OMTN, Volume 31

Supplemental information

Chemically modified small interfering

RNA targeting Hedgehog signaling

pathway for rheumatoid arthritis therapy

Lang Lin, Shangling Zhu, Hongyu Huang, Lin-Ping Wu, and Jianlin Huang

siRNA	A Strand Sequence (5'-3')		
si-h-1	S	CUACGUCAAUGCGUGCUUCdTdT	
	AS	GAAGCACGCAUUGACGUAGdTdT	
si-h-2	S	CGUCAAUGCGUGCUUCUUUdTdT	
	AS	AAAGAAGCACGCAUUGACGdTdT	
si-h-3	S	CGAGGAGUCAUGACUCUGUdTdT	
	AS	ACAGAGUCAUGACUCCUCGdTdT	
si-h-4	S	UGACUCUGUUCUCCAUCAAdTdT	
	AS	UUGAUGGAGAACAGAGUCAdTdT	
si-h-5	S	UCUUUGUCAUCGUGUACUAdTdT	
	AS	UAGUACACGAUGACAAAGAdTdT	
aihG	c		

Table S1. The sequences of naked siRNA targeting SMO mRNA.

si-h-6	S	UGCCCAAGUGUGAGAAUGAdIdI
	AS	UCAUUCUCACACUUGGGCAdTdT
si-h-7	S	UCGCUACCCUGCUGUUAUUdTdT
	AS	AAUAACAGCAGGGUAGCGAdTdT
si-h-8	S	GCCACUUCUACGACUUCUUdTdT
	AS	AAGAAGUCGUAGAAGUGGCdTdT
si-h/m-1	S	CAUGCCCAAGUGUGAGAAUdTdT
	AS	AUUCUCACACUUGGGCAUGdTdT
si-h/m-2	S	AGGACAUGCACAGCUACAUdTdT
	AS	AUGUAGCUGUGCAUGUCCUdTdT
si-h/m-3	S	UGGGAGGCUACUUCCUCAUdTdT
	AS	AUGAGGAAGUAGCCUCCCAdTdT
si-h/m-4	S	GCCUGGGCAUUUUUGGCUUdTdT
	AS	AAGCCAAAAAUGCCCAGGCdTdT
si-NC	S	UUCUCCGAACGUGUCACGUdTdT
	AS	ACGUGACACGUUCGGAGAAdTdT

Abbreviations: siRNA, small interfering RNA; SMO, Smoothened; mRNA, messenger RNA; NC, negative control; S, sense strand; AS, antisense strand; A, adenine; U, uracil; G, guanine; C, cytosine; dT, deoxy thymine.

Table S2. The sequences of chemically modified siRNA.

