Comparison of the capability of the VGG model and machine 

learning algorithms to identify different pathological types of liver tissue. 

 Model Accuracy (%) Sensitivity (%) Specificity (%) 
 

Carcinoma  

PLS-DA 84.8 95.2 73.3  

XGboost  87.9  91.8  83.5    

Random forest 86.4 87.5 85.2  

VGG-16 92.6  90.8  94.6    

      

HCC 

PLS-DA 76.9 93.5 10.5  

XGboost  77.8 86.8 42.0  

Random forest 77.0 79.0 69.0  

VGG-16 82.4 82.6 81.5  

      

Advanced 

stage 

PLS-DA 63.3  4.2  94.6   

XGboost  73.8  31.5  93.0   

Random forest 75.5  75.4  75.5   

VGG-16 78.3  65.8  84.1   

      



27 

 

Poor  

PLS-DA 76.5 52.4 87.5  

XGboost  69.6 24.0 90.4  

Random forest 71.1 71.6 70.9  

VGG-16 72.3 70.8 72.9  

 

On page 10, we changed “As a result, an accuracy of 92.2% was obtained for 

estimating carcinoma tissue area, accompanied by a sensitivity and specificity of 91.4% 

and 93.1%, respectively.” to “As a result, an accuracy of 92.6% was obtained for 

estimating carcinoma tissue area, accompanied by a sensitivity and specificity of 90.8% 

and 94.6%, respectively.” 

On page 10, we changed “It is obvious that tumour heterogeneity posed greater 

challenges to discrimination of different stages and differentiation grades of tumour 

tissues, with accuracies of 79.2% and 75.7%, respectively. But a better result was 

acquired for judgment of the liver cancer subtypes HCC and ICC, yielding an 

identification accuracy of 86.3%. Moreover, 5-fold cross-validation (CV) was 

performed for each model to evaluate its generalizability. The CV results were 

consistent with the classification accuracy discussed above (Supplementary Table 3). 

In addition, four receiver operating characteristic (ROC) curves were plotted to 

quantitatively verify the performance of classifiers (Fig. 2l), which yielded good results 

with the area under the curve (AUC) ≥ 0.818.” to “It is obvious that tumour 

heterogeneity posed greater challenges to discrimination of different stages and 

differentiation grades of tumour tissues, with accuracies of 78.3 and 72.3%, 

respectively. But a better result was acquired for judgment of the liver cancer subtypes 

HCC and ICC, yielding an identification accuracy of 82.4%. Four receiver operating 

characteristic (ROC) curves were plotted to quantitatively verify the performance of 

classifiers (Fig. 2l), which yielded good results with the area under the curve (AUC) 

between 0.783 and 0.965. Furthermore, compared with other common machine learning 

algorithms, including PLS-DA, random forest, and XGBoost, the deep learning 

approach shows superior computational performance with higher accuracy in tissue 

identification of different pathological types, especially in dealing with imbalanced data 
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(Supplementary Table 3).” 

The sentences have been added in Methods on page 30, “Spectral data of 20 pairs of 

liver tissue samples were randomly selected as a test set, and spectral data of the 

remaining 100 pairs of samples were randomly divided into a training set and a 

validation set in a ratio of 8:2.” 

 

2) The subsequent experiments of CNNs are conducted to classify multiple clinical 

phenotypes such as tumor stages, HCC/ICC subtypes. Similar to the concerns of 

potential label leakage mentioned above, the data splits need to be re-considered to 

justify the results. Further, to better understand the method, details about how to 

preprocessing the images, and how to augment data, how to alleviate the imbalance of 

labels should be discussed. 

[Response]:   

Thank you for pointing out the concern. To avoid potential label leakage, spectral 

data of different pathological type groups, including HCC/ICC subtype, tumour stages, 

and differentiation grades, were re-splitted. Specifically, about 20% of the samples in 

each group are randomly selected as the test set, and the spectral data of the remaining 

samples are divided into the training set and the validation set according to the ratio of 

9:1. 

