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S1. PRELIMINARIES

Define Pn to be the n-qubit Pauli group modulo its center. We can label any Pauli operator
Pa ∈ Pn with a 2n-bit string a. Specifically, we define P0 to be the identity operator I. We will use
the notations Pa and a interchangeably when there is no confusion.

The pattern of an n-qubit Pauli operator Pa, denoted as pt(Pa), is an n-bit string that takes 0
at the jth bit if Pa equals to I at the jth qubit and takes 1 otherwise. For example, pt(XY IZI) =
pt(XXIXI) = 11010.

An n-qubit Pauli diagonal map Λ is a linear map of the following form
Λ(·) =

∑
a∈Pn

paPa(·)Pa, (1)

where p := {pa}a are called the Pauli error rates. If Λ is further a CPTP map, which corresponds
to the condition pa ≥ 0 and ∑

a pa = 1, then it is called a Pauli channel. An important property
of Pauli diagonal maps is that their eigen-operators are exactly the 4n Pauli operators. Thus, an
alternative expression for Λ is

Λ(·) = 1
2n

∑
b∈Pn

λb Tr(Pb(·))Pb, (2)
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where λ := {λb}b are called the Pauli fidelities or Pauli eigenvalues [1–3]. These two sets of
parameters, p and λ, are related by the Walsh-Hadamard transform

λb =
∑

a∈Pn

pa(−1)⟨a,b⟩, pa = 1
4n

∑
b∈Pn

λb(−1)⟨a,b⟩, (3)

where ⟨a, b⟩ equals to 0 if Pa, Pb commute and equals to 1 otherwise.
For a general linear map E , define its Pauli twirl as

EP :=
∑

a∈Pn

PaEPa. (4)

Here we use the calligraphic Pa to represent the unitary channel of Pauli gate Pa, Pa(·) := Pa(·)Pa.
The Pauli twirl of any linear map (quantum channel) is a Pauli diagonal map (Pauli channel).
When we talk about the Pauli fidelities of a non-Pauli channel, we are effectively referring to the
Pauli fidelities of its Pauli twirl.

S2. THEORY ON THE LEARNABILITY OF PAULI NOISE

In this section, we give a precise characterization of what information in the Pauli noise channel
associated with Clifford gates can be learned in the presence of state-preparation-and-measurement
(SPAM) noise. Our results show that certain Pauli fidelities of a noisy multi-qubit Clifford gate
cannot be learned in a SPAM-robust manner, even with the assumption that single-qubit gates
can be perfectly implemented. The proof is related to the notion of gauge freedom in the literature
of gate set tomography [4]. We note that the results presented in this section emphasizes on the
no-go part, i.e., some information about the Pauli noise is (SPAM-robustly) unlearnable even
with many favorable assumptions on the experimental conditions. As shown in the main text, the
learnable information about Pauli noise can be extracted in a much more practical setting using
cycle benchmarking [5] and its variant.

A. Assumptions and definitions

We focus on an n-qubit quantum system. Below are our assumptions on the noise model.

• Assumption 1. All single qubit unitary operation can be perfectly implemented.

• Assumption 2. A set of multi-qubit Clifford gates G := {G} can be implemented and
are subject to gate-dependent Pauli noise, i.e., G̃ = G ◦ ΛG where ΛG is some n-qubit Pauli
channel.

• Assumption 3. Any state preparation and measurement can be implemented, up to some
fixed Pauli noise channel ES and EM , respectively.

• Assumption 4. The Pauli noise channels appearing in the above assumptions satisfy that
all Pauli fidelities and Pauli error rates are strictly positive.

Assumption 1 is motivated by the fact that the noise of single-qubit gates are usually much smaller
than that of multi-qubit gates on today’s hardware. Such approximation is widely adopted in
the literature [5, 6] with slight modifications. In Assumption 2, we view every Clifford gate as an
n-qubit gate, and allow the noise to be n-qubit. This means we are taking all crosstalk into account.
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A Clifford gate acting on a different (ordered) subset of qubits is viewed as a different gate and can
thus have a different noise channel (e.g., CNOT12, CNOT21, CNOT23 have different noise channels.)
We will discuss the no-crosstalk situation in Sec. S2 D. The rationale for assuming Pauli noise in
Assumption 2 and 3 is that we can always use randomized compiling [6, 7] to tailor general noise
into Pauli channels. Finally, Assumption 4 is mostly for technical convenience. The requirement
of positive Pauli error rates roughly implies the Pauli channels are at the interior of the CPTP
polytope, and will be useful later in constructing valid gauge transformations. The requirement of
positive Pauli fidelities is also reasonable for any physically interesting noise model.

Specifying a Clifford gate set G, a noise model satisfying our assumptions is determined by
the Pauli channels describing gate noise and SPAM noise. We can thus view a noise model as
a collection of Pauli fidelities, denoted as N = {ES , EM , Λ}, where ES/M = {λ

S/M
a }a describes

the SPAM noise and Λ = {λG
a }a,G describes the gate noise. We note that this is an example of

parametrized gate set in the language of gate set tomography [4].
In order to gain information about an unknown noise model, one needs to conduct experiments.

In the circuit model, any experiment can be described by some state preparation, a sequence of
quantum gates, and some POVM measurements. An experiment conducted with different underlying
noise model would yield different measurement outcome distributions. Explicitly, consider an (ideal)
experiment with initial state ρ0, gate sequence C, POVM measurements {Eo}o. Denote the noisy
implementation of these objects within a certain noise model N with a tilde. Then the experiment
effectively maps N to a probability distribution pN (o) = Tr(Ẽo(C̃(ρ̃0))). We call two noise models
N1, N2 indistinguishable if for all possible experiments we have pN1 = pN2 , and distinguishable
otherwise.

Definition 1 (Learnable and unlearnable function). A function f of noise models is learnable if

f(N1) ̸= f(N2) =⇒ N1, N2 are distinguishable, (5)

for any noise models N1, N2. In contrast, f is unlearnable if there exist indistinguishable noise
models N1, N2 such that f(N1) ̸= f(N2).

Note that the above definition of “learnable” does not necessarily mean that the value of the
function can be learned. However, throughout this paper whenever some function is “learnable”
according to Definition 1, it is also learnable in the stronger sense that we can design an experiment
to estimate it up to arbitrarily small error with high success probability.