siRNA	Strand	Sequence (5'-3')
si-S1A1	S	mAmGmGACAUGCACAGCUAmCmAmUdTdT
	AS	phos-mAmUmGUAGCUGUGCAUGUmCmCmUdTdT
si-S1A2	S	mAmGmGACAUGCACAGCUAmCmAmUdTdT
	AS	phos-mAmUmGUAGCUmGfUmGCAUGUmCmCmUdTdT
si-S1A3	S	mAmGmGACAUGCACAGCUAmCmAmUdTdT
	AS	phos-mAmUmGUAmGfCfUmGfUmGCmAUmGUmCmCmUdTdT
si-S1A4	S	mAmGmGACAUGCACAGCUAmCmAmUdTdT
	AS	phos-mAmUmGfUmAmGfCfUmGfUmGfCmAfUmGfUmCmCmUdTdT
si-S2A1	S	mAmGmGACAUGfCmAfCAGCUAmCmAmUdTdT
	AS	phos-mAmUmGUAGCUGUGCAUGUmCmCmUdTdT
si-S2A2	S	mAmGmGACAUGfCmAfCAGCUAmCmAmUdTdT
	AS	phos-mAmUmGUAGCUmGfUmGCAUGUmCmCmUdTdT
si-S2A3	S	mAmGmGACAUGfCmAfCAGCUAmCmAmUdTdT
	AS	phos-mAmUmGUAmGfCfUmGfUmGCmAUmGUmCmCmUdTdT
si-S2A4	S	mAmGmGACAUGfCmAfCAGCUAmCmAmUdTdT
	AS	phos-mAmUmGfUmAmGfCfUmGfUmGfCmAfUmGfUmCmCmUdTdT
si-S3A1	S	mAmGmGAfCAfUGfCmAfCmAmGfCUAmCmAmUdTdT
	AS	phos-mAmUmGUAGCUGUGCAUGUmCmCmUdTdT
si-S3A2	S	mAmGmGAfCAfUGfCmAfCmAmGfCUAmCmAmUdTdT
	AS	phos-mAmUmGUAGCUmGfUmGCAUGUmCmCmUdTdT
si-S3A3	S	mAmGmGAfCAfUGfCmAfCmAmGfCUAmCmAmUdTdT
	AS	phos-mAmUmGUAmGfCfUmGfUmGCmAUmGUmCmCmUdTdT
si-S3A4	S	mAmGmGAfCAfUGfCmAfCmAmGfCUAmCmAmUdTdT
	AS	phos-mAmUmGfUmAmGfCfUmGfUmGfCmAfUmGfUmCmCmUdTdT
si-S4A1	S	mAmGmGmAfCmAfUmGfCmAfCmAmGfCfUmAmCmAmUdTdT
	AS	phos-mAmUmGUAGCUGUGCAUGUmCmCmUdTdT
si-S4A2	S	mAmGmGmAfCmAfUmGfCmAfCmAmGfCfUmAmCmAmUdTdT
	AS	phos-mAmUmGUAGCUmGfUmGCAUGUmCmCmUdTdT
si-S4A3	S	mAmGmGmAfCmAfUmGfCmAfCmAmGfCfUmAmCmAmUdTdT
	AS	phos-mAmUmGUAmGfCfUmGfUmGCmAUmGUmCmCmUdTdT
si-S4A4	S	mAmGmGmAfCmAfUmGfCmAfCmAmGfCfUmAmCmAmUdTdT
	AS	phos-mAmUmGfUmAmGfCfUmGfUmGfCmAfUmGfUmCmCmUdTdT

Abbreviations: siRNA, small interfering RNA; S, sense strand; AS, antisense strand; A, adenine; U, uracil; G, guanine; C, cytosine; dT, deoxy thymine; m, 2'-O-methyl; f, 2'-Fluoro; phos-, 5'-Phosphate.

Table S3. The sequences of chemically modified siRNA conjugated with cholesterol.

siRNA	Strand	Sequence (5'-3')
si-S1A3-Chol	S	mAmGmGACAUGCACAGCUAmCmAmUdTdT-Chol
	AS	phos-mAmUmGUAmGfCfUmGfUmGCmAUmGUmCmCmUdTdT
si-S1A4-Chol	S	mAmGmGACAUGCACAGCUAmCmAmUdTdT-Chol
	AS	phos-mAmUmGfUmAmGfCfUmGfUmGfCmAfUmGfUmCmCmUdTdT
si-Scr-Chol	S	mUmAmCAUCGACACGUACAmGmGmAdTdT-Chol
	AS	phos-mUmCmCUGmUfAfCmGfUmGUmCGmAUmGmUmAdTdT

Abbreviations: siRNA, small interfering RNA; S, sense strand; AS, antisense strand; Scr, scrambled siRNA; A, adenine; U, uracil; G, guanine; C, cytosine; dT, deoxy thymine; m, 2'-O-methyl; f, 2'-Fluoro; phos-, 5'-Phosphate; -Chol, 3'-Cholesterol.

Table S4. The expression of top 100 similar transcripts.