The recalculated results are shown in Figure R3-1 k. The accuracy of CNNs-based 

identification of HCC/ICC subtype, tumour stages, and differentiation grades is 82.4%, 

78.3%, and 72.3%, respectively, which is slightly lower than the results before the re-

splitting (86.3%, 79.2%, and 75.7%). According to the model results, a good ability to 

distinguish different pathological tissues is still valid. 

The CNN architecture was modified based on the VGG-16 framework, and the 

parameters and details of the model have been introduced in detail in the Methods 

section. The dataset of tumour subtype, tumour stage, and differentiation grade may 

suffer from data imbalance, so we employ weight balancing to address this issue.  
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The codes of the CNN algorithm have been updated and uploaded to GitHub 

(https://github.com/thidoiSanren/CNN_liver-cancer_Raman). The code for weight 

balancing as follows can also be found in the link. 

weights = torch.tensor([num1, num2], dtype=torch.float32)     

weights = weights / weights.sum()    

weights = 1.0 / weights    

weights = weights / weights.sum()    

print(weights)    

weights = torch.tensor(weights, dtype=torch.float32).to(device)  

# The num1 is the number of group 0 and the num2 is the number of group 1. 

Weight balancing balances the data by altering the weight of each training sample 

when computing the loss to make all classes contribute equally to the loss, resulting in 

more reliable results. In addition to accuracy, confusion matrix results are also used for 

model performance validation to reduce the effects of data imbalance. 

As for the data acquisition and image processing of Raman imaging, we used a 

commercial software WIRE from Renishaw and its built-in image algorithm, without 

additional image preprocessing. 

[Action taken]:      

Figure 2 has been updated as shown in the previous response. 

Paragraph 2 on page 10 has been revised into “In addition, three other CNN models 

were established to distinguish HCC from ICC tissues, and among tissues with different 

cancer stages and differentiation grades. The performance of four binary models is 

shown in the confusion matrices of Fig. 2k. It is obvious that tumour heterogeneity 

posed greater challenges to discrimination of different stages and differentiation grades 

of tumour tissues, with accuracies of 78.3 and 72.3%, respectively. But a better result 

was acquired for judgment of the liver cancer subtypes HCC and ICC, yielding an 

identification accuracy of 82.4%. Four receiver operating characteristic (ROC) curves 

were plotted to quantitatively verify the performance of classifiers (Fig. 2l), which 

https://github.com/thidoiSanren/CNN_liver-cancer_Raman
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yielded good results with the area under the curve (AUC) between 0.783 and 0.965. 

Furthermore, compared with other common machine learning algorithms, including 

PLS-DA, random forest, and XGBoost, the deep learning approach shows superior 

computational performance with higher accuracy in tissue identification of different 

pathological types, especially in dealing with imbalanced data (Supplementary Table 

3).” 

The sentences have been added in Methods on page 30, “Similar splits were 

performed in other three classification models that 20% of the samples in each group 

are randomly selected as the test set, and the remaining samples are divided into the 

training set and the validation set according to the ratio of 9:1. Weight balancing was 

used to alleviate possible data imbalances by altering the weight of each training sample 

when computing the loss to make all classes contribute equally to the loss (detail of the 

code can be found in the following GitHub link).” 

 

3) Tissue metabolomics analysis. The authors find a few metabolic features that can 

distinguish HCC and adjacent tissues. From Figure 3a, 3b, there are generally two types 

of metabolomics signatures: one is enriched in HCC and the other enriched in adjacent 

tissues. While the pattern is clear, the predictive power of these metabolomics is not 

explored. Further, it would be very interesting and informative to compare the 

predictive power of these metabolomic features with the deep learning models 

developed using the spectral data. 

[Response]:    

Thank you for sharing the comment. Non-targeted metabolomic analysis of 25 pairs 

of matched HCC tissues and adjacent non-tumour tissues was performed. We found 

significant differences in metabolic patterns between the two groups. A total of 108 

characteristic differential metabolites were identified, most of which were 

downregulated in HCC tissues. 
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As per reviewer’s comments, the metabolomic data were fed into the CNN model 

used for spectral analysis to distinguish HCC and tissues from adjacent non-tumour 

tissues. However, the diagnostic result is not stable enough due to the limited amount 

of data. We assign all the data of 25 pairs of samples to a training set and a validation 

set. When the ratio of the training set to the validation set is 7:3, the accuracy is 73.3%, 

while when the ratio is 8:2, the accuracy is 80%, both of which are lower than the results 

of spectral analysis. 