In the language of gate set tomography, an unlearnable function is a gauge-dependent quantity of
the gate set [4]. On the other hand, any learnable function can in principle be learned to arbitrary
precision. In the following, we will focus the learnability of the functions of the gate noise, including
individual and multiplicative combinations of Pauli fidelities.

B. Learnability of individual Pauli fidelity

We first study the learnability of individual Pauli fidelities associated with a Clifford gate. This
has been an open problem in recent study of quantum benchmarking. Perhaps surprisingly, we
obtain the following simple criteria on the learnability of Pauli fidelities with any Clifford gate.

Theorem 1. With Assumptions 1-4, for any n-qubit Clifford gate G and Pauli operator Pa, the
Pauli fidelity λG

a is unlearnable if and only if G changes the pattern of Pa, i.e., pt(G(Pa)) ̸= pt(Pa).
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The fact that certain Pauli fidelities are SPAM-robustly unlearnable is observed in some recent
works [5, 7–9], described as “degeneracy” of the noise model. Our work is the first to give a rigorous
argument for this by establishing connections to gate set tomography. As an example, for the
CNOT and SWAP gates, we can immediately list its learnable and unlearnable Pauli fidelities in
Table S1. We note that, the no-go theorem holds even under the no-crosstalk assumption as will be
discussed in Sec. S2 D, so introducing ancillary qubits or other multi-qubit Clifford gates cannot
help resolve the unlearnability.

Gate Learnable Unlearnable
CNOT λII , λZI , λIX , λZX , λXZ , λY Y , λXY , λY Z λIZ , λXI , λZZ , λXX , λIY , λY I , λZY , λY X

SWAP λII , λXX , λXY , λXZ , λY X , λY Y , λY Z , λZX , λZY , λZZ λIX , λIY , λIZ , λXI , λY I , λZI

Supplementary Table S1. Learnability of individual Pauli fidelity of CNOT and SWAP.

Before going into the proof, we make several remarks about Theorem 1. The correct interpretation
of the no-go result in Theorem 1 is that certain Pauli fidelities cannot be learned in a fully SPAM-
robust manner. If one has some pre-knowledge that the SPAM noise is much weaker than the
gate noise, there exist methods to give a pretty good estimate of those unlearnable Pauli fidelities,
according to physical constraints. See the discussions in the main text. On the other hand, it is
observed that the product of certain unlearnable Pauli fidelities can be learned in a SPAM-robust
manner, such as λXI · λXX for the CNOT gate [5]. We will characterize the learnability of this kind
of products of Pauli fidelities in the next subsection.

Proof of Theorem 1. We start with the “only if” part, which is equivalent to saying that pt(Pa) =
pt(G(Pa)) implies λG

a being learnable. The condition pt(G(Pa)) = pt(Pa) implies G(Pa) is equivalent
to Pa up to some local unitary transformation, i.e., there exists a product of single-qubit unitary
gates U := ⊗n

j=1 Uj such that

U ◦ G(Pa) = Pa. (6)

Now we design the following experiments parameterized by a positive integer m,

• Initial state: ρ0 = (I + Pa)/2n,

• POVM measurement: E±1 = (I ± Pa)/2,

• Circuit: Cm = (U ◦ G)m.

Consider the measurement probability by running these experiments within a noise model N .

p
(m)
±1 (N ) = Tr

(
Ẽ±1C̃m(ρ̃0)

)
= Tr

(
I ± Pa

2 ·
(
EM ◦ (U ◦ G)m ◦ ES

) (
I + Pa

2n

))

= Tr

I ± Pa

2 ·
I + λM

a

(
λG

a

)m
λS

a Pa

2n


=

1 ± λM
a

(
λG

a

)m
λS

a

2 .

(7)

Recall that λ
S/M
a is the Pauli fidelity of the SPAM noise channel for Pa. The expectation value is

E(m)(N ) = λM
a

(
λG

a

)m
λS

a . (8)



S5

If we take the ratio of expectation values of two experiments with consecutive m, we obtain (recall
that all these Pauli fidelities are strictly positive by Assumption 4)

Em+1(N )/Em(N ) = λG
a . (9)

This implies that if two noise model assign different values for λG
a , the above experiments would be

able to distinguish between them. By definition 1, we conclude λG
a is learnable.

Next we prove the “if” part. Fix an n-qubit Clifford gate G. Let Pa be any Pauli operator
such that pt(G(Pa)) ̸= pt(Pa). We will show that λG

a is unlearnable by explicitly constructing
indistinguishable noise models that assign different values to λG

a .
Recall that any experiment involves a noisy initial state ρ̃0, a noisy measurement {Ẽl}l, and

a quantum circuit consisting of noiseless single-qubit gates U := ⊗n
j=1 Uj and noisy multi-qubit

Clifford gates T̃ . Now, introduce an invertible linear map M : L(H2n) → L(H2n), and consider the
following transformation

ρ̃0 7→ M(ρ̃0), Ẽl 7→ (M−1)†(Ẽl),
n⊗

j=1
Uj 7→ M ◦

n⊗
j=1

Uj ◦ M−1,

T̃ 7→ M ◦ T̃ ◦ M−1.

(10)

One can immediately see that any measurement outcome distribution pl := Tr(ẼlC̃(ρ̃0)) remains
unchanged via such transformation. Therefore the noise models related by this transformation are
indistinguishable. This is called a gauge transformation in the literature of gate set tomography [4].
To use this idea for the proof, we start with a noise model N and construct a map M such that

1. The transformation yields a physical noise model N ′ satisfying Assumptions 1-5 in Sec. S2 A.

2. The two noise models N , N ′ assign different values to λG
a .

Starting with a generic noise model N = {ES , EM , Λ} satisfying the assumptions, we construct
the gauge transform map M as follows. Since pt(G(Pa)) ̸= pt(Pa), there exists an index i ∈ [k]
such that one and only one of (Pa)i and G(Pa)i equals to I. Let M be the single-qubit depolarizing
channel on the i-th qubit,

M := Di ⊗ I[n]\i, (11)

where the single-qubit depolarizing channel is defined as

∀P ∈ {I, X, Y, Z}, D(P ) =
{

P, if P = I,

ηP, otherwise,
(12)

for some parameter 0 < η < 1. We will specify the value of η later.
Now we calculate the transformed noise model N ′ = {ES′

, EM ′
, Λ′}. The SPAM noise channels

are transformed as

ES′ = MES , EM ′ = EM M−1, (13)

both of which are still Pauli diagnoal maps. Thanks to our Assumption 4, as long as η is sufficiently
close to 1, they can be shown to be Pauli channels.
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Next, the single-qubit unitary gates are transformed as

M

 n⊗
j=1

Uj

 M−1 = DiUiD†
i ⊗

⊗
j ̸=i

Uj =
⊗

j

Uj , (14)

since the single-qubit deplorizing channel commutes with any single-qubit unitary. This implies the
single-qubit unitary gates are still noiseless.