Number	Gene symbol	Accession	matches	log₂FoldChange	P value	adjusted <i>P</i> value
1	SMO	NM_005631.5	19	-1.581578228	4.71E-28	4.32E-26
2	GRIN2D	NM_000836.4	17	-0.337664881	0.364320202	0.565037153
3	GRIA2	NM_001083619.3	15	1.653186782	0.547566006	1
4	UGGT1	NM_020120.4	14	-0.081736214	0.248417371	0.437435049
5	WDFY4	NM_001394531.1	14	-0.527920958	0.77526486	1
6	UBE2G1	NM_003342.5	14	-1.233954249	1.68E-30	1.8E-28
7	PCLO	NM_033026.6	13	1.596328256	0.596458807	1
8	MOB3B	NM_024761.5	13	-2.031495538	0.245266661	1
9	NDUFAF6	NM_152416.4	13	0.19535221	0.281633821	0.476792989
10	NUDT21	NM_007006.3	13	-0.362331723	0.000740126	0.004156914
11	HUWE1	NM_031407.7	13	0.029165164	0.733056968	0.856240949
12	PIGS	NM_033198.4	13	-0.313745649	0.000243344	0.001556904
13	PLEKHA2	NM_021623.2	13	0.539724833	0.0000238	0.00019514
14	GRK6	NM_001004106.3	13	0.057073887	0.629127014	0.787626826
15	TMEM266	NM_152335.3	13	-0.478179458	0.33263856	0.533079197
16	FBXO36	NM_174899.5	13	-0.019803818	0.940999004	0.970361153
17	OTUD7A	NM_001382637.1	13	0.249975011	0.813253682	1
18	RFFL	NM_001017368.2	13	0.423830891	0.00588671	0.024457785
19	SLC26A5		13	ND	ND	ND
20	KBTBD7		13	-0.914605949	0.0000134	0.000116335
21	ENTPD6	 NM_001247.5	13	-0.03950115	0.650585546	0.802077041
22	INKA1	NM_203370.2	13	0.119451686	0.621958318	0.782696773
23	TRIB3		13	-0.139729939	0.053455602	0.145699231
24	PAX1	NM 001257096.2	13	-1.854264571	0.086947923	1
25	ACTR5		12	0.020331516	0.835582489	0.918039459
26	SHISAL2A	 NM_001042693.3	12	ND	ND	ND
27	TPD52L1	NM_003287.4	12	-0.196756897	0.02424368	0.078446261
28	EDEM1		12	0.280014938	0.001119633	0.005955408
29	CD276	NM_001024736.2	12	-0.124490963	0.041773671	0.120181868
30	SHISAL2B	NM_001164442.2	12	2.641930609	0.407897946	1
31	BMP1	NM_006129.5	12	0.031500623	0.686169287	0.825591286
32	PLXNC1	NM_005761.3	12	-1.456652731	0.000808984	0.004487005
33	COMMD8	NM_017845.5	12	0.192966542	0.15346262	0.315554339
34	HERC1	NM_003922.4	12	0.163195221	0.124550761	0.271919425
35	TMEM9B	NM_020644.3	12	-0.349271642	0.000203291	0.00133031
36	NPAS2	NM_002518.4	12	-0.549699535	0.00000422	0.0000404
37	STK32C	NM_173575.4	12	-0.042943503	0.781519114	0.886442541
38	SPAG9	NM_001130528.3	12	0.341465239	0.0000131	0.000113954
39	CCDC71	NM_022903.4	12	-0.169468693	0.193680428	0.370808673
40	CCN4	NM_003882.4	12	-1.172069865	6.08E-35	8.89E-33
41	NUDT3	NM_006703.4	12	0.209764731	0.224923759	0.409201619
42	PAPPA	NM_002581.5	12	-0.158702353	0.236588574	0.423808563
43	CNOT1	NM_016284.5	12	0.008390124	0.928283521	0.963946975
44	PLB1	NM_153021.5	12	-0.054391022	0.911084019	0.956673486
45	IKZF3	NM_012481.5	12	ND	ND	ND
46	KDM4D	NM_018039.3	12	-0.131656502	0.845587886	1
47	TRIOBP	NM_001039141.3	12	0.70236634	8.82E-28	7.96E-26
48	CAPN2	NM_001748.5	12	0.582651226	1.79E-24	1.17E-22
49	CATSPERD		12	1.976982283	0.447152159	1
50	PPP1R12A	NM_002480.3	12	-0.292016359	0.001065143	0.00570012

