
Supplementary Information: Exploring the octanol-water partition coefficient 
dataset using deep learning techniques and data augmentation  

Nadin Ulrich1,*, Kai-Uwe Goss1,2, Andrea Ebert1 

 

1Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, 
Permoserstrasse 15, D-04318 Leipzig, Germany 

2Institute of Chemistry, University of Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle, Germany 

*Corresponding Author: Phone + 49 341 235 1818 E-mail: nadin.ulrich@ufz.de 

 

 

Supplementary Note 1 - Characterization of the dataset 

Supplementary Note 2 – Evaluation of the models based on the external dataset of Martel et al.  

Supplementary Figure 1 – Comparison of the prediction performance for the test set of our DNNtaut to 
other tools based on the original SMILES 

Supplementary Figure 2 – Comparison of the prediction performance for the test set of our DNNtaut to 
other tools based on randomly selected SMILES representations (including tautomers) 

Supplementary Figure 3 – Characterization of the dataset of Martel et al.. 

Supplementary Figure 4 – Predictions of the log P values from the dataset of Martel et al.. 

Supplementary Figure 5 – Influence of the number of non-hydrogen atoms NHA on the prediction 
performance for the test set of our DNNtaut to other tools based on the original SMILES  

Supplementary Figure 6 – Influence of the number of non-hydrogen atoms NHA on the prediction 
performance for the test set of our DNNtaut to other tools based on the original SMILES without 
consideration of ionic chemicals 

Supplementary Figure 7 – Rmse values of DNNtaut and DNNmono depending on the number of epochs or 
training set size 

Supplementary Table 1 – The different data sets can be composed of different SMILES representations 
(original, canonical, including explicit H atoms, tautomers), and may contain or exclude ions.  

Supplementary Table 2 – Prediction results rmse of our DNN models and other prediction tools for 
various SMILES test sets.  

Supplementary Table 3 – Prediction results of DNNtaut and other prediction tools for SAMPL6.  

Supplementary Table 4 – Prediction results of DNNtaut and other prediction tools for the dataset of 
Martel et al..  

 

  

mailto:nadin.ulrich@ufz.de


Supplementary Note 1 - Characterization of the dataset 

We investigated the dataset of Mansouri et al.1, which contains 14,050 chemicals. After 
exclusion of erroneous data points (see Identification of errors in the dataset), 13,889 
chemicals were used for model development. The dataset is heterogeneous and includes 
various classes of chemical compounds. 2,138 of the chemicals are classified as small 
molecules with an NHA (number of nonhydrogen atoms) of 1-10, 8,276 chemicals have an 
NHA of 11-20, 2,845 chemicals have an NHA of 21-30, and 630 chemicals are above an NHA of 
30. We classified 12,076 of the chemicals as neutral, and all other chemicals are classified as 
possible anions, cations, or zwitterions, whereby we defined an anion by pKa<3, a cation by 
pKb>9, and a zwitterion by pKa<pKb. The dataset includes 4,092 H-bond acceptors, 60 H-bond 
donors, 8,781 chemicals which are H-bond acceptors as well as H-bond donors, and 949 
chemicals which are classified as being neither H-bond donors nor acceptors. 16% are 
aliphatic, 84% are aromatic chemicals. 11,609 chemicals contain oxygen, 10,578 nitrogen, 
2,403 sulfur, 336 phosphor, and 3,914 halogen atoms. 232 chemicals are carbon hydrates 
without heteroatoms and contain no functional groups, 1,805 chemicals contain one 
functional group, and 11,844 chemicals contained multiple functional groups. 

 

Supplementary Note 2 – Evaluation of the models based on the external dataset of Martel et 
al.  

Predictions of log P were further performed for the dataset of Martel et al.2. This dataset 
includes 707 chemicals (selected from ZINC collection), and log P values were determined by 
measuring retention factors on a C18 column in reversed-phase liquid chromatography. The 
pH values of the measurements were carefully selected to only measure neutral chemicals. 
The log P values range from 0.3 to 7, and, according to the authors, 46% of the chemicals are 
non-ionizable, 30% basic, 17% acidic, 0.5% zwitterionic, and 6.5% ampholytes. The majority of 
the chemicals contains above 25 NHA (see Supplementary Figure 3), so on average the 
molecules are larger than those of Mansouri’s dataset (see Figure 1 for comparison). We found 
no chemical overlap between both datasets.   

