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Supplementary methods 

 

Supplementary method 0: eDESIGNER package. 

eDESIGNER is a package written in python 3 and available at https://github.com/jamflcgh/edesigner_core. It contains 4 main scripts: 

e_bbt_creator.py, e_designer.py, lib_designer.py and lib_design_interpreter.py 

e_bbt_creator reads Building Block Annotation files containing building block collections where each entry contains a smiles string, an 

identifier for the molecule and a number of functional group (FG) fields. Each functional group entry contains the number of times (count) 

that the FG is found in the molecule. The e_bbt_creator script creates all possible BBTs based on the parameters provided (vide infra), 

eliminates BBTs bearing incompatible FGs, cleans molecules from the files, assigns molecules to the corresponding BBTs, eliminates BBTs 

that do not contain any BB and creates a file collection with all BBs grouped by the BBT they belong to. e_bbt_creator also creates the BBTs 

object that will be used by the rest of the scripts. 

e_designer creates a list of eDESIGNs using provided parameters (vide infra) and the BBTs object. It outputs a list of eDESIGN objects. 

lib_designer creates a list of libDESIGNs using provided parameters and the list of eDESIGNS. It outputs a list of libDESIGNS. 

lib_design_interpreter creates a configuration file based on the list of libDESIGNS. The configuration file is used to enumerate samples of 

compounds from a libDESIGN. Its output is the configuration file that will be described below. 

All aforementioned scripts use parameters that regulate their function. The parameters are provided as tab delimited text files with a specific 

format; the content varies depending on the DNA compatible reaction toolkit available to the user, the functional groups annotated in the 

collection files by the end user and the specific conditions for the e_designer and lib_designer runs. In the next sections we describe the 

parameters used in our organization as an example. The github package contains the parameter files described below as tab delimited text 

files. It also contains an excel workbook with all the parameters tables to facilitate their edition by the user. File names and paths have been 

removed from the descriptions due to confidentiality reasons and should be substituted by the ones specified by the user.  We will refer to 

this excel workbook in our explanation of the use of the parameter files. 

Supporting LillyMol tools 
LillyMol is a cheminformatics toolkit implemented by the Computational Chemistry and Cheminformatics (C3) group at Eli Lill and Company. 

LillyMol is available at https://github.com/EliLillyCo/LillyMol. The tools tsubstructure and molecular_transformations, iwfp, 

gfp_nearneighbours, gfp_spread_v2 are used to support the operation of eDesigner.  

tsubstructure annotates molecule collections with FG counts and presents the results in an ASCII table format. tsubstructure receives as 

input a structure file to annotate in smiles format and a file with the functional group queries to use. The tsubstructure tool and the 

functional group queries used are available as part of LillyMol (see supplementary method 3.1 for an example of use). 

molecular_transformations enumerates structures using library design configuration files that define reaction and building block 

information. The molecular_transformations tool and the reactions used are available as part of LillyMol (see Supplementary method 3.2 

for an example of use and Supplementary method 2.7 for a description of library configuration file format).  

iwfp calculates path-based fingerprints (see Supplementary method 3.3 for an example of use) 

gfp_nearneighbours calculates near neighbor distances of 2 sets of compound fingerprints (see Supplementary method 3.4 for an example 

of use) 

gfp_spread_v2 calculates the spread distance of compounds in a set to rank-order by diversity (see Supplementary method 3.5 for an 

example of use) 

  

https://github.com/jamflcgh/edesigner_core
https://github.com/jamflcgh/edesigner_core/blob/master/edesigner/resources/EDESIGNER_PAR_publication_version.v.10.xlsx
https://github.com/EliLillyCo/LillyMol


Supplementary method 1: eDESIGNER Parameters. 

1.1.- Functional groups are provided in a table such as the one exemplified in spreadsheet fg in the parameters workbook. The column index 

indicates the index for the functional group (consecutive integer) starting at 0 with the null FG (used as placeholder for a non-existing 

functional group).  

name indicates the given name of the FG as in the BB file. Some of the names of the FGs start with the word “calc”. This is due to the 

hierarchical nature of the functional groups as annotated in our chemical databases. For example, the NITRO_FLUORO FG (15) is  defined as 

an aryl group with a fluorine atom ortho to a nitro group. This FG is more elaborated than a regular mono-dentate group such as a primary 

aliphatic amine or an aldehyde, and is useful to construct, for example, the benzimidazole scaffold by the reaction sequence composed by 

a nucleophilic aromatic substitution followed by reduction of the nitro group in the presence of an aldehyde. All building blocks containing 

this FG will have the o-fluoro nitroarene substructure, which will be counted as an instance of FG of index 15. However, these building blocks 

also contain the nitro substructure and therefore the NITRO FG instance will be counted as well. To avoid double counting of the same 

substructures in a building block as different FGs (which would make eDESIGNER create incorrect designs) we have modified the counting 

of the FG at the higher hierarchical level, in this case the NITRO FG, by subtracting the instances of the o-fluoro nitroarene substructure from 

the instances of the nitro substructure. The FG resulting from this operation is labeled calc_NITRO functional group (8). The end result of 

this operation is that the o-fluoro nitroarene will be excluded to participate in other reactions that use exclusively the Nitro group . This is 

acceptable since the number of building blocks containing o-fluoro nitroarenes is less than the the number of molecules containing the nitro 

FG. The calculation of all the “calculated functional groups” is summarized in spreadsheet calcfg in the parameters workbook. Chemical 

drawings exemplifying the functional groups are presented in table 1. 

