Peer Review File

The learnability of Pauli noise

Open Access This file is licensed under a Creative Commons Attribution 4.0

International License, which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons license, and indicate if
changes were made. In the cases where the authors are anonymous, such as is the case for the reports of
anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear
attribution to the source work. The images or other third party material in this file are included in the
article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.




REVIEWER COMMENTS
Reviewer #1 (Remarks to the Author):

The authors ask the question, what Pauli fidelities of the noise channel of a Clifford gate are
learnable, assuming an unknown Pauli error channel on the state preparation and measurement.
They formalize the notion of unlearnability of a given Pauli fidelity as the condition that two error
models with differing values of that fidelity can result in identical measurement statistics for all
guantum circuits. Their main result is a simple graph-theoretic characterization of the learnable and
unlearnable linear functions of the (log) Pauli fidelities. This result is both novel and insightful. It builds
upon a large recent body of literature on characterizing Pauli error channels that is largely motivated
by the technique of randomized compiling.

The authors also present data from a cycle experiment run on a commercial quantum computer. They
compute estimates of the learnable Pauli fidelities and feasible regions of the unlearnable Pauli
fidelities. They furthermore show that the unlearnable Pauli fidelities become learnable under the
assumption of ideal state preparation. They analyze the data under this additional assumption and
find that the Pauli fidelity estimates are inconsistent with the previously obtained feasible regions,
demonstrating that this assumption does not hold. It is rare to see model consistency checks of this
kind in the quantum computing literature, but they are crucial for determining which assumptions can
and cannot be made, and thus which characterization methods are appropriate.

The paper is written in a clear and pedagogical style, and the proofs of the results are correct. |
strongly recommend publication. The paper and supplement contain several English grammatical
errors, so | recommend a final round of editing for grammar. A list of minor comments follows before.

Main Text

In the last row of Table 1, | was a little confused that p_XI, and p_IZ are the only “unlearnable Pauli
errors” for CNOT, since other Pauli errors individually are also unlearnable, as indicated in Fig. 4 C.
Maybe it would be clearer to label this row “unlearnable degrees of freedom” since there are only 2
unlearnable degrees of freedom for CNOT but more than two unlearnable Pauli errors.

Supplemental Information

On page 1, 2nd paragraph, the same notation pt() is used for both the pattern and the weight of a
Pauli operator.

On page 9, in lemma 2. Eq. (25), the notation dim(Z(G)) appears twice. It should be dim(Z(G)) = ...
and dim(U(G)) = ..., where Z(G) is the cycle space and U(G) is the cut space.



Reviewer #2 (Remarks to the Author):

Summary

The paper studies learnability of Pauli noise channels associated with a gate set of n-qubit Clifford
gates. Each gate G is affected by its own noise channel, which is fully characterized by the fidelities
of all n-qubit Pauli operators. The concise conclusion of the paper is that the fidelity of Pauli P,
can be learned in a state-preparation and measurement (SPAM) error free manner if and only if
G(P,) and P, have the same Pauli weight patterns, which are defined as the binary string that
indicate the locations of the non-identity terms in the Pauli. By mapping the weight patterns to
vertices and defining edges as the transitions between patterns due to the application of a gate, the
authors characterize learnability of monomial functions and consequently polynomial functions of
Pauli fidelities. By further leveraging graph theoretical results, they fully characterize the learnable
and unlearnable degrees of freedom in terms of the dimensions of the cycle and cut spaces, and
number of connected components in the graph, in the general case where all noise channels are
defined over all n qubits. For two-qubit gates, such as the CNOT gate, the authors show that
constraints on Pauli channels can be used to obtain feasible ranges on the Pauli fidelities that
cannot be resolved individually, or to obtain lower bounds on the state preparation error. In case
of ideal state preparation, it is shown that all Pauli fidelities can be learned.

Comments

The paper is well written and clearly characterizes the learnable Pauli fidelities for noisy Clifford
gate sets; a problem that has been an open up to now. My only major question concerns the
proposed intercept cycle benchmarking algorithm:

e [s there any advantage to define the expectation values over [ repeated cycles of mg appli-
cations of G? As an alternative one could simply prepare and measure Pauli P, := G(P,)
to obtain E(Py)o = )\gb)\%7 and prepare P,, apply G, and measure P, to obtain E(P,); =
)\%a)\%)\%. The ratio E(Py)1/E(Py)o is given by )\IGDa A‘Iga/A*gb. In the case of ideal state prepa-
ration we have P = P = 1, and the above ratio therefore also reduces to the desired
quantity )\IGDG. Would one of the schemes have a better sample complexity than the other? Is
there any advantage in choosing larger [ values?