Finally, consider an arbitrary n-qubit Clifford gate T . We show that the transformed noisy gate
takes the form T̃ ′ = T̃ ◦ Λ′

T where Λ′
T is still a Pauli channel, with the Pauli fidelities updated as

follows.

λT
b

′ =


ηλT

b , if pt(Pb)i = 0 and pt(T (Pb))i = 1,

η−1λT
b , if pt(Pb)i = 1 and pt(T (Pb))i = 0,

λT
b , if pt(Pb)i = pt(T (Pb))i.

(15)

We give a proof for the first case. Note that

M ◦ T̃ ◦ M−1 = Di ◦ T̃ ◦ D−1
i

= Di ◦ T ◦ ΛT ◦ D−1
i

= T ◦ (T −1 ◦ Di ◦ T ◦ ΛT ◦ D−1
i )

=: T ◦ Λ′
T ,

(16)

where we use Di as a shorthand for Di ⊗ I[n]\i. The transformed noise channel can be written as

Λ′
T = T −1 ◦ Di ◦ T ◦ ΛT ◦ D−1

i . (17)

Let us calculate its action on arbitrary Pb.

Λ′
T (Pb) = (T −1 ◦ Di ◦ T ◦ ΛT ◦ D−1

i )(Pb)
= (η−1)pt(Pb)i(T −1 ◦ Di ◦ T ◦ ΛT )(Pb)
= λT

b (η−1)pt(Pb)i(T −1 ◦ Di ◦ T )(Pb)
= ηpt(T (Pb))iλT

b (η−1)pt(Pb)i Pb.

(18)

Thus, Λ′
T is indeed a Pauli diagonal map with Pauli fidelities given by Eq. (15). The fact that Λ′

T
is guaranteed to be a CPTP map by choosing appropriate η will be verified later. Specifically, if
we take T to be the Clifford gate G that we are interested in, we have λG′

a = ηλG
a or λG′

a = η−1λG
a .

In either case, λG′
a ≠ λG

a . This means the two indistinguishable noise model N , N ′ indeed assign
different values to λG

a .
We now verify that N ′ is indeed a physical noise model and satisfies Assumptions 1-4. We have

already shown that single-qubit unitary gates remain noiseless and that all gate noise and SPAM
noise are described by Pauli diagonal maps. The only thing left is to make sure all these Pauli
diagonal maps are CPTP and satisfy the positivity constraints in Assumption 4. According to
Eq. (13) and (15), any Pauli fidelity λb of either SPAM noise or gate noise is transformed to one of
the following λ′

b ∈ {λb, ηλb, η−1λb}, so λb > 0 implies λ′
b > 0. On the other hand, any transformed

Pauli error rate can be bounded by

p′
c = 1

4n

∑
b∈Pn

(−1)⟨b,c⟩λ′
b

≥ 1
4n

∑
b∈Pn

(
(−1)⟨b,c⟩λb − (η−1 − 1)λb

)
≥ pc − (η−1 − 1).

(19)
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To ensure every p′
c > 0, we can choose 1 > η > (pmin + 1)−1 with pmin being the minimum Pauli

error rate among all Pauli channels of both SPAM and gate noise, which is possible since pmin > 0
by Assumption 4. This means each transformed Pauli diagonal maps are completely positive (CP).
To see they are also trace-preserving (TP), just notice from Eq. (13), (15) that λ′

0 = λ0 = 1 always
holds. Now we conclude that N ′ is indeed a physical noise model satisfying all the assumptions.
Combining with the reasoning in the last paragraph, we see λG

a is unlearnable. This completes our
proof.

C. Characterization of learnable space via algebraic graph theory

We have characterized the learnability of individual Pauli fidelities associated with any Clifford
gates in Theorem 1. Here, we want to understand the learnablity for a general function of the
gate noise. We first show that, in our setting, any measurement outcome probability in experiment
can be expressed as a polynomial of Pauli fidelities of gate and SPAM noise, and each term in the
polynomial can be learned via a CB experiment (see Sec. S4 for details). Therefore, it suffices to
study the monomials, i.e., products of Pauli fidelities. For each Pauli fidelity λG

a , we define the
logarithmic Pauli fidelity as lGa := log λG

a (λG
a > 0 by Assumption 4). It then suffices to study the

learnability of linear functions of the logarithmic Pauli fidelities. An alternative reason to only
study this class of function is that, under a weak noise assumption, we have la → 0, so we can
express any function of the noise model as a linear function of la under a first order approximation.
Note that similar approaches have been explored in the literature [10, 11].

Since we are working with Assumption 1-4 which takes all crosstalk into account, we treat the
noise channel for each gate in G as n-qubit. The number of independent Pauli fidelities we are
interested in is thus

|Λ| = |G| · 4n. (20)

Denote the space of all (real-valued) linear function of logarithmic Pauli fidelities as F , then we have
F ∼= R|Λ|. A function f ∈ F uniquely corresponds to a vector v ∈ R|Λ| by f(l) = v · l = ∑

a,G va,GlGa .
We will use the vector to refer to the linear function when there is no ambiguity.

Denote the set of all learnable function in F as FL (in the sense of Def. 1). As shown in the
following lemma, FL forms a linear subspace in F , so we call FL the learnable space.

Lemma 1. FL is a linear subspace of F .