51	TOMM22	NM_020243.5	12	0.595599724	0.00000117	0.0000125
52	RHBDD1	NM 001167608.3	12	-0.044719417	0.679061475	0.820774924
53	SLC25A39		12	0.023570839	0.801141988	0.898724696
54	VARS1	NM_006295.3	12	ND	ND	ND
55	RPUSD4	NM_032795.3	12	-0.22326424	0.08380885	0.203321632
56	DUSP3	 NM_004090.4	12	0.32148802	0.000834723	0.004614324
57	PTPRF	 NM_002840.5	12	0.381352771	0.0000215	0.000177797
58	SORCS3	NM 014978.3	12	ND	ND	ND
59	XPNPEP3	NM 022098.4	12	-0.962206924	9.51E-12	2.17E-10
60	UTP25	NM 014388.7	12	0.182366767	0.102135193	0.235260099
61	SPIRE2	NM 032451.2	12	-0.079166663	0.713131575	0.84390253
62	FRMD1	NM 024919.6	12	ND	ND	ND
63	UBR2	NM_001363705.2	12	0.280956048	0.003939603	0.017561661
64	FLNB	NM 001457 4	12	0 443591128	0.00000017	0.00000209
65	SORCS2	NM 020777.3	12	-0 124300743	0 292467351	0 489429479
66	SIKF1	NM_025073.3	12	0.051177396	0.602546478	0 767784905
67	54M227Δ	NM_001013647.2	12	-0 527534496	0.083663697	0 20313464
68	BICC1	NM_001080512.3	12	-0 640274508	1 13E-17	4 54E-16
69	CDH22	NM 021248 3	12	ND		
70	CTPC	NM 0072723	12	1 067/20765	0.287/363/2	1
70	DTTN	NM 173630 /	12	0 12/187768	0.207430342	1
70		NM_013231.6	12	0.008250767	0.0070000010	0.020323312
72		NM_002645.4	12	0.609927162	0.220004107	0.413193401
73		NM 001318525.2	12	0.148002416	0.000000110	0.00000149
74	CVD11D1	NM 000407 4	12	-0. 140992410	0.222300379	0.400477970 ND
75		NM 022409.2	12	1 742646521	ND 0.665720629	1
70		NIM_032496.3	12	-1.743040321	0.000729020	1
70		NIVI_014415.4	12	-0.144700100	0.210312934	0.400791064
70	UDEZLJ	NIVI_001355247.2	12	-0.723490779	0.019994774	1
79	ACTR5	NIM_005735.4	12	0.13426405	0.007044505	0.739704983
80	SF3B1	NM_012433.4	12	-0.08260555	0.227841535	0.413099489
81	HELLS	NM_018063.5	12	-1.722568363	1.52E-16	5.53E-15
82	PIK3C2G	NM_001288772.2	12	ND	ND	ND
83	RAX2	NM_001319074.4	12	ND		ND
84	SERPINA9	NM_175739.4	12	1.17786226	0.443888454	1
85	MMAA	NM_172250.3	12	-0.190040075	0.263013942	0.454478907
86	CASP10	NM_032977.4	12	-0.213849221	0.693835672	0.83052456
87	SH3TC2	NM_024577.4	12	0.40258154	0.335383452	0.536038683
88	CCND1	NM_053056.3	12	0.750302999	4.89E-35	7.22E-33
89	TENM1	NM_001163278.2	12	1.985323203	0.447382052	1
90	TTN	NM_001267550.2	12	0.566895677	0.002445276	0.011678462
91	TDRD1	NM_001395205.1	12	2.150231711	0.589919457	1
92	MACF1	NM_001394062.1	12	0.154639839	0.080470033	0.196983247
93	NTRK3	NM_001012338.3	12	-0.052478469	0.954039881	1
94	TNS1	NM_001387777.1	12	0.01326558	0.882843708	0.943690222
95	PAIP2B	NM_020459.1	12	0.125788922	0.853087671	1
96	COPA	NM_004371.4	11	0.158176758	0.012685144	0.046075281
97	MUC6	NM_005961.3	11	ND	ND	ND
98	LYPLA2	NM_007260.3	11	0.445295574	0.0000689	0.00050934
99	SOX11	NM_003108.4	11	0.040000636	0.948194183	0.974650859
100	PHF3	NM_001370348.2	11	0.192480682	0.075094142	0.1875782