Some minor comments and suggestions are as follows:



p.3, 1.1: Writing that {p,} is a “4™ dimensional” probability distribution makes it sound like
the distribution is a function of 4™ variables. Perhaps omit “4™ dimensional”, the next line
already notes that the distribution has 4™ — 1 degrees of freedom.

e p.3, 1.14: “equals A?X - XTI up to a + sign”; where does the + sign come from. If the gate
maps IX to —1X, would this not be reflected in a negative A\;x in Eq. 27

e p.3, 1.15: “and average over random Pauli sequences”; perhaps clarify that these are the
random Pauli twirl sequences. For the expectation to be of the form given by Eq. 3, it may
be necessary to twirl the readout as well.

e p.3,1-5: Strictly speaking, the single-qubit Clifford gates (v Zv/X) maps XZ to -YY and vice
versa.

e p.4,1.13: “single qubit rotation trick inapplicable”, perhaps replace “trick” by “correction” or
“tool”.

e p.4,1.-15: since there could be multiple, replace “there exists one bit” by “there exists a bit”

e p.5, Fig. 2: To avoid confusion it would help to mention that the A values are gate specific.
That is, the A;x term in the CNOT graph may not be the same as the A;x term in the SWAP
graph.

e p.6, 1.-14: replace “a set of cycle and cut basis” by “a cycle and cut basis” or, if needed, by
“a set of cycle and cut bases”.

e p.7, .11: “Interestingly, here the learnable functions of Pauli errors have the same form as
the cycle basis, i.e. the cycle space is invariant under Walsh-Hadamard transform. We leave
the proof of this observation for future work”. This sentence makes it sound like this property
holds more generally. If it only applies to CNOT and SWAP for now, replace “here” following
“Interestingly” by “for these two gates”.

e p.7,1.-4: “and there remain 2 unlearnable degrees of freedom”

In contrast to the main paper, the supplement seems to be written in a hurry and needs to be
carefully revised. Below are some of the many (minor) issues:

e It is completely beyond me why the authors would use pt(F,) to denote both the pattern
of the Pauli as well as the Hamming weight of the Pauli. Why not simply define pt for the
pattern and pw or w for the weight? Note that the current pt cannot be used interchangeably.
For instance, in Theorem 1 using the pt interpretation of weight is wrong: For P, = I X and
G(P,) = XI we have pt(G(P,)) # pt(P,) for the pattern but pt(G(FP,)) # pt(P,) for the
weight. Please rename at least one of the two functions.

e p.1, 1.-2: rephrase “p := {p,}q is called the Pauli error rates”



p-2, 1.-11: rephrase “We discuss in the main text about how to”
p.3, L.2: rephrase “in many existing research”

p-3, L5: “A Clifford gate ... are viewed as different gates”

p-3, 1.13: “is determined the Pauli channels”

p-3, 1.19: “can be describe by”

Etc. for the remainder of the supplement ...

p-5, L1: Suggest: “Recall that )\(LS/ Mis the fidelity of the SPAM noise channel for Pauli P,.”
p.8ff, “maximal” — “maximum” and “minimal” — “minimum”

p.8, Given that |E| is used in Lemma 2, it might help to define |A| = |E| = |®| - 47, or just
use |E throughout instead of |A|.

p.9, 1.3: Rephrase: “the set of all edges e = (u,v) such that u, v each belongs to one of V7,
V5”7, The way it is written now allows us to choose u € Vi and v € V7.

p.9, Eq. 25: Both expressions are for dim(Z(G)), the second probably should be dim(U(G)),
otherwise dim(Z(G)) would reduce to |E|/2.

p.12, 1.-7: Carefully rephrase “holds either pt(P) = pt(Q) or pt(P) # pt(Q) (in the latter
case, both sides equals zero)”. Maybe write that “holds when pt(P) = pt(Q), but also for
pt(P) # pt(Q), in which case both traces are zero.”