Proof. Given v1,v2 ∈ FL, consider the learnability of v1 + v2. For any noise models N1, N2,

(v1 + v2) · lN1 ̸= (v1 + v2) · lN2 =⇒ v1 · lN1 ̸= v1 · lN2 or v2 · lN1 ̸= v2 · lN2

=⇒ N1, N2 are distinguishable.
(21)

Thus v1 + v2 ∈ FL. We also have v ∈ L =⇒ kv ∈ FL for all k ∈ R. Therefore, FL forms a vector
space in R|Λ|.

Our goal is to give a precise characterization of the learnable space FL. For example, we may
want to know the dimension of FL, which represents the learnable degrees of freedom for the noise.
This is also the maximum number of linearly-independent equations about the logarithmic Pauli
fidelities we can expect to extract from experiments. Conversely, the unlearnable degrees of freedom
roughly correspond to the number of independent gauge transformations. We summarize these
definitions as follows.
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Definition 2. Given a Clifford gate set G, the learnable degrees of freedom LDF(G) and unlearnable
degrees of freedom UDF(G) are defined as, respectively,

LDF(G) := dim(FL), UDF(G) := |Λ| − dim(FL). (22)

Our approach is to relate FL to certain properties of a graph defined as follows.

Definition 3 (Pattern transfer graph). The pattern transfer graph associated with a Clifford gate
set G is a directed graph G = (V, E) constructed as follows:

• V (G) = {0, 1}n.

• E(G) = {ea,G := (pt(Pa), pt(G(Pa)) | ∀ Pa ∈ Pn, G ∈ G}.

The 2n vertices each corresponds to a possible Pauli pattern. The |E| = |Λ| = |G| · 4n edges
each corresponds to a Pauli operator and a Clifford gate, describing how the Clifford gate evolves
the pattern of the Pauli operator. One can also think each edge corresponds to a unique Pauli
fidelity (ea,G ↔ λG

a ). The rationale for only tracking the Pauli pattern is that we assume the ability
to implement noiseless single-qubit unitaries, which makes the actual single-qubit Pauli operators
unimportant. Fig. 2 of main text shows the pattern transfer graphs for a CNOT gate, a SWAP
gate, and a gate set of CNOT and SWAP, respectively.

Next, we give some definitions from graph theory (see [12, 13]). A chain is an alternating
sequences of vertices and edges z = (v0, e1, v1, e2, v2, ..., vq−1, eq, vq) such that each edge satisfies
ek = (vk−1, vk) or ek = (vk, vk−1). A chain is simple if it does not contain the same edge twice. A
closed chain (i.e., v0 = vq) is called a cycle. If an edge ek in a chain satisfies ek = (vk−1, vk), it is
called an oriented edge. A chain consists solely of oriented edges is called a path. A closed path is
called a oriented cycle or a circuit. A graph is called strongly connected if there is a path from every
vertex to every other vertex. A graph is called weakly connected if there is a chain from every vertex
to every other vertex. The number of (strongly or weakly) connected components is the minimum
number of partitions of the vertex set V = V1 ∪ · · · ∪ Vc such that each subgraph generated by a
vertex partition is (strongly or weakly) connected.

We can equip a graph with vector spaces. Following the notations of [13, Sec. II.3], the edge
space C1(G) of a directed graph G is the vector space of all linear functions from the edges E(G) to
R. By construction, C1(G) ∼= R|Λ| ∼= F . Every linear function of the logarithmic Pauli fidelities
naturally corresponds to a linear function of the edges according to the label of the edges (lGa ↔ ea,G).
Again, we use vectors in R|Λ| to refer to elements of C1(G). The inner product on C1(G) is defined
as the standard inner product on R|Λ|.

There are two subspaces of C1(G) that is of special interest. For a simple cycle z in G, we assign
a vector vz ∈ C1(G) as follows

vz(e) =


+1, e ∈ z, e is oriented.
−1, e ∈ z, e is not oriented.

0, e /∈ z.

(23)

The cycle space Z(G) is the linear subspace of C1(G) spanned by all cycles vz in G.
Given a partition of vertices V = V1 ∪ V2 such that there is at least one edge between V1 and V2,

a cut is the set of all edges e = (u, v) such that one of u, v belongs to V1 and the other belongs to
V2. For each cut p we assign an vector vp ∈ C1(G) as follows

vp(e) =


+1, e ∈ p, e goes from V1 to V2.
−1, e ∈ p, e goes from V2 to V1.

0, e /∈ p.

(24)
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The cut space U(G) is the linear subspace of C1(G) spanned by all cuts vp in G. Note that different
partition of vertices may result in the same cut vector if G is unconnected.

Lemma 2. [13, Sec. II.3, Theorem 1] The edge space C1(G) is the orthogonal direct sum of the
cycle space Z(G) and the cut space U(G), whose dimensions are given by

dim(Z(G)) = |E| − |V | + c(G), dim(U(G)) = |V | − c(G), (25)

where c(G) is the number of weakly connected components of G.

In some cases, we are more interested in circuits (oriented cycles) instead of general cycles. The
following lemma gives a sufficient condition when the cycle spaces have a circuit basis, i.e. the cycle
space is spanned by oriented cycles.

Lemma 3. [12, Theorem 7] A directed graph has a circuit basis if it is strongly connected, or it is
a union of strongly connected subgraphs.

With all the graph theoretical tools introduced above, we are ready to present the main result
of this section.

Theorem 2. Under the Assumptions 1-4. For any G, FL
∼= Z(G). Explicitly, a linear function

fv(l) = v · l is learnable if and only if v belongs to the cycle space Z(G).

We give the proof at the end of this section. The proof involves two parts. The first is to show
that every cycle is learnable using a variant of cycle benchmarking [5], thus the cycle space belongs
to the learnable space. The second part is to show that every cut induces a gauge transformation [4],
and thus the learnable space must be orthogonal to the cut space, which implies it lies in the cycle
space.

We remark that Theorem 1 can be viewed as a corollary of Theorem 2. This is because an
individual Pauli fidelity λG

a whose Pauli pattern changes (i.e., pt(Pa) ̸= pt(G(Pa))) corresponds to
an simple edge in the pattern transfer graph, which does not belong to the cycle space and is thus
unlearnable. On the other hand, a Pauli fidelity without Pauli pattern change corresponds to a
self-loop in the pattern transfer graph, which belongs to the cycle space by definition, and is thus
learnable.