In previous studies about the serum-based metabolic characterization of HCC, the 

diagnostic accuracy of HCC can reach 90% with sufficient samples (Cancer Res. 

2013,73, 4992-5002). Therefore, we believe that the diagnostic accuracy based on 

metabolomic data can also be improved when more tissue samples are provided.  

[Action taken]:      

The sentences have been added on page 13, “Furthermore, the predictive power of 

the metabolomics was also investigated by the CNN model used for spectral analysis 

to distinguish HCC tissues from adjacent non-tumour tissues. The accuracy is between 

70%-80%, which is lower than the spectral analysis results, but the accuracy may be 

improved as increasing the number of samples.” 

 

4) The intraoperative liver cancer diagnosis using a portable Raman system is extremely 

impressive! However, while the authors show different patterns of spectral Raman shift 

for different cancer tissues, the connection with previously developed DL models is 

missing. It is unclear whether the authors had validated the trained DL models using 

this portable Raman system, which would be extremely valuable to do so as a true 

validation of generalization. 

[Response]:     

Thank you for your valuable suggestion. In this study, a handheld portable Raman 

spectroscopy system was employed intraoperatively to detect hepatic carcinoma in six 

patients. To avoid interference with surgery, Raman signals were collected at several 



32 

 

randomly selected points in potential cancer and adjacent non-tumour areas in a short 

period. Therefore, the total amount of data collected by the portable Raman 

spectrometer is not as enough as the spectra collected in vitro. 

In addition, Raman spectra of tissue collected by the portable Raman spectrometer 

are at variance with those obtained from the micro-Raman spectrometer, specifically at 

some peak positions. This may be attributed to differences between the two types of 

spectral equipment, such as laser sources, laser power, excitation wavelength, and 

spectrometer. Therefore, the CNN model trained by spectral data collected by the 

micro-Raman spectrometer may not be validated by the data collected by the portable 

Raman spectrometer. 

However, based on statistical analysis, there are still significant differences in the 

spectral data of cancer tissue and adjacent tissue collected by portable Raman 

spectrometer. In the follow-up work, we will continue to collect more intraoperative 

spectral data and combine it with a robot arm for the Raman mapping of tissue. We 

believe that CNN-based intraoperative HCC diagnosis can still be achieved with 

sufficient spectral data. 

[Action taken]:      

The sentence in the first paragraph on page 23, “These spectral differences could 

help to distinguish tumour and hepatic parenchymal regions in surgery, and further 

intraoperative Raman mapping techniques may make it feasible to visualize tumour 

boundaries.” has been revised into “As more intraoperative spectral data are acquired, 

these spectral differences combined with suitable algorithms can help distinguish 

tumour and hepatic parenchymal regions in surgery, and further intraoperative Raman 

mapping techniques may make it feasible to visualize tumour boundaries.” 

 

5) Transparency of reproducibility. The github link provided in the manuscript simply 

contains the codebase of plain VGG model training scripts. Without the 

spectral/imaging data, it is impossible for other researchers to validate the code or 

deploy the code. While I understand the privacy concerns of releasing patient data, I 



33 

 

would highly encourage the authors to at least provide de-identified or simulated data 

so that other researchers can test/validate the proposed methods. 

[Response]:     

Thank you for your comments. Actually, we submitted spectral data to the editor 

through the delivery system at our first submission. But we are sorry for not uploading 

it on GitHub. We accordingly updated the demo dataset on the GitHub link 

(https://github.com/thidoiSanren/CNN_liver-cancer_Raman). 

[Action taken]: 

On page 31 section “Code availability”, we modified the sentence as follows “The 

code used for the CNN model and demo datasets are available at 

https://github.com/thidoiSanren/CNN_liver-cancer_Raman”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/thidoiSanren/CNN_liver-cancer_Raman


34 

 

Reviewer #4 (Remarks to the Author): expert in metabolomics 

The manuscript by Huang et al, describes a methodology to use Raman spectroscopy 

and deep learning to identify liver cancer tissue. The goal is to apply this in the surgery 

theatre for intraoperative pathological diagnosis (compared to classical biopsy methods) 

to better resect cancer tissue. 