Abbreviations: No. of matches, the number of matched sequences between si-S1A3-Chol and similar transcripts; FoldChange, the fold change of transcripts' reads between si-S1A3-Chol versus blank control; ND, not detected in RNA-seq data.

Table S5. Summary of plasma pharmacokinetic parameters for si-S1A3-Chol in rats following single IV or IA administration.

Pharmacokinetics	sense strand			antisense strand		
parameters	IV	IA		IV	IA	
C _{max} (nmol/L)	49.53 ± 25.14	2.81 ± 1.13	3	1.83 ± 11.24	0.37 ± 0.11	
t _{max} (h)	0.08 ± 0.00	0.28 ± 0.12	(0.08 ± 0.00	0.42 ± 0.08	
AUC (nmol/L*h)	23.58 ± 5.69	3.15 ± 0.62	1	2.67 ± 3.23	1.94 ± 0.30	

Abbreviations: IV, intravenous; IA, intra-articular; SEM, standard error of mean; C_{max} , the maximum measured concentration; t_{max} , the time to reach the maximum measured concentration; AUC, area under the concentration-time profile from time zero to the last time point. Data were presented as mean ± SEM.

Table S6. The primer sequences used for qPCR analysis.

Target gene	Primer	Sequence (5'-3')				
GAPDH	Forward	CCCATGGCAAATTCCATGGCACCG				
	Reverse	GTCATGGATGACCTTGGCCAGGGG				
SMO	Forward	CATCAAGTTCAACAGTTCAGGC				
	Reverse	AATAACAGCAGGGTAGCGATTC				
Gapdh	Forward	CATCACTGCCACCCAGAAGACTG				
	Reverse	ATGCCAGTGAGCTTCCCGTTCAG				
Smo	Forward	GAGGCTACTTCCTCATCAGAGG				
	Reverse	GCTGAAGGTGATGAGCACAAAGC				
si-S1A3-Chol-S	RT	miR8006091 (Ribobio)				
	Forward	miR8006092 (Ribobio)				
	Reverse	ssD089261711 (Ribobio)				
si-S1A3-Chol-AS	RT	miR8006129 (Ribobio)				
	Forward	miR8006130 (Ribobio)				
	Reverse	ssD089261711 (Ribobio)				

Abbreviations: qPCR, quantitative real-time polymerase chain reaction; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; SMO, Smoothened; siRNA, small interfering RNA; S, sense strand; AS, antisense strand; RT, reverse transcription; A, adenine; T, thymine; G, guanine; C, cytosine.

Figure S1. The morphological characters and surface molecules expression of RA-FLSs.

(A) The primary cell crawled out from synovial tissues within seven days. Scale bar, 200 µm. (B) RA-FLSs at passage three were characterised as spindle cell morphology and woven shape under an optical microscope. Scale bar, 200 µm. (C) The surface molecules of RA-FLSs at passage three were characterised by flow cytometry. Isotype-matched antibodies were used as methodologic controls, respectively. The high rate of CD55 and CD90, and the negative staining of CD14 and CD68, indicate the high purity of RA-FLSs used in the study.

Homo sapiens NM_005631.5	11 50	1294 1323 1326		1780 1290		\sim
	NA h/m-1 h-6	h/m-2 h-7 h-1 h-2	h-5	h/m-3 h-3 h-4	htm.4 h.8	
Mus musculus \sim NM_176996.4 \sim	13	129		100		\sim

Figure S2. The target sites of anti-SMO siRNAs.