Combing Theorem 2 with Lemma 2 leads to the following.

Corollary 3. The learnable and unlearnable degrees of freedom associated with G are given by

LDF(G) = |G| · 4n − 2n + c(G), UDF(G) = 2n − c(G), (26)

where c(G) is the number of connected components of the pattern transfer graph associated with G.

Note that the unlearnable degrees of freedom always constitute an exponentially small portion,
though they can grow exponentially.

Examples of some gate sets are given in Table S2 and Figure S1. One can notice some interesting
properties. The UDF of CNOT and SWAP equals to 2 and 1, respectively, but a gate set containing
both has UDF = 2. This means UDF is not “additive”. The interdependence between different
gates can give us more learnable degrees of freedom. However, Corollary 3 implies that the UDF of
a gate set cannot be smaller than the UDF of any of its subset. This is because adding new gates
can only decrease the number of connected components c(G) of the pattern transfer graph.
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Number of qubits n Gate set G Number of parameters |Λ| = 4n|G| UDF(G)
2 CNOT 16 2
2 SWAP 16 1
2 {CNOT, SWAP} 32 2
3 {CNOT12, CNOT23, CNOT31} 192 6
3 CIRC3 64 4

Supplementary Table S2. The unlearnable degrees of freedom of some gate sets. Here CIRC3 is the circular
permutation on 3 qubits. UDF is calculated by applying Corollary 3 to the corresponding pattern transfer
graph in Fig. 2 of main text and Fig. S1.

Supplementary Figure S1. Pattern transfer graphs for {CNOT, SWAP}, {CNOT12, CNOT23, CNOT31},
and CIRC3. For clarity, we omit labels of the edges, multiple edges, and self-loop. These omissions do not
change the cut space of the graph.

Proof of Theorem 2. The proof is divided into showing Z(G) ⊆ FL and FL ⊆ Z(G) (up to the
natural isometry between F and C1(G)).

Z(G) ⊆ FL: Roughly, this is equivalent to saying that all cycles are learnable. We will first show
that the pattern transfer graph always has a circuit basis, and then show that the linear function
associated with each circuit can be learned using a variant of cycle benchmarking protocol [5].

We begin by showing that the pattern transfer graph G associated with a gate set G is a union
of strongly connected subgraphs. This is equivalent to saying that for any vertices u, v ∈ V (G), if
there is a path from u to v, there must be a path from v to u. It suffices to show that for each
edge e = (u, v) there is a path from v to u, since any path is just concatenation of edges. By
definition, the existence of e = (u, v) implies there exists P ∈ Pn and G ∈ G such that pt(P ) = u
and pt(Q) = v where Q := G(P ). Since a Clifford gate is a permutation on the Pauli group, there
must exist some integer d > 0 such that Gd = I, thus P = Gd−1(Q), which induces the following
path from v to u:

(pt(Q), eQ,G , pt(G(Q)), eG(Q),G , pt(G2(Q)), · · · , pt(Gd−2(Q)), eGd−1(Q),G , pt(Gd−1(Q))).

One can verify this is a path according to the definition of G. This shows that G is indeed a union
of strongly connected subgraphs. According to Lemma 3, G has a circuit basis that spans the cycle
space Z(G).

Now we show that every circuit in G represents a learnable function. Consider an arbitrary
circuit z = (v0, e1, v1, e2, v2, ..., vq−1, eq, vq ≡ v0). For each k = 1...q, the edge ek corresponds to a
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Pauli operator Pk ∈ Pn and a Clifford gate Gk ∈ G such that pt(Pk) = vk−1 and pt(Qk) = vk where
Qk := Gk(Pk). On the other hand, since pt(Qk) = pt(Pk+1), there exists a product of single qubit
unitaries Uk such that Pk+1 = Uk(Qk) for k = 1...q (where we define Pq+1 := P1, as pt(Qq) = pt(P1)
by assumptions). Consider the following gate sequence,

C := UqGqUq−1Gq−1 · · · U1G1 (27)

One can see that C(P1) = P1. Now we design the following experiments parameterized by a positive
integer m,

• Initial state: ρ0 = (I + P1)/2n,

• POVM measurement: E±1 = (I ± P1)/2,

• Circuit: Cm = (UqGqUq−1Gq−1 · · · U1G1)m.

Consider the outcome distribution generated by running these experiments within a noise model N .

p
(m)
±1 (N ) = Tr

(
Ẽ±1C̃m(ρ̃0)

)
= Tr

(
I ± P1

2 ·
(
EM ◦

(
UqG̃q · · · U1G̃1

)m
◦ ES

) (
I + P1

2n

))

= Tr

I ± P1
2 ·

I + λM
P1

(
λ

Gq

Pq
· · · λG2

P2
λG1

P1

)m
λS

P1
P1

2n


=

1 ± λM
P1

(
λ

Gq

Pq
· · · λG2

P2
λG1

P1

)m
λS

P1

2 .

(28)

The expectation value is

E(m)(N ) = λM
P1

(
λ

Gq

Pq
· · · λG2

P2
λG1

P1

)m
λS

P1 . (29)

If we take the ratio of expectation values of two experiments with consecutive m, we obtain (recall
that all these Pauli fidelities are strictly positive by Assumption 4)

Em+1(N )/Em(N ) = λ
Gq

Pq
· · · λG2

P2
λG1

P1
. (30)

This implies that if two noise models have different values for the product of Pauli fidelities
λ

Gq

Pq
· · · λG2

P2
λG1

P1
, the above experiments would be able to distinguish between them. Therefore,

λ
Gq

Pq
· · · λG2

P2
λG1

P1
is a learnable function. By taking the logarithm of this expression, we see that

f(l) := ∑q
k=1 l

Gq

Pq
is a learnable linear function of the logarithmic Pauli fidelities. Notice that f(l)

exactly corresponds to the circuit of z according to the natural isometry between F and C1(G).
This tells us that every circuit in G indeed corresponds to a learnable linear function. Combining
with the fact that the circuits in G span the cycle space Z(G), and the fact that learnable functions
are closed under linear combination (Lemma 1), we conclude that Z(G) ⊆ FL.