The analyses were also compared to metabolomics analyses. 

 

Focusing mainly on the Metabolomics analysis, the performed overall analysis looks 

robust. I have two comments: 

1. The data representation in e.g. panel 3d appears not very intuitive. I am wondering if 

a fold change representation of HCC sample over respective adjacent tissue would be 

more intuitive (in such case, the signal for each metabolite from adjacent tissue would 

always be = 1). 

[Response]: 

Thank you for your valuable suggestion. To make the data in Fig. 3d more intuitive, 

we have added a new figure as Supplementary Figure 7 (shown as in Figure R4-1) in 

supplementary information, with a fold change representation of the HCC sample over 

corresponding adjacent tissue. It is evident from Supplementary Figure 7 that 

phosphatidylcholines (PCs) tagged with polyunsaturated fatty acids (PUFAs) were 

down-regulated in HCC tissues, while an increase of PCs tagged with saturated fatty 

acids (SFAs) and monounsaturated fatty acids (MUFAs) in HCC group was observed. 

Besides, most nucleosides, bases, and saccharides were down-regulated in the HCC 

group, except inosine, 1-methyl-hypoxanthine, guanosine, and glucose 6-phosphate. 
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Figure R4-1. Relative contents of representative phosphatidylcholines (a-b), 

nucleosides, bases (c), and saccharides (d) with significant differences between HCC 

tissues and adjacent tissues. The signal for each metabolite from adjacent tissue was set 

to 1. Error bars show the standard deviations. HCC tissues, n=25, adjacent tissues, n=25. 

[Action taken]:  

A new figure Supplementary Figure 7 (shown above as Figure R4-1) has been added 

as follows, 
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Supplementary Figure 7. Relative contents of representative phosphatidylcholines (a-

b), nucleosides, bases (c), and saccharides (d) with significant differences between 

HCC tissues and adjacent tissues. The signal for each metabolite from adjacent tissue 

was set to 1. Error bars show the standard deviations. HCC tissues, n=25, adjacent 

tissues, n=25. 

 

A new sentence has been added to the last paragraph on page 13, “To compare the 

above metabolite differences more intuitively, relative changes representation of HCC 

samples over respective adjacent tissues were shown in Supplementary Fig. 7.” 
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2. The analytical method is optimally suited for polar metabolites while lipids etc are 

barely retained by the used chromatographic method (all hydrophobic compounds elute 

at very early retention time). I am wondering if these compounds can be detected with 

confidence when barely separated? What are the measures applied to allow compound 

identification? 

 

[Response]: 

Thank you for pointing out this concern. In this study, LC-MS/MS analyses were 

performed based on a UHPLC system with a UPLC BEH Amide column coupled to a 

Q Exactive HFX mass spectrometer (as described in Methods). The analytical method 

is suited for polar metabolites, but this does not mean that it does not apply to 

hydrophobic compounds. The retention time of lipids is within the first 4 minutes (the 

first third of the total retention time), which is sufficient for them to be detected and 

identified. Supplementary Table 5 lists the retention times of some lipids such as PC 

(22:5/16:1), PC (16:0/14:0), and PC (15:0/15:0), with the retention time of 117.30 s, 

152.18 s, 175.12 s, respectively. In addition to the lipids in the table, the retention times 

of other lipids such as LysoPE (16:0/0:0) and LysoPC (16:0) were at 226 s and 216 s, 

respectively. 

The identification of compounds is based on a self-written R package and a self-built 

secondary mass spectrometry database (from Shanghai Biotree Biotech CO., LTD.), as 

described in the Method section on pages 28-29. A typical qualitative analysis process 

is as follows. Firstly, the molecular weight of the metabolites is determined according 

to the mass-to-charge ratio of the parent ions in the primary mass spectrometry. Then, 

secondary identification of metabolites is achieved based on the mass-to-charge ratio 

of characteristic product ions generated by the fragmentation of parent ions and the 

response intensity of product ions. Finally, a matching degree of the candidate 

metabolite is calculated and scored to characterize the analyte. 