Response to referee comments for NCOMMS-22-26755

Senrui Chen, Yunchao Liu, Matthew Otten, Alireza Seif, Bill Fefferman, and Liang Jiang

We greatly appreciate both referees’ efforts in reviewing our manuscript and offering many
constructive suggestions and comments. Overall, both referees agree our manuscript is well-written
and makes meaningful contributions to the field. In the following, we present a point-to-point
response to the referees’ comments. We also attach a list of additional changes at the end of this
document. We hope these revisions address the questions raised by the reviewers.

I. RESPONSE TO REVIEWER #1

The authors ask the question, what Pauli fidelities of the noise channel of a Clifford
gate are learnable, assuming an unknown Pauli error channel on the state preparation
and measurement. They formalize the notion of unlearnability of a given Pauli fidelity
as the condition that two error models with differing values of that fidelity can result in
identical measurement statistics for all quantum circuits. Their main result is a simple
graph-theoretic characterization of the learnable and unlearnable linear functions of
the (log) Pauli fidelities. This result is both novel and insightful. It builds upon a
large recent body of literature on characterizing Pauli error channels that is largely
motivated by the technique of randomized compiling.

The authors also present data from a cycle experiment run on a commercial quantum
computer. They compute estimates of the learnable Pauli fidelities and feasible regions
of the unlearnable Pauli fidelities. They furthermore show that the unlearnable Pauli
fidelities become learnable under the assumption of ideal state preparation. They
analyze the data under this additional assumption and find that the Pauli fidelity
estimates are inconsistent with the previously obtained feasible regions, demonstrating
that this assumption does not hold. It is rare to see model consistency checks of this
kind in the quantum computing literature, but they are crucial for determining which
assumptions can and cannot be made, and thus which characterization methods are
appropriate.

The paper is written in a clear and pedagogical style, and the proofs of the results are
correct. I strongly recommend publication. The paper and supplement contain several
English grammatical errors, so I recommend a final round of editing for grammar. A
list of minor comments follows before.

Response: We thank the reviewer for the clear summary of our work and all the helpful comments.
We have addressed the list of minor comments in below and done another round of grammatical
checks.

(Main Text) In the last row of Table 1, I was a little confused that px, and p;z are
the only “unlearnable Pauli errors” for CNOT, since other Pauli errors individually are
also unlearnable, as indicated in Fig. 4 C. Maybe it would be clearer to label this row
“unlearnable degrees of freedom” since there are only 2 unlearnable degrees of freedom
for CNOT but more than two unlearnable Pauli errors.



Response: We agree with the referee on this point. We have relabeled the last row of Table 1 as
“unlearnable degrees of freedom”. To make things clearer, we add an additional row of “learnable
Pauli fidelities” and use Pauli fidelities (Axs, A7z) instead to represent the unlearnable degrees of
freedoms.

(Supplemental Information) On page 1, 2nd paragraph, the same notation pt() is used
for both the pattern and the weight of a Pauli operator.

Response: We have removed the definition of Pauli weights since it is not used anywhere in the
manuscript. Now pt(+) refers exclusively to Pauli patterns.

On page 9, in lemma 2. Eq. (25), the notation dim(Z(G)) appears twice. It should be
dim(Z(G)) = ... and dim(U(G)) = ..., where Z(G) is the cycle space and U(G) is
the cut space.

Response: We have corrected the second Z(G) to U(G).

II. RESPONSE TO REVIEWER #2

(Summary) The paper studies learnability of Pauli noise channels associated with a gate
set of n-qubit Clifford gates. Fach gate G is affected by its own noise channel, which is
fully characterized by the fidelities of all n-qubit Pauli operators. The concise conclusion
of the paper is that the fidelity of Pauli P, can be learned in a state-preparation and
measurement (SPAM) error free manner if and only if G (P,) and P, have the same
Pauli weight patterns, which are defined as the binary string that indicate the locations
of the non-identity terms in the Pauli. By mapping the weight patterns to vertices
and defining edges as the transitions between patterns due to the application of a
gate, the authors characterize learnability of monomial functions and consequently
polynomial functions of Pauli fidelities. By further leveraging graph theoretical results,
they fully characterize the learnable and unlearnable degrees of freedom in terms of
the dimensions of the cycle and cut spaces, and number of connected components in
the graph, in the general case where all noise channels are defined over all n qubits.
For two-qubit gates, such as the CNOT gate, the authors show that constraints on
Pauli channels can be used to obtain feasible ranges on the Pauli fidelities that cannot
be resolved individually, or to obtain lower bounds on the state preparation error. In
case of ideal state preparation, it is shown that all Pauli fidelities can be learned.