FL ⊆ Z(G): For this part, we just need to show that FL is orthogonal to the cut space U(G),
which is the orthogonal complement of the cycle space Z(G). To show this, we will construct
a gauge transformation for each element of U(G). The definition of learnability then requires a
learnable linear function to be orthogonal to all gauge transformations, thus orthogonal to the
entire cut space.
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Consider a cut V = V1 ∪ V2 (such that there is at least one edge between V1 and V2). We define
the gauge transform map M as the following Pauli diagonal map,

M(P ) :=
{

ηP, if pt(P ) ∈ V1,

P, if pt(P ) ∈ V2,
∀P ∈ Pn, (31)

for a positive parameter η ̸= 1. The gauge transformation induced by M is defined in the same
way as Eq. (10). We will show that there exists two noise models satisfying all the assumptions
that are related by a gauge transformation (thus indistinguishable) but yields different values for
the function corresponding to the cut V1 ∪ V2.

Starting with a noise model N = {ES , EM , Λ}, we first calculate the gauge transformed noise
model N ′. The SPAM noise channels are transformed as

ES′ = MES , EM ′ = EM M−1, (32)

which are still Pauli diagonal maps. Using exactly the same argument as in the proof of Theorem 1,
by choosing η to be sufficiently close to 1, these transformed maps are guaranteed to be CPTP and
satisfy Assumption 4.

Secondly, the single-qubit unitaries are transformed as U ′ = MUM−1. Calculate the following
inner product for any P, Q ∈ Pn,

Tr(P · U ′(Q)) = Tr(M†(P ) · U(M−1(Q)))
= η1V1 [pt(P )](η−1)1V1 [pt(Q)] Tr(P · U(Q)).

(33)

Here 1V1 is the indicator function of V1. We see that Tr(P · U ′(Q)) = Tr(P · U(Q)) if pt(P ) = pt(Q).
A crucial observation is that a product of single-qubit unitaries can never change the pattern of the
input Pauli. More precisely, U(Q) is a linear combination of Pauli operators with the same pattern
as Q. Therefore, if pt(P ) ̸= pt(Q), we would have Tr(P · U ′(Q)) = Tr(P · U(Q)) = 0. Combining
the two cases, we conclude U ′ = U , i.e., the single-qubit unitaries are still noiseless in N ′.

Finally, the noisy Clifford gates are transformed as

G̃′ = MGΛGM−1

= GG−1MGΛGM−1

=: GΛ′
G

(34)

where the transformed noise channel Λ′
G := G−1MGΛGM−1 is a Pauli diagonal map. We now

calculate its Pauli eigenvalues. For P ∈ Pn,

Λ′
G(P ) = G−1MGΛGM−1(P )

= η1V1 [pt(G(P ))](η−1)1V1 [pt(P )]λG
P P

=


ηλG

P , pt(P ) ∈ V1, pt(G(P )) ∈ V2.

η−1λG
P , pt(P ) ∈ V2, pt(G(P )) ∈ V1.

λG
P , otherwise.

(35)

Again, Assumption 4 guarantees that Λ′
G is a CPTP map satisfying all of our noise assumptions as

long as η is sufficiently close to 1. We omit the argument here as it is the same as in the previous
proof. Define tp := log η where p denotes the cut V1 ∪ V2. The above gauge transformation of the
log Pauli fidelity can be written as

l′ = l + tpvp (36)
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where vp is the cut vector of V = V1 ∪ V2 as defined in Eq. (24).
We have just defined a gauge transformation Mp for an arbitrary cut p. Fix a basis of the cut

space B (where vectors in B has the form in Eq. (24)). For a generic element of the cut space
v ∈ U(G), we can decompose it as v = ∑

p∈B tpvp (tp ∈ R). We define the gauge transformation
Mv associated with v as a consecutive application of the gauge transformations {Mp} for each
p ∈ B, each with parameter tp. Here we assume that each |tp| is sufficiently small, as otherwise we
can rescale the vector. This implies that Mv is a valid gauge transformation. The effect of such a
transformation is

l′ = l + v. (37)

Now, Definition 1 implies that a learnable function f must remain unchanged under gauge
transformations (as they result in indistinguishable noise models), which means that f · l′ = f · l.
Thus, for all f ∈ FL, and all v ∈ U(G), we must have

f · v = f · l′ − f · l = 0. (38)

That is, FL must be orthogonal to the cut space U(G). According to Lemma 2, Z(G) is the
orthogonal complement of U(G), so we conclude that FL ⊆ Z(G). This completes the second part
of our proof.

D. Learnability under no-crosstalk assumption

As we commented before, the way we define the gate noise captures a general form of crosstalk [14].
One may ask, if we further make a favorable assumption that gate noise has no crosstalk, would
this make the learning of noise much easier. To consider this rigorously, we introduce the following
optional assumption. See Fig. S2 for an illustration.

• Assumption 5 (No crosstalk.) For any G ∈ G that acts non-trivially only on a k-qubit
subspace, the associated Pauli noise channel also acts non-trivially only on that subspace. In
other words, if G = G′ ⊗ I, we have G̃ = (G′ ◦ ΛG) ⊗ I where ΛG is an k-qubit Pauli channel
depending only on G and the (ordered) subset of qubits on which G acts.

Supplementary Figure S2. Illustration of the crosstalk model. (a) A 4-qubit circuit consists of three ideal
CNOT gates. (b) Full crosstalk. The noise channels are 4-qubit and depends on the qubits the CNOT acts
on. (c) No crosstalk. The noise channel only acts on a 2-qubit subspace. It can still depend on the qubits
the CNOT acts on.

Assumption 5 reduces the number of independent parameters of a noise model. One might
expect certain unlearnable functions to become learnable with this assumption. Here, we show that
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the simple criteria of learnablity given in Theorem 1 still hold even in this case, as stated in the
following proposition.

Proposition 4. With Assumption 1-5, for any k-qubit Clifford gate G and Pauli operator Pa, the
Pauli fidelity λG

a is unlearnable if and only if G changes the pattern of Pa, i.e., pt(G(Pa)) ̸= pt(Pa).