The electrophiles for the nucleophilic aromatic substitution (calc_NAS_ELECTROPHILE, 37) are an especially difficult case, not only because 

it lays on the top hierarchy of other electrophiles, but also because it cannot be easily defined as a simple substr uctures search. This 

functional group was defined in turn with multiple substructure searches comprising a leaving group in an aromatic core and one or more 

activating electrophiles. 

Each functional group is characterized and coded for other characteristics including whether or not the functional group is stable when 

present in a molecule attached to DNA (column: stable); how many atoms (column atom_dif) or how many rotatable bonds (column: 

excess_rb) the functional group loses on average upon its participation in a typical reaction; and whether library member molecules that 

carry this specific functional group at the end of the library synthesis will be allowed or not (column: allowed_end_exposed) 

The self_incompatibility column indicates the indexes of functional groups that are incompatible to coexist with the current one in a 

molecule. Typically, strong electrophiles are incompatible with strong nucleophiles; moreover, they are usually incompatible among 

themselves since coexistence could drive to lack of selectivity in the reactions. To address this behavior, all functional groups are 

incompatible with a copy of themselves except the null FG. The current incompatibility column was prepared based on our experience. Users 

can modify it to get different results as per their specific needs. 

Supplementary figure 1 depicts graphically the incompatibilities of the functional groups as in our definition.  

1.2.- Calculated functional groups: As mentioned above some functional groups are calculated on the fly by e_bbt_creactor. The rules for 

these calculations are collected in the spreadsheet calcfg in the parameters workbook, which is supplied to e_bbt_creator as a parameters 

file. 

name column indicates the final name for the functional group. rule_add and rule_substract are lists (‘;’ separated) of FG names as they 

appear in the BB file. e_bbt_creator adds the number of instances that the FGs in the rule_add list appear in the BB file for a specific BB and 

subtracts the number of instances that the FGs in the rule_substract list appear in the BB file for that specific BB to compute the number of 

instances for the calculated FG. 

1.3- Anti-FG: e_bbt_creator eliminates all building blocks containing not desired functional groups. The list of these functional groups is 

provided as the Anti-FG parameters table (antifg in the parameters workbook). Some of these functional groups are actually calc_FGs so 

they are calculated on the fly as described above. 

1.4.- Reactions are provided as parameters tables (note that reactions are parametrized, in this manuscript we have used reaction in Lilly’s 

toolkit but different reactions could be coded giving rise to different designs). Spreadsheet reaction in the parameters workbook contains 

the connecting reactions table and spreadsheet deprotection contains the deprotection/scaffold incorporation reactions. The format is the 

same in both. The first column is the index of the reaction. The second is the fg_input_on_off field. This is a list of two integers (‘;’ separated) 

that contain the indexes of the FGs that participate in the reaction: the one coming from the growing eDESIGN (on DNA) and the one coming 

from the incoming BBT (off DNA). In the case of deprotection reactions the second number is always 0 since there is no incoming BBT. The 

fg_out_on_off indicates a pair of functional groups that are generated upon reaction. If no reactive functional group is created both numbers 

are 0; if only one FG is created it is indicated in the first position of the tuple; if two FGs are created the two members of the tuple become 

non-zero. The functional groups created become members of the growing eDESIGN (they are positioned on DNA for future reactions).  

The column excluded_on is a list of FGs that are incompatible with this reaction when they are on DNA (they come with the growing 

eDESIGN). The excluded_off is the list of FGs that are incompatible with the reaction when they come with the incoming BBT. As with the 

incompatibility rules in the FGs, the reaction incompatibilities are derived from our experience, but can be modified by users. Tip: when 

attempting such modification the first number in the fg_input_on_off cannot be included in the excluded_on list and the second number 

cannot be included in the excluded_off list, otherwise the reaction would never happen. Supplementary figures 2, 3 and 4 are graphical 

depictions of the incompatibility matrices for enumeration and BBT incorporation reactions 

https://github.com/jamflcgh/edesigner_core/blob/master/edesigner/resources/EDESIGNER_PAR_publication_version.v.10.xlsx
https://github.com/jamflcgh/edesigner_core/blob/master/edesigner/resources/EDESIGNER_PAR_publication_version.v.10.xlsx
https://github.com/jamflcgh/edesigner_core/blob/master/edesigner/resources/EDESIGNER_PAR_publication_version.v.10.xlsx
https://github.com/jamflcgh/edesigner_core/blob/master/edesigner/resources/EDESIGNER_PAR_publication_version.v.10.xlsx
https://github.com/jamflcgh/edesigner_core/blob/master/edesigner/resources/EDESIGNER_PAR_publication_version.v.10.xlsx


The name field indicates the given name of the reaction. We have defined the name format as a number indicating the hierarchy in the 

RXNO reaction ontology, followed by the reaction common name, the name of the FG used coming from the growing eDESIGN and the name 

of the FG from the incoming BBT. For example: 

“1.2.1_ALDEHYDE_REDUCTIVE_AMINATION_FROM_ALDEHYDES_AND_AMINES_ALIPHATIC_PRIMARY”.  