[Action taken]: 
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On page 29, the sentence “Then an in-house MS2 database (BiotreeDB) was used for 

annotating metabolites. The cutoff for annotation was set at 0.6.” was modified to “The 

identification of compounds was based on the mass-to-charge ratio of the parent ions 

in the primary mass spectrometry and characteristic product ions generated by the 

fragmentation. An in-house MS2 database (BiotreeDB) was used for annotating 

metabolites. The cutoff for annotation was set at 0.6.” 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors have addressed my earlier comments in their revision. I now recommend its 

publication in Nature Comm. 

Reviewer #2 (Remarks to the Author): 

Thank you for your revisions. Tissue analysis by Raman spectroscopy has the potential to produce 

new knowledge, but now it is not superior to pathology, nor is it useful for intraoperative 

diagnosis. 

Reviewer #4 (Remarks to the Author): 

Thank you for replying to the comments provided. 

All my concerns have been addressed. I have no further remarks. 

Reviewer #5 (Remarks to the Author): 

The authors describe a method to identify primary hepatic malignant lesions (HCC and ICC) using 

a combination of Raman spectroscopy and AI-derived algorithms. The authors trained their model 

on 120 matched tumor-normal human tissue and reached a sensitivity and specificity of over 90% 

in differentiating tumor and normal liver tissue and also managed to define tumor grading and 

vascular invasion at lower percentages. Their method is rapid, non-disruptive, and label-free 

compared to conventional histology. 

The following points need to be addressed: 

• The authors provided detailed information about the clinical and histopathological diagnoses in 

supplementary table 1. The table is missing the other two central causes for cirrhosis and HCC- 

hepatitis C virus and alcohol consumption. 

• Does the proposed methodology manage to differentiate HCC precursors from HCC (i.e large cell 

dysplasia and small cell dysplasia)? These precancer changes can’t be differentiated grossly from 

HCC and require tissue biopsy and microscopic evaluation. HCC precursors have different 

management then HCC. 

• Does the proposed algorithm manage to correctly identify non-malignant hepatic lesions that can 

be hard to identify on imaging (hepatocellular adenoma, focal nodular hyperplasia) 

• The most common neoplastic liver lesions are not primary, but rather metastatic. Can the 

proposed methodology differentiate between primary hepatic neoplasms and secondary lesions? 

This has a significant impact on treatment and prognosis. 

• The authors mention an optional usage of the proposed methodology to detect tumor margin in 

HCC. However, the current treatment guidelines in HCC require wide resection (partial 

hepatectomy in localized mass, complete hepatectomy following liver transplantation in cases 

where several HCC foci are detected). Hence, this margin assessment of HCC has no clinical 

relevance. However, in hepatic metastases resection (a far more common clinical scenario) this 

can be very relevant. 

• In multiple places in the manuscript the term “carcinoma” or “hepatic carcinoma” is written- Do 

you mean either HCC or ICC? 

• Are the sensitivity and specificity of Raman spectroscopy to differentiate between HCC and its 

surrounding tissue grade related? Well-differentiated HCC has a very similar morphology to the 

normal liver parenchyma. 

• Line 164- “Clinically, over 90% of liver tumours are primary liver cancer…” This sentence is 

incorrect, as metastases are the most common cause of liver tumors. Change to primary liver 



tumors or some equivalent term. 
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Reviewer #5 (Remarks to the Author):   

The authors describe a method to identify primary hepatic malignant lesions (HCC and 

ICC) using a combination of Raman spectroscopy and AI-derived algorithms. The 

authors trained their model on 120 matched tumor-normal human tissue and reached a 

sensitivity and specificity of over 90% in differentiating tumor and normal liver tissue 

and also managed to define tumor grading and vascular invasion at lower percentages. 

Their method is rapid, non-disruptive, and label-free compared to conventional 

histology. 

 The following points need to be addressed: 

 

1. The authors provided detailed information about the clinical and histopathological 

diagnoses in supplementary table 1. The table is missing the other two central causes 

for cirrhosis and HCC- hepatitis C virus and alcohol consumption. 