Proof. We just need to modify the proof of Theorem 1. For the “only if” part, restrict our attention
to the k-qubit subsystem that G acts on, and do a cycle benchmarking protocol as in the original
proof. We can easily conclude that λG

a is learnable if pt(Pa) = pt(G(Pa)).
For the “if” part, construct the same gauge transformation map as in the original proof. That is,

for an index i ∈ [n] such that pt(Pa)i ̸= pt(G(Pa))i, let M = Di ⊗ I[n]\i where Di is the single-qubit
deplorizing channel on the ith qubit with some parameter η. With the no-crosstalk assumption, a
generic k-qubit noisy Clifford gate T̃ transforms as

T̃ ⊗ I 7→ M ◦ (T̃ ⊗ I) ◦ M−1. (39)

If T does not act on the ith qubit, M commutes with T̃ and the noisy Clifford gate remains
unchanged. If T acts non-trivially on the ith qubit,

T̃ ⊗ I 7→ (Di ◦ T̃ ◦ D−1
i ) ⊗ I. (40)

This means the transformed noise channel acts non-trivially only on the k-qubit subsystem that G
acts on, thus satisfies the no-crosstalk assumption. The Pauli fidelities of the noise channel will be
updated as Eq. (15). Following the same argument of the original proof, we conclude that λG

a is
unlearnable if pt(Pa) ̸= pt(G(Pa)).

It is also possible to generalize the graph theoretical characterization in Theorem 2 to the
no-crosstalk case. One challenge in this case is that, different edges in the pattern transfer graph
no longer stand for independent variables. For example, consider a 3-qubit system and a CNOT
on the first two qubits. Since CNOT(XI) = XX, we would have the following two edges in the
pattern transfer graph

eXII,CNOT⊗I = (100, 110), eXIX,CNOT⊗I = (101, 111).

However, with the no-crosstalk assumption, we have

λCNOT⊗I
XII = λCNOT⊗I

XIX = λCNOT
XI , (41)

which means the above two edges represent the same Pauli fidelity. As a result, a gauge transforma-
tion (as defined in the proof of Theorem 2) that changes λXII and λXIX differently is no longer a
valid transformation. In other word, a cut represents a valid gauge transformation only if it cuts
through all the edges for the same Pauli fidelity simultaneously. This could decrease the number of
unlearnable degrees of freedom. We leave the precise characterization of the learnable space with
no-crosstalk assumptions as an open question. It is also interesting to study the learnability under
other practical assumptions about the Pauli noise model, such as the sparse Pauli-Lindbladian
model [8] and the Markovian graph model [1, 15].

E. Learnability of Pauli error rates

We have been focusing on the learnability of Pauli fidelities λ. One may ask similar questions
about Pauli error rates p. It turns out that, at least in the weak-noise regime (i.e., λa close to 1),
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the learnability of p is λ are highly related. To see this, note that

pa = 1
4n

∑
b

(−1)⟨a,b⟩λb

≈ 1
4n

∑
b

(−1)⟨a,b⟩(log λb + 1)

= 1
4n

∑
b

(−1)⟨a,b⟩lb + δa,0,

(42)

which means that pa is approximately a linear function of the logarithmic Pauli fidelity l. Therefore,
one can in principle use Theorem 2 to completely decide the learnability of any Pauli error rates (with
weak-noise approximation). Furthermore, since the Walsh-Hadamard transformation is invertible,
different pa corresponds to linearly-independent function of l. This means that the number of
linearly independent equations we can obtain about the Pauli error rates is the same as the learnable
degrees of freedom of the Pauli fidelities. In Table S3, we list a basis for all the learnable Pauli
fidelities/Pauli error rates. One can see that there is an exact correspondence between these two.
We leave a fully general argument for future study.

Learnable log Pauli fidelities lII , lZI , lIX , lZX , lXZ , lY Y , lXY , lY Z ,
lIZ + lZZ , lIY + lZY , lIZ + lZY , lXI + lXX , lY I + lY X , lXI + lY X

Learnable Pauli error rates pII , pZI , pIX , pZX , pXZ , pY Y , pXY , pY Z ,
(approximately) pIZ + pZZ , pIY + pZY , pIZ + pZY , pXI + pXX , pY I + pY X , pXI + pY X

Supplementary Table S3. A complete basis for the learnable linear functions of log Pauli fidelities and Pauli
error rates (the latter is approximate) for a single CNOT gate.

S3. ADDITIONAL DETAILS ABOUT THE NUMERICAL SIMULATIONS

In this section, we provide more details about the numerical simulations mentioned in the main
text. The simulation is conducted using qiskit [16], an open-source Python package for quantum
computing. We simulate a two-qubit system where single-qubit Clifford gates are noiseless, and
CNOT is subject to amplitude damping channels on both qubits. Note that amplitude damping is
not Pauli noise, but we apply randomized compiling and will only estimate its Pauli diagonal part.
We also note that, qiskit adds the noise channel after gate by default, but our theory assume the
noise to be before gate. These two models can be easily converted between each other via

G ◦ ΛG = (G ◦ ΛG ◦ G†) ◦ G = Λ′
G ◦ G. (43)

If G is Clifford, ΛG is a Pauli channel if and only if Λ′
G is a Pauli channel. In the following, we

will be consistent with our theory and assume the noise to be before gate. Besides, we let the
measurement to have 0.3% bit-flip rate on each qubit and the state-preparation to be noiseless.

Fig. S3 shows the estimates collected using standard CB and interleaved CB (circuits shown in
Fig. 1 of main text). Compared to the true values, we see that both simulations yields accurate
predictions of the learnable Pauli fidelities.

Fig. S4 (a) calculates the physically feasible region according to the estimates in terms of
{λXX , λZZ}, using approaches discussed in the main text. Due to the special structure of the
twirled amplitude damping noise (no Z-error), the feasible region for λXX is extremely narrow. To
eliminate the effect of statistical error, we allow a smoothing parameter ε in calculating the physical
region, making the constraints to be pa ≥ −ε. Here ε is chosen to be the largest standard deviation
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Supplementary Figure S3. Numerical estimates of Pauli fidelities of a CNOT gate via standard CB (left) and
CB with interleaved gates (right), using circuits shown in Fig. 1 of main text. Each Pauli fidelity is fitted
using seven different circuit depths L = [2, 22, ..., 27]. For each depth C = 30 random circuits and 200 shots
of measurements are used. The red cross shows the true fidelities and the red dash line shows the average of
true fidelities within any two-Pauli group.

in estimating the learnable Pauli fidelities. In Fig. S4 (b)(c) we see that the true fidelity indeed
falls into the physical region and is actually close to the lower-left corner of the physical region.