The target sites of anti-SMO siRNAs against the SMO mRNA coding sequences in Homo sapiens (blue) and Mus musculus (red).

Figure S3. Chemical modifications patterns of si-h/m-2.

Chemical modifications including 2'-O-methyl, 2'-fluoro, and 5'-phosphate were introduced to different sites of the sense strand (called sense strand 1 to 4) and antisense strand (called antisense strand 1 to 4) of si-h/m-2. Schematic diagrams of naked siRNA and chemically modified siRNAs were shown.

Figure S4. Chemical modifications enhance the stabilities of siRNA.

The agarose gel electrophoresis showed the stability of chemically modified siRNA incubated in human serum for the indicated time. The si-h/m-2 (naked siRNA) was used as a control. The percentages of intact siRNA after incubating for the indicated time were shown in the line chart (n = 1).

Figure S5. Chemically modified siRNAs inhibit SMO expression with high efficiency in murine FLSs.

(A) Comparison of silencing efficiency between naked siRNA and chemically modified siRNAs. Relative Smo mRNA expression was quantified by qPCR after murine FLSs were transfected with naked siRNA or chemically modified siRNAs (50 nM) for 48 h and shown as fold change versus si-NC (50 nM) (n = 4). (B) Representative western blot of SMO protein after murine FLSs were transfected with si-h/m-2, si-S1A3, or si-S1A4 (50 nM) for 72 h. GAPDH was used as a loading control. Relative expression was calculated as the ratio of SMO/GAPDH and presented as fold change versus si-NC (50 nM) (n = 6). Statistics: Data were presented as mean \pm SD; ns P > 0.05, **P < 0.01 versus si-NC group by one-way ANOVA with Dunnett's test for multiple comparisons.

Figure S6. Cholesterol-conjugated chemically modified siRNAs inhibit SMO mRNA expression without the transfection reagent.

Concentration dependence of si-S1A4-Chol in the silence of SMO mRNA expression was determined by qPCR after RA-FLSs were transfected with si-S1A4-Chol at indicated concentrations without any transfection reagent for 48 h, si-S1A4 (50 nM) transfected with transfection reagent was served as the positive control, and relative expression was shown as fold change versus si-NC (50 nM) (n = 4). Statistics: Data were presented as mean \pm SD; ***P* < 0.01, *****P* < 0.0001 versus si-NC group by one-way ANOVA with Dunnett's test for multiple comparisons.

Figure S7. Chemical modifications enhance the stabilities of siRNA in synovial fluids.

The representative agarose gel electrophoresis showed the stability of cholesterol-conjugated chemically modified siRNAs incubated in human serum and rheumatoid arthritis synovial fluids for the indicated time. The percentages of intact siRNA after incubating for the indicated time were shown in the line chart (n = 3).

Figure S8. Chemically modified siRNAs inhibit the activity of Hedgehog signalling pathway in RA-FLSs. (A) The SMO protein level was over-expressed in RA-FLSs compared with FLSs from healthy control, and was reduced in RA-FLSs treating with si-S1A3-Chol (800 nM) for 72 h. GAPDH was used as a loading control. Relative expression was calculated as the ratio of protein/GAPDH and presented as fold change versus si-Scr-Chol (n = 6). (B) The inhibiting effect on hedgehog signalling pathway after si-S1A3-Chol treatment. Representative western blot of proteins in total protein after RA-FLSs were treated with si-Scr-Chol or si-S1A3-Chol (800 nM) for 72 h. GAPDH was used as a loading control. (C) The inhibiting effect on cell cycle pathway after si-S1A3-Chol treatment. Representative western blot of proteins in total protein after RA-FLSs were treated with si-Scr-Chol or si-S1A3-Chol (800 nM) for 72 h. GAPDH was used as a loading control. (C) The inhibiting effect on cell cycle pathway after si-S1A3-Chol (800 nM) for 72 h. GAPDH was used as a loading control. (C) The inhibiting effect on cell cycle pathway after si-S1A3-Chol (800 nM) for 72 h. GAPDH was used as a loading control. (C) The inhibiting effect on cell cycle pathway after si-S1A3-Chol (800 nM) for 72 h. GAPDH was used as a loading control. (C) The inhibiting effect on cell cycle pathway after si-S1A3-Chol (800 nM) for 72 h. GAPDH was used as a loading control. (C) The inhibiting effect on cell cycle pathway after si-S1A3-Chol (800 nM) for 72 h. GAPDH was used as a loading control. Relative expression was calculated as the ratio of protein/GAPDH and presented as fold change versus si-Scr-Chol (n = 6).