Supplementary Figure 4 shows the results for the predictions for all tools. The rmse values are 
higher compared to the test set and SAMPL6 challenge. When applying our models DNNtaut 
and DNNmono on this external dataset, with an rmse of 1.23 and 1.35 respectively, we get a 
better rmse for our model that includes tautomers in the training set. The prediction errors 
are rather high for all other external tools, ranging between the best performing COSMO-RS 
with an rmse of 0.93 up to an rmse of 1.61 for DataWarrior. OCHEM, which performed best 
on the Mansouri test set, is slightly worse than our model with an rmse of 1.32 (see 
Supplementary Table 4 for all values). 

For all models except COSMO-RS there seems to be a strong tendency to underestimate the 
log P values. About 50% of all extreme outliers (≥2 log units, for the example of DNNtaut) are 
large molecules with an NHA≥30, and 78% of all extreme outliers have an experimental log P 
above 4, and 40% even above 5. The bad performance of the models could also be a 
consequence of the lack of similar chemicals in the training set. To address this problem, we 
included part of the Martel dataset into our training set, in addition to the data from Mansouri. 



We call these models DNNtaut,martel if trained with data augmentation and DNNmono,martel if 
trained without data augmentation. Each model was trained two times, once with one half 
(randomly selected) of the chemicals from the Martel dataset included in the training set, the 
second time with the other half included in the training set. Each model was then used to test 
its performance on the remaining chemicals which were not included in the training set. The 
results for DNNtaut,martel and DNNmono,martel are thus each a combination of two models, to cover 
all 707 chemicals. 

The rmse improved for both models, with an rmse of 0.84 for DNNmono,martel and 0.89 for  
DNNtaut,martel. Again, the model including tautomers performs better than the one based on 
the original SMILES alone. After training on the dataset, it performs slightly better than 
COSMO-RS, which due to its ab initio method does not depend on a training set. In 
Supplementary Figure 4 b one can see that for DNNtaut,martel the tendency to underestimate 
the data is not as pronounced as for DNNtaut, but the scatter is still quite high. While the afore 
mentioned high NHA numbers could be one reason, because the performance of all models 
tends to decrease with the number of NHA (see Figure 3), part of the variance could also be 
due to the experimental approach. The correlation of log P and a retention factor is a fast 
alternative method for the experimental determination of log P3. However, the OCED 
guideline suggests using the shake-flask method and the slow-stirring method for log P>5. 
There are few other standard techniques, for example, the use of a generator column. Using 
retention data from liquid chromatography is more erroneous compared to the other 
methods (where octanol and water are used as the two phases) since immobilized C18 alkyl 
chains at silica particles are one phase and a water - organic solvent mix is the second phase. 
Octanol (C8) is not the same as C18 modified silica particles, and of course, a water – organic 
solvent mixture (often methanol or acetonitrile are used) is not comparable to water solely. 
Further, the partition process in chromatography is different from a two-phase equilibrium in 
a flask.  

  



Supplementary Figure 1 – Comparison of the prediction performance for the test set of our 
DNNtaut to other tools based on the original SMILES 

 

 

Supplementary Figure 1 Predictions of log P values for the test set by our DNNtaut and 7 selected 
tools. The structure representation of the test set chemicals are based on the original SMILES codes. 
Neutral chemicals are marked in grey, potential ions are marked in red.  

 

 

 

 

 

 



Supplementary Figure 2 – Comparison of the prediction performance for the test set of our 
DNNtaut to other tools based on randomly selected SMILES representations (including 
tautomers) 

 

 

 

Supplementary Figure 2 Predictions of log P values for the test set by our DNNtaut and 6 selected 
tools (COSMO-RS is not included, because no tautomers were calculated). The structure 
representation of the test set chemicals was randomly selected (one SMILES per chemical) from 
SMILES codes (initial, canonical, with explicit Hs) including SMILES codes of all tautomers (multiple 
datapoints per chemical in case of tautomers). Neutral chemicals are marked in grey, potential ions 
are marked in red.  

 

 



Supplementary Figure 3 – Characterization of the dataset of Martel et al.. 