 

[Response] 

Thank you for your comments. The prevalence of risk factors for liver cancer is 

different across different regions, for example, in China, the endemic hepatitis B virus 

(HBV) and the development of chronic hepatitis B infection have been the main driver 

of liver cancer, whereas in South Korea and Japan, liver cancer is mainly caused by 

hepatitis C virus (HCV) infection (J. Hepatol. 2019, 70, 674-683). 

The tissue samples collected in this study were all from patients without HCV 

infection, which was included in supplementary table 1. The information of alcohol 

consumption was also added in supplementary table 1. 

 

 [Action taken]: 

Supplementary Table 1 has been modified as follows. 

 

 

 



2 

 

Supplementary Table 1. Clinical characteristics of the tested patients. 

 
 Hepatocellular 

Carcinoma (HCC)  
(n=98) 

Intrahepatic 
Cholangiocarcinoma 

(ICC) (n=22) 

Age (yrs) 58.1±12.2 60.8±13.1 

Males 

Females 

84 (85.7%) 

14 (14.3%) 

13 (59.1%) 

9 (40.9%) 

Alcohol consumption a 

no drinking  

< 28 g/day 

≥28 g/day  

 

59 (60.2%) 

19 (19.4%) 

20 (20.4%) 

 

16 (72.7%) 

2 (9.1%) 

4 (18.2%) 

Hepatitis B Virus (HBV) 

Hepatitis C Virus (HBV) 

64 (65.3%) 

0 

5 (22.7%) 

0 

Hepatic Cirrhosis  72 (73.5%) 5 (22.7%) 

Steatohepatitis 20 (20.4%) 6 (27.3%) 

Stage Early: 69 

Advantage: 29 

 

Differentiation Well: 27 

Moderately: 40 

Poorly: 31 

 

Alpha-Fetoprotein 

(AFP) (ng/mL) 

Ave: 2939.2±10231.7 

Median: 16.3 

Ave: 56.9±179.0 

Median:3.20 

a refers to the “Dietary Guidelines for Americans 2020-2025” 

 

2. Does the proposed methodology manage to differentiate HCC precursors from HCC 

(i.e large cell dysplasia and small cell dysplasia)? These precancer changes can’t be 

differentiated grossly from HCC and require tissue biopsy and microscopic evaluation. 

HCC precursors have different management than HCC.  

Does the proposed algorithm manage to correctly identify non-malignant hepatic 

lesions that can be hard to identify on imaging (hepatocellular adenoma, focal nodular 

hyperplasia)   
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[Response] 

Thank you for pointing out these concerns. Actually, Raman spectroscopy has been 

successfully employed to differentiate cancer tissues from precursors, such as for the 

distinction of gastric carcinoma and early precursors (including intestinal metaplasia 

and dysplasia) (J. Biophotonics 2013, 6, 49-59, Anal. Bioanal. Chem. 2015, 407, 8303-

10), and the identification of precursor of endometrial cancer (complex atypical 

hyperplasia) (Sci. Rep. 2021, 11, 9079). In addition, the differentiation of colorectal 

carcinoma and adenomatous polyps has also been reported (Diagnostics (Basel) 2021, 

11, 2048). 

Therefore, we believe the proposed methodology based on Raman spectroscopy and 

deep learning is applicable for the identification of HCC precursors and non-malignant 

hepatic lesions based on progressive changes of biochemical constituents in tissues. 

Although HCC precursor tissues and non-malignant liver lesions were not enrolled in 

this study, we would be interested in validating the ability of the method to identify 

these tissues in our following work. 

 

[Action taken]: 

The sentence has been added in the first paragraph on page 24, “Furthermore, we 

also expect to achieve the discrimination of HCC precursors and non-malignant liver 

lesions in the follow-up work, as well as the distinction between primary and secondary 

liver cancer, which is crucial to the treatment and prognosis of hepatic carcinoma.” 

 

3. The most common neoplastic liver lesions are not primary, but rather metastatic. Can 

the proposed methodology differentiate between primary hepatic neoplasms and 

secondary lesions? This has a significant impact on treatment and prognosis. 