(A) The impact on cell viability was evaluated by CCK-8 assay after RA-FLSs treated with si-Scr-Chol (800 nM) or si-S1A3-Chol at indicated concentration for 48 h, and shown as percentages of si-Scr-Chol (n= 3). (B) The effect of si-S1A3-Chol on cell proliferation was determined by EdU assay. Proliferative RA-FLSs were stained with EdU (red signal). Cell nuclei are stained with Hoechst 33342 (blue signal). The percentages of EdU positive cells were detected by confocal microscope after RA-FLSs treated with si-Scr-Chol or si-S1A3-Chol (800 nM) for 48 h and shown in the bar graph (n = 6). Scale bar, 50 μ m. (C) The effect of si-S1A3-Chol on cell apoptosis was determined by Annexin V/PI assay. The percentages of Annexin V positive cells were detected by flow cytometry after RA-FLSs treated with si-Scr-Chol or si-S1A3-Chol (800 nM) for 48 h and shown in the bar graph (n = 6). Statistics: Data were presented as mean ± SD; ns *P* > 0.05, *****P* < 0.0001 versus si-Scr-Chol group by one-way ANOVA with Dunnett's test for multiple comparisons.

Figure S10. RNA-seq reveals the mechanisms and off-target effects of si-S1A3-Chol on RA-FLSs.

(A) Volcano plot and (B) heatmap plot revealed the differential genes expression after RA-FLSs treated with si-S1A3-Chol (800 nM) for 48 h. Genes with an adjusted *P*-value less than 0.05 and absolute fold change of 2 were considerated as differentially expressed. (C) GO enrichment analysis, (D) KEGG pathway enrichment analysis, and (E) gene set enrichment analysis were performed to determine the differential genes enrichment and clarify the regulation mechanism of si-S1A3-Chol treatment in RA-FLSs. (F) Volcano plot showed the expression of top 100 similar transcripts in RA-FLSs treating with si-S1A3-Chol (800 nM) for 48 h. The down-regulated genes were label in red.

Figure S11. Intra-articular injection reduces the amount of si-S1A3-Chol in blood circulation.

(A) The schematic diagram of siRNA pharmacokinetics studies in SD rats. SD rats were injected with single dose si-S1A3-Chol (25 nmol/kg dose of body weight) intravenously or intra-articularly, and the plasma samples were collected at indicated time points. (B) The concentration of sense strand (left) and antisense strand (right) of siRNA in plasma from rats with the si-S1A3-Chol administrated by intravenous injection or intra-articular injection (n = 3).

Figure S12. Cholesterol-conjugated chemically modified siRNA alleviates the gait dysfunction in CIA mice.

(A) The schematic diagram of a complete stride phase in gait analysis. A full stride comprised braking, propulsion, stance and swing phases. (B) The effect of si-S1A3-Chol on stride frequency, braking duration, propulsion duration, stance duration, and swing duration of CIA mice were measured in gait analysis (n = 6). Statistics: Data were presented as mean \pm SD; ns P > 0.05, *P < 0.05, *P < 0.01, ****P < 0.001 versus between groups by one-way ANOVA with Dunnett's test for multiple comparisons.

Movie S1. Cholesterol-conjugated chemically modified siRNA reverses the gait dysfunction in CIA mice.

The motor function of CIA mice was assessed by gait analysis. Representative ventral images were captured, and the digital footprints were generated. The paw area and stride frequency were increased in CIA mice. si-S1A3-Chol reduced the paw area and stride frequency, showing the effect on reversing gait dysfunction.