 

Supplementary Figure 3 The range of non-hydrogen atoms NHA reflecting the size of the molecules 
for the chemicals included in the dataset of Martel et al..  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 4 – Predictions of the log P values from the dataset of Martel et al.. 

 

 

Supplementary Figure 4 Predictions of log P values for the dataset of Martel et al. by our DNNtaut, 
DNNtaut,martel, and 7 other tools.   

 

 

 

 

 

 

 



Supplementary Figure 5 – Influence of the number of non-hydrogen atoms NHA on the 
prediction performance for the test set of our DNNtaut to other tools based on the original 
SMILES  

 

 

Supplementary Figure 5 Predictions of log P values for the test set (represented by the original 
SMILES) by our DNNtaut and 7 selected tools. The rmse values are shown for the range of non-
hydrogen atoms NHA reflecting the size of the molecules.  

 

 

 

 

 

 



Supplementary Figure 6 – Influence of the number of non-hydrogen atoms NHA on the 
prediction performance for the test set of our DNNtaut to other tools based on the original 
SMILES without consideration of ionic chemicals 

 

 

Supplementary Figure 6 Predictions of log P values for the test set (represented by original SMILES, 
only neutral chemicals included) by our DNNtaut and 7 selected tools. The rmse values are shown for 
the range of non-hydrogen atoms NHA reflecting the size of the molecules.  

 

 

 

 

 

 



Supplementary Figure 7 – Rmse values of DNNtaut and DNNmono depending on the number of 
epochs or training set size 

 

 

Supplementary Figure 7 Rmse values over the number of epochs for training set and validation set of 
DNNtaut (a) and DNNmono (b), and the rmse values for the validation sets when the training size (number 
of chemicals) is stepwise increased (c). 

 

 

 

 

 

 



Supplementary Table 1 – The different data sets can be composed of different SMILES 
representations (original, canonical, including explicit H atoms, tautomers), and may contain 
or exclude ions. Multiple SMILES representations per chemical may be present in the dataset, 
or alternatively one representation per chemical is selected.   

SMILES data set original 
SMILES 

canonical 
SMILES 

SMILES including  
explicit H atoms tautomers 

multiple SMILES  
representations per 

chemical 
ions 

all SMILES variants*       
original SMILES**       

original SMILES without ions       

randomly selected***        
randomly selected *** 

without ions       

canonical SMILES       
SMILES including explicit H 

atoms       

SMILES of most likely tautomer       
*this SMILES data set is used as training set for the DNNtaut 

** this SMILES data set is used as training set for the DNNmono 

***including tautomers 

 

Supplementary Table 2 – Prediction results rmse of our DNN models and other prediction tools 
for various SMILES test sets. Mean value and variance were estimated using bootstrapping. 
Random sampling with replacement was used to generate N=1000 datasets per analyzed test 
set. If the rmse value of the original test set deviated from the calculated mean of the rmse 
distribution (N=1000; one rmse per dataset), the mean value was reported to symmetrize the 
confidence intervals. The variance was determined as the standard mean error. 

 original 
SMILES 

original 
SMILES 

without ions 

SMILES of 
most likely 
tautomera 

SMILES 
randomly 
selectedb  

SMILES 
randomly 
selectedb 

without ions 

canonical 
SMILES 

SMILES 
including 
explicit H 

atoms 

all SMILES 
variantsc 

model rmse sdev rmse  sdev  rmse  sdev  rmse  sdev  rmse  sdev  rmse  sdev  rmse  sdev  rmse  sdev 

DNNtaut 0.47 ±0.02 0.45 ±0.02 0.47 ±0.02 0.47 ±0.02 0.45 ±0.02 0.47 ±0.02 0.46 ±0.02 0.46 ±0.01 

DNNmono 0.50 ±0.02 0.49 ±0.02 0.54 ±0.02 0.80 ±0.03 0.72 ±0.03 0.58 ±0.04 1.01 ±0.03 1.07 ±0.01 

COSMO-RS 0.97 ±0.03 0.77 ±0.03 - - - - - - - - - - - - 

DataWarrior 0.80 ±0.02 0.75 ±0.02 0.84 ±0.02 0.92 ±0.02 0.86 ±0.02 0.80 ±0.02 0.79 ±0.02 1.16 ±0.01 