Fig. S5 shows the simulation results of intercept CB. We see that, we obtain an accurate estimate
even for the unlearnable Pauli fidelities. Besides, the estimate lies inside the physically feasible
region up to a standard deviation. This shows that intercept CB should work well in resolving
the unlearnability if we do have access to noiseless state-preparation (and the method is robust
against measurement noise). Therefore, failure of this method in experiment implies a non-negligible
state-preparation error, as discussed in the main text.

S4. JUSTIFICATION FOR THE CLAIM IN SEC. S2 C

We claim in Sec. S2 C that any measurement probability generated in experiment can be
expressed as a polynomial of Pauli fidelities, and that each term in the polynomial can be learned in
a CB experiment. This is the motivation why we only care for a single monomial of Pauli fidelities.
Here we justify this claim.

Consider the most general experimental design: prepare some initial state ρ0, apply some
quantum circuit C, and conduct a POVM measurement {Ej}j . Denote the noisy realization of these
objects with a tilde. Because of noise, the probability of obtaining a certain measurement outcome
j is

Pr(j) = Tr
(
Ẽj C̃(ρ̃0)

)
= Tr

(
Ej

(
ΛM ◦ C̃ ◦ ΛS

)
(ρ0)

)
≡ Tr

(
Ejρ′) . (44)

Here ΛS , ΛM are the noise channels for state preparation and measurement, respectively. The
Pauli fidelity of them are denoted by λS

a , λM
a for Pauli operator a, respectively. We define ρ′ :=

(ΛM ◦ C̃ ◦ ΛS)(ρ0) which encodes all the information that can be extracted from a quantum
measurements. We will obtain a general formula for ρ′.

First note that a general noisy quantum circuit C̃ satisfying our assumptions can be expressed as

C̃ = C(m) ◦ G̃m ◦ · · · ◦ C(1) ◦ G̃1 ◦ C(0), (45)

where Gj ∈ G is an n-qubit Clifford gate and C(j) is the tensor product of single-qubit gates. A
crucial property for single-qubit gates is that they never change the Pauli pattern. More rigorously,
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Supplementary Figure S4. Feasible region of the learned Pauli noise model, using data from Fig. S3. (a)
Feasible region of the unlearnable degrees of freedom in terms of λXX and λZZ . (b) Feasible region of
individual Pauli fidelities. (c) Feasible region of individual Pauli errors.

one have that

C(j)(Pa) =
∑

b∼pt(a)
c

(j)
b,aPb, ∀Pa ∈ Pn, (46)

where c
(j)
b,a ∈ R, and the summation is over all Pb that have the same Pauli pattern as Pa.
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Supplementary Figure S5. The learned Pauli noise model using intercept CB. The feasible region (blue bars)
are taken from Fig. S4. Estimates of Pauli fidelities (a) and Pauli error rates (b). Each data point is fitted
using seven different circuit depths L = [2, 22, ..., 27]. For each depth C = 300 random circuits and 2000
shots of measurements are used.

Now consider the action of C̃ on an arbitrary Pauli operator Pa.

C̃(Pa) = (C(m) ◦ G̃m ◦ · · · ◦ C(1) ◦ G̃1 ◦ C(0))(Pa)

= (C(m) ◦ G̃m ◦ · · · ◦ C(1) ◦ G̃1)

 ∑
b0∼pt(a)

c
(0)
b0,aPb0


= (C(m) ◦ G̃m ◦ · · · ◦ C(1))

 ∑
b0∼pt(a)

c
(0)
b0,aλG1

b0
PG1(b0)



= (C(m) ◦ G̃m ◦ · · · ◦ C(2))

 ∑
b0∼pt(a),

b1∼pt(G1(b0))

c
(1)
b1,G1(b0)c

(0)
b0,aλG2

b1
λG1

b0
PG2(b1)


= · · ·

=
∑

b0∼pt(a),
b1∼pt(G1(b0)),

...
bm∼pt(Gm(bm−1))

c
(m)
bm,Gm(bm−1) · · · c

(1)
b1,G1(b0)c

(0)
b0,aλGm

bm−1
· · · λG2

b1
λG1

b0
Pbm .

(47)

For any initial state ρ0, we can decompose it via Pauli operators as

ρ0 = 1
2n

I +
∑
a̸=0

αaPa. (48)

Going through the state preparation noise, the quantum circuit, and the measurement noise, the
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state evolves to

ρ′ = (ΛM ◦ C̃ ◦ ΛS)( 1
2n

I +
∑
a̸=0

αaPa)

= 1
2n

I +
∑
a̸=0

αa

∑
b0∼pt(a),

b1∼pt(G1(b0)),
...

bm∼pt(Gm(bm−1))

c
(m)
bm,Gm(bm−1) · · · c

(1)
b1,G1(b0)c

(0)
b0,a λM

pt(bm)λ
Gm
bm−1

· · · λG2
b1

λG1
b0

λS
pt(a)Pbm

≡ 1
2n

I +
∑
a̸=0

αa

∑
b0∼pt(a),

b1∼pt(G1(b0)),
...

bm∼pt(Gm(bm−1))

c
(m)
bm,Gm(bm−1) · · · c

(1)
b1,G1(b0)c

(0)
b0,a Γb,aPbm .

(49)
Here we define Γb,a = λM

pt(bm)λ
Gm
bm−1

· · · λG2
b1

λG1
b0

λS
pt(a), which is a monomial of Pauli fidelities. The

measurement outcome probability Pr(j) is a linear combination of such Γb,a plus some constant.
Moreover, each Γb,a of the above form can also be learned from a simple experiment, by choosing
the initial state to be a +1 eigenstate of Pa, measurement operator to be Pbm , and C(j) to be
the product of single-qubit Clifford gates satisfying C(j)(Gj(bj−1)) = bj (which is possible because
pt(bj) = pt(Gj(bj−1))). Therefore, to completely characterize a noise model, we only need to extract
the products of Pauli fidelities in the form of Γb,a. This justifies our earlier claim.
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