 

[Response]   

Thank you for sharing the comment. Because of the high incidence of hepatitis B, 
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the number of cases of primary hepatic carcinoma (PHC) and metastatic hepatic 

carcinoma (MHC) is roughly equal in China. In addition, some patients may have 

unresectable MHC at diagnosis. Here we only enrolled intraoperatively resected liver 

tissue samples from patients with PHC in this study. And we believe that the proposed 

method has the potential to distinguish primary hepatic neoplasms and secondary 

lesions as there are significant differences in biochemical composition between tissues 

and even the blood of patients (Int. J. Mol. Sci. 2018, 19, 3014, Biomed. Res. Int. 2022, 

2022, 3541403). 

 

[Action taken]:  

The sentence has been added in the first paragraph on page 24, “Furthermore, we 

also expect to achieve the discrimination of HCC precursors and non-malignant liver 

lesions in the follow-up work, as well as the distinction between primary and secondary 

liver cancer, which is crucial to the treatment and prognosis of hepatic carcinoma.” 

 

4. The authors mention an optional usage of the proposed methodology to detect tumor 

margin in HCC. However, the current treatment guidelines in HCC require wide 

resection (partial hepatectomy in localized mass, complete hepatectomy following liver 

transplantation in cases where several HCC foci are detected). Hence, this margin 

assessment of HCC has no clinical relevance. However, in hepatic metastases resection 

(a far more common clinical scenario) this can be very relevant. 

 

[Response]    

Thank you for your suggestion. Here we propose a spectral detection/imaging 

method, which is expected to be used in the judgment of tumour boundaries during 

surgery, and the identification of small residual lesions to determine whether the tumour 

is completely resected. As you mentioned, the identification of the margin may be more 

applicable to the resection of liver metastases clinically. And we have modified the 

relevant expressions as follows. 
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[Action taken]:  

On page 24, the sentence “However, complete removal of cancer tissue with minimal 

damage to adjacent normal tissue has always been a challenge for surgeons who have 

lacked suitable intraoperative methods for visually distinguishing the two tissues.” has 

been revised into, “Accurate tumour boundary identification is helpful for complete 

resection of lesions without excessive resection of normal tissue, especially for hepatic 

metastases resection. However, this is often a challenge for surgeons who lack suitable 

intraoperative methods for visually distinguishing the two tissues.” 

 

5. In multiple places in the manuscript the term “carcinoma” or “hepatic carcinoma” is 

written- Do you mean either HCC or ICC? 

 

[Response]  

Thanks for your comments. The term "carcinoma" or " hepatic carcinoma " is in 

opposition to "adjacent non-tumour tissue" and it refers to the primary liver cancer, i.e. 

HCC or ICC in the manuscript. For instance, in Figure 2, "carcinoma" refers to all 

cancerous tissue samples, including HCC and ICC tissues.  

 

6. Are the sensitivity and specificity of Raman spectroscopy to differentiate between 

HCC and its surrounding tissue grade related? Well-differentiated HCC has a very 

similar morphology to the normal liver parenchyma. 

 

[Response]   

Yes, we suppose the distinction between HCC and its surrounding tissue is related to 

the differentiated grade. The greater the difference in biochemical composition between 

tissue samples, the more it helps us to distinguish between different types of tissues by 

Raman spectroscopy. As shown in Supplementary Figure 4, the overall spectral 

difference between moderately and poorly differentiated groups was more significant 
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than that of well- and moderately differentiated groups. Therefore, it is easier for us to 

achieve the distinction between moderately and poorly differentiated groups. 

 

7. Line 164- “Clinically, over 90% of liver tumours are primary liver cancer…” This 

sentence is incorrect, as metastases are the most common cause of liver tumors. Change 

to primary liver tumors or some equivalent term. 

 

[Response]    

Thank you for your valuable suggestion. We have corrected the expression as follows. 

 

[Action taken]: 

On page 7, The sentence “Clinically, over 90% of liver tumours are primary liver cancer, 

of which 75–85% and 10–15% are hepatocellular carcinoma (HCC) and intrahepatic 

cholangiocarcinoma (ICC), respectively34.” has been revised into, “Primary liver cancer 

is one of the most common cancers worldwide, of which 75–85% and 10–15% are 

hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), 

respectively34.” 
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