Response: We thank the referee for the clear and concise summary of our work.

(Comments) The paper is well written and clearly characterizes the learnable Pauli
fidelities for noisy Clifford gate sets; a problem that has been an open up to now. My
only major question concerns the proposed intercept cycle benchmarking algorithm:
Is there any advantage to define the expectation values over [ repeated cycles of my
applications of G7 As an alternative one could simply prepare and measure Pauli
Py := G (P,) to obtain E (P), = )\Isgb)\%, and prepare Py, apply G, and measure P, to
obtain E (P), = /\Ispa /\%)\]Gga. The ratio E (P,), /E (P), is given by )\]Gga )\%a/)\jsgb. In the
case of ideal state preparation we have Pf = Pbs = 1, and the above ratio therefore
also reduces to the desired quantity )\ga. Would one of the schemes have a better
sample complexity than the other? Is there any advantage in choosing larger [ values?
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FIG. 1. Numerical simulation comparing intercept CB using 6 different depths with the 1-depth method

suggested by the referee. The task is to estimate A%gOT. We set the state preparation to be perfect, so both

methods gives consistent estimate for A%20T7 thus we only compare the standard deviation of the estimator.

The circuit depths used by intercept CB is [1,2,4,8,16,32]. The total number of random circuits used for
both methods are the same. Each random circuits are measured with 2000 shots.

Response:

We thank the referee for raising this interesting question. Indeed, if we are only interested
in extracting the intercept information (i.e., E(FPy), and E(F}),), there should be no advantages
in sample complexity for choosing larger [ values and fitting the intercept compared to directly
measuring the intercept with a “depth-1” circuit (intuitively, the latter should have a better
performance). However, intercept CB allows one to simultaneously extract the intercept and
slope, which might give us more information from a single experiment. In Fig. 1, we report a
numerical simulation comparing intercept CB with 6 different circuit depths and the 1-depth
methods suggested by the referee. The two experiments uses the same total number of random
circuits N¢. That is, the 1-depth method uses all N¢ random circuits to estimate E(F;), and
E(P,), while the 6-depth intercept CB method uses N¢/6 random circuits for each depth. From
the result, we see the two methods have similar standard deviation for their estimation. However,
intercept CB also gives estimate for the slope, which represent the geometric mean of some Pauli
fidelities. From a theoretical view point, as long as one does not make the circuit too deep and
decay too severe, estimating the intercept from multiple depths should not have a sample complexity
much worse than the 1-depth method (thinking about the extreme case no decay happens at all.
In that case, estimating the intercept at different circuit depths has no difference). Therefore, we
think it would not hurt to use intercept CB which always yields more information.

We do agree that it could be more efficient to just do a 1-depth experiment if one has already
obtained the slope information from other experiments. In the main text, we have added the
following discussion: We note that, instead of fitting an exponential decay in I, one could in principle
just take | = 0 and estimate the ratio of E(Py), and E(Fy),, which also yields a consistent estimate
for Ag - )\ISDQ/)\%). If one has already obtained all the learnable information from previous experiments,



this could be a more efficient approach. However, if one has not done those experiments, the
intercept CB with multiple depths can estimate the intercept (unlearnable information) and slope
(learnable information) simultaneously, which is more sample efficient.

We hope the above explanation and modification have addressed the referee’s concern. We have
thanked the referee for this suggestion in our acknowledgement.

Some minor comments and suggestions are as follows:

p.3, L1: Writing that {p,} is a “4™ dimensional” probability distribution makes it
sound like the distribution is a function of 4" variables. Perhaps omit " 4" dimensional",
the next line already notes that the distribution has 4 — 1 degrees of freedom.