ACD/GALAS 0.50 ±0.03 0.36 ±0.02 0.54 ±0.03 0.65 ±0.03 0.58 ±0.04 0.51 ±0.03 0.50 ±0.03 0.90 ±0.01 

JChem 0.72 ±0.02 0.69 ±0.02 0.75 ±0.02 0.74 ±0.03 0.70 ±0.02 0.70 ±0.02 0.69 ±0.02 0.93 ±0.02 

KOWWIN 0.65 ±0.04 0.51 ±0.02 0.74 ±0.04 0.92 ±0.04 0.84 ±0.04 0.74 ±0.06 0.73 ±0.06 1.37 ±0.01 

ALOGPS 0.50 ±0.02 0.45 ±0.02 0.56 ±0.02 0.66 ±0.03 0.58 ±0.02 0.50 ±0.02 0.50 ±0.02 1.00 ±0.01 

OCHEM 0.34 ±0.02 0.27 ±0.02 0.48 ±0.03 0.65 ±0.03 0.57 ±0.03 0.33 ±0.02 0.33 ±0.02 0.95 ±0.01 
aall tautomers were generated from the original SMILES using JChem, the most-likely tautomer was used 

bincluding tautomers 

call SMILES representations for each chemical were used in the test set (multiple representations per chemical). In this case the rmse of the 
predictions is unbalanced due to chemicals which are represented by a large number of tautomer forms (we avoid to use this evaluation 
and prefer to use one randomly selected tautomer/SMILES variant instead). 

 



Supplementary Table 3 – Prediction results of DNNtaut and other prediction tools for SAMPL6. 
Mean value was estimated using bootstrapping. Random sampling with replacement was 
used to generate N=1000 datasets per analyzed test set. If the rmse value of the original test 
set deviated from the calculated mean of the rmse distribution (N=1000; one rmse per 
dataset), the mean value was reported to symmetrize the confidence intervals.  

SAMPL6 ID log P 
exp DNNtaut DNNmono COSMO-RS OCHEM ACD/GALAS KOWWIN DataWarrior ALOGPS JChem 

rmse  0.33 0.31 0.37 0.49 0.51 0.53 0.60 0.45 0.39 

SM02 4.09 4.38 3.84 4.42 3.95 4.18 4.39 4.14 3.86 4.34 

SM04 3.98 4.21 3.67 3.86 3.69 4.27 3.81 3.44 3.74 3.82 

SM07 3.21 2.97 3.10 3.48 2.95 3.41 3.16 2.83 3.14 3.22 

SM08 3.10 3.16 3.13 2.85 3.57 2.70 2.63 2.41 2.55 3.06 

SM09 3.03 3.62 3.33 3.44 3.11 3.74 3.50 3.23 3.22 3.30 

SM11 2.10 2.04 1.88 2.00 1.42 1.51 1.04 0.54 1.38 1.29 

SM12 3.83 4.40 3.82 3.82 3.61 4.45 4.07 3.90 3.81 4.06 

SM13 2.92 3.27 3.22 3.84 3.26 3.38 3.62 3.50 3.62 3.66 

SM14 1.95 2.18 2.06 2.21 2.55 1.64 2.08 2.04 2.46 2.31 

SM15 3.07 2.63 2.35 2.77 2.90 2.02 2.52 2.38 2.60 2.84 

SM16 2.62 2.60 3.02 3.05 3.81 2.89 3.36 3.02 3.20 3.06 

 

 

Supplementary Table 4 – Prediction results of DNNtaut and other prediction tools for the dataset 
of Martel et al.. Mean value and variance were estimated using bootstrapping. Random 
sampling with replacement was used to generate N=1000 datasets per analyzed test set. If the 
rmse value of the original test set deviated from the calculated mean of the rmse distribution 
(N=1000; one rmse per dataset), the mean value was reported to symmetrize the confidence 
intervals. The variance was determined as the standard mean error. 

Martel DNNtaut DNNtaut,martel DNNmono DNNmono,martel COSMO-RS OCHEM ACD/GALAS KOWWIN DataWarrior ALOGPS JChem 

rmse 1.23 0.84 1.35 0.89 0.93 1.32 1.44 1.38 1.61 1.25 1.23 

sdev ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.04 ±0.04 ±0.04 ±0.03 ±0.03 
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