Response: We thank the referee for all the helpful suggestions and comments hereafter. We agree
with referee and have omitted the “4™ dimensional”.

p.3, 1.14: “equals A3y - XT up to a + sign”; where does the + sign come from. If the
gate maps I X to —IX, would this not be reflected in a negative A\;x in Eq. 27

Response: Here, the sign comes from the layers of random Pauli gates (e.g., ZXZ = —X). Since
this is a property of Pauli gates and has nothing to do with the noise of CNOT, it should not be
reflected in A7y in Eq. (2). We just need to account for the sign during post-processing in order
to obtain a correct estimate of A\;x. We’'ve modified the sentence to make things clearer: ... up
to a + sign (which comes from the random Pauli gates and can always be accounted for during
post-processing).

p-3, 1.15: "and average over random Pauli sequences"; perhaps clarify that these are
the random Pauli twirl sequences. For the expectation to be of the form given by Eq.
3, it may be necessary to twirl the readout as well.

Response: We have added the word “twirling” in order to make the statement clearer. Regarding
the second point raised by the referee, we would like to point out that the circuits we used in FIG.
1 already effectively twirl the readout (since there is an layer of random Pauli gates right before the
readout). Actually, it is rigorously proved that this type of circuits yield expectation value of the
form given by Eq. (3), according to Theorem 1 in the Supplementary Information of Ref. [1]. We
now explicitly cite this theorem in the main text.

p.3, 1.-5: Strictly speaking, the single-qubit Clifford gates (v/Zv/X) maps XZ to -YY
and vice versa.

Response: We agree with the referee on this. However, based on the same logic as above, this
minus sign has nothing to do with the noise channel associated with CNOT, thus should not be
reflected in either Axz or A\yy. We would account for the sign (as well as the sign induced by
random Pauli gates) during post-processing to ensure correct estimates. We modify the sentence
as follows: ... VZ @ VX that also maps XZ to YY and vice versa (up to a minus sign that can
always be accounted for during post-processing).

p-4, 1.13: "single qubit rotation trick inapplicable", perhaps replace "trick" by "correction"
or "tool".

Response: We have changed the “trick” to “tool”.



p-4, 1.-15: since there could be multiple, replace "there exists one bit" by "there exists
a bit"

Response: We agree and have done the replacement.

p-5, Fig. 2: To avoid confusion it would help to mention that the A values are gate
specific. That is, the A\;x term in the CNOT graph may not be the same as the Arx
term in the SWAP graph.

Response: We find it too crowded to add superscripts of “CNOT” or “SWAP” to all A, so we only
do this for two specific A in the right-most graph of Fig. 2 to show the idea. We also now explicitly
mention in the caption that the A\ values are gate specific. We hope this is sufficient to clear any
confusion.

p.6, 1.-14: replace "a set of cycle and cut basis" by "a cycle and cut basis" or, if needed,
by "a set of cycle and cut bases'.

Response: We agree “a cycle and cut basis” is a more precise statement and have changed.

p.7, 1.11: "Interestingly, here the learnable functions of Pauli errors have the same form
as the cycle basis, i.e. the cycle space is invariant under Walsh-Hadamard transform.
We leave the proof of this observation for future work". This sentence makes it sound
like this property holds more generally. If it only applies to CNOT and SWAP for now,
replace "here" following "Interestingly" by "for these two gates'.

Response: We agree that this is only rigorously true for CNOT and SWAP and have changed
“here” to “for these two gates” as the referee suggested. However, we have tried other Clifford gates
and find this seems to be a generic phenomenon. We added the following sentences to the main
text: We calculate the learnable Pauli errors for up to 4-qubit random Clifford gates and this seems
to be true in general. We leave a rigorous investigation into this phenomenon for future work.

p.7,1.-4: "and there remain 2 unlearnable degrees of freedom"
Response: We agree and have corrected the typo.

In contrast to the main paper, the supplement seems to be written in a hurry and
needs to be carefully revised. Below are some of the many (minor) issues:

It is completely beyond me why the authors would use pt (P,) to denote both the
pattern of the Pauli as well as the Hamming weight of the Pauli. Why not simply
define pt for the pattern and pw or w for the weight? Note that the current pt cannot
be used interchangeably. For instance, in Theorem 1 using the pt interpretation of
weight is wrong: For P, = I X and G (P,) = XI we have pt (G (P,)) # pt (P,) for the
pattern but pt (G (P,)) # pt (P,) for the weight. Please rename at least one of the two
functions.

Response: We apologize for the confusion. This is a typo. Since the definition of Pauli weight is
actually not used anywhere in the manuscript, we have removed it. Now pt(-) refers exclusively to
Pauli patterns and there should be no more ambiguity.

p.1, 1.-2: rephrase " p := {p,}, is called the Pauli error rates'



Response: We change “is” to “are”. Similarly for the definition of Pauli fidelities after this.
p.2, L.-11: rephrase "We discuss in the main text about how to"

Response: We have rephrased this sentence as “ As shown in the main text, the learnable information
about Pauli noise can be extracted in a much more practical setting using cycle benchmarking [1]
and its variant.”

p-3, L.2: rephrase "in many existing research"

Response: We have rephrased this sentence as “Such approximation is widely adopted in the
literature [1, 2] with slight modifications.”

p-3, L.5: "A Clifford gate ... are viewed as different gates"

Response: For grammatical correctness, we changed the sentence to “A Clifford gate acting on a
different (ordered) subset of qubits is viewed as a different gate and can thus have a different noise
channel.” To make things clearer, we add an example: “(e.g., CNOT12, CNOTs1, CNOTs3 have
different noise channels.)”

p-3, L.13: "is determined the Pauli channels'

14

Response: We have corrected the typo: “.. is determined by the Pauli channels ...”
p-3, 1.19: "can be describe by"
Response: We have corrected the typo: “describe” +— “described”.

Etc. for the remainder of the supplement ...

Response: We have ran another round of grammatical check for the supplemental material and
corrected several typos.

p.5, 1.1: Suggest: "Recall that )\f/ M is the fidelity of the SPAM noise channel for Pauli

P,
Response: We have changed as suggested.

p.8ff, "maximal" — "maximum" and "minimal" — "minimum"
Response: We have changed as suggested.

p.8, Given that |E| is used in Lemma 2, it might help to define |A| = |E| = |&] - 4", or
just use | F| throughout instead of |A|.

Response: We prefer keeping both |E| and |A| since they have different meanings - the number of
edges and the number of Pauli fidelities with gate noise. We add |E| = |A| = |&] - 4™ as suggested
right after Definition 3.

p.9, 1.3: Rephrase: "the set of all edges e = (u, v) such that u, v each belongs to one of
Vi, Vo ". The way it is written now allows us to choose u € V; and v € V.



Response: We change this sentence to “the set of all edges e = (u,v) such that one of u,v belongs
to V1 and the other belongs to Vo.”

p.9, Eq. 25: Both expressions are for dim(Z(G)), the second probably should be
dim(U(G)), otherwise dim(Z(G)) would reduce to |E|/2.

Response: We agree and have corrected the second Z(G) to U(G).

p.12, 1.-7: Carefully rephrase "holds either pt(P) = pt(Q) or pt(P) # pt(Q) (in the
latter case, both sides equals zero)". Maybe write that "holds when pt(P) = pt(Q), but
also for pt(P) # pt(Q), in which case both traces are zero."

Response: We re-organize this paragraph as below: We see that Tr(P - U'(Q)) = Tr(P - U(Q)) if
pt(P) = pt(Q). A crucial observation is that a product of single-qubit unitaries can never change the
pattern of the input Pauli. More precisely, U(Q) is a linear combination of Pauli operators with the
same pattern as Q. Therefore, if pt(P) # pt(Q), we would have Tr(P-U'(Q)) = Tr(P - U(Q)) = 0.

Combining the two cases, we conclude U' = U, i.e., the single-qubit unitaries are still noiseless in

N’

III. LIST OF ADDITIONAL CHANGES

1. We rescaled the font size of some figures to improve the visual effects.

2. According to Nature Communications’ data presentation policy, we add the following dis-
claimer to the caption of Fig. 3: Throughout this paper, the error bar represents the standard
error.

3. We corrected some typos and made some minor modifications (see the diff document for
details).
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REVIEWERS' COMMENTS
Reviewer #2 (Remarks to the Author):

The authors have thoroughly addressed all my previous comments and carefully revised the
manuscript. The manuscript looks very good now and | have no additional comments to make.
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