The production field indicates whether this reaction is in production or in development. The atom_dif field indicates the number of heavy 

atoms that are gained by the design because of this reaction, excluding the ones coming from the BB. The end_deprotect field for the 

deprotection reactions indicates whether to conduct this deprotection after the last cycle and the enum_index indicates the index of the 

enumeration reaction corresponding to this reaction 

1.5.- Enum reactions are provided in the spreadsheets enum_reaction and enum_deprotection in the parameters workbook. The 

enum_reactions are reaction groups that comprise several reactions that can be conducted in the same experimental conditions. Each table 

contains an index (which is referred to in the reaction parameters tables) and a given name of the reaction under the enum_name field. The 

enum_reactions, and not the reactions described in the previous method, are the ones coded to enumerate samples for the libDESIGNS. 

Their codification can be found in LillyMol.  Tables 2 and 3 depict an example for each enum_reaction and enum_deprotection respectively. 

1.6- Headpieces are attachment points to the double stranded DNA that are used to grow the molecules in the DEL libraries. The attachment 

point is a functional group, and for computation purposes, it is assigned to a BBT. Headpiece parameters table is provided in the spreadsheet 

headpieces in the parameters workbook. The table contains the following fields the following fields: index is an integer number that identifies 

the headpiece. bbt is a list of three integers representing the FGs in the headpiece. This tuple of integers represents the BBT the headpiece 

belongs to. fg is a list of the names of the FGs in the BBT and smiles is the smiles string that will be used in the enumeration of final molecules 

representing the headpiece. It always contains a 13C atom at the opposite end of the FG used to grow the molecule to easily identify the 

headpiece in the molecule. 

1.7- par parameters (spreadsheet par in the parameters workbook) are the main parameters that guide e_designer and lib_designer how to 

create designs. The max_na_percentile field indicates the maximum number of heavy atoms in the percentile of the distribution indicated 

in the field percentile. In the example, percentile is set to 0.5 so 29 atoms will correspond to the median of the distribution. max_na_absolute 

is the maximum number of atoms allowed for a molecule in the design. max_cycle_na is a list (‘;’ separated) with the maximum number of 

atoms for the smallest molecule allowed at each cycle. This field indicates also how many cycles the designs will have (the number of 

members in this list). The max_scaffold_na field indicates the maximum number of heavy atoms that can be incorporated as scaffolds. 

headpiece_na is the number of atoms coming from the headpiece. min_count is the minimum library size coming from a lib_design, just 

considering the BBs coming from internal sources, for the designs to be accepted. The field include_designs indicates the type of reactions 

that will be used to create designs (PRODUCTION for production reactions or BOTH for both production and development reactions). The 

field rb_filter indicates the maximum number of effective rotatable bonds allowed for a BB to be considered. The field designs_in_memory 

indicates the maximum number of designs held in memory while expanding a list of designs. e_designer will save to disk the list of designs 

generated at a given cycle and will read to memory these designs in lists of the size indicated by this parameter. This is done to avoid memory 

overflow. The user should use the appropriate value depending on hardware memory capacity. The fields final_compounds_folder and 

final_reactions_folder are the paths indicating the folder containing the reaction files used for enumeration and the folder where design 

level combined BB files is stored. These values will go unchanged to the configuration file.  

1.8- path parameters (spreadsheet path in the parameters workbook) control where the different files and logs are stored and the names 

of the files corresponding to logs and results. Database_Run is a token that is generated by e_bbt_creator, using the date of the 

e_bbt_creator run. This is the date where compound collection files are processed into BB containing BBTs files (collection files are updated 

daily at Lilly). A folder with the name of this token is generated under “comps” folder and all the files for the BBs organized by BBT are placed 

in this folder. In order to instruct eDESIGNER to use the appropriate BB set this token must be provided as a parameter (Database_Run). 

This token is also used as a prefix of all files generated in subsequent runs by e_designer, lib_designer and lib_design_interpreter when using 

the BBs generated this date. Since different run conditions can be performed by e_designer and lib_designer with the same version of BBs, 

an id for the specific run is provided as parameter run. This value is used as a second prefix for files created by e_designer, lib_designer and 

edesign_interpreter. 

 

https://github.com/jamflcgh/edesigner_core/blob/master/edesigner/resources/EDESIGNER_PAR_publication_version.v.10.xlsx
https://github.com/jamflcgh/edesigner_core/blob/master/edesigner/resources/EDESIGNER_PAR_publication_version.v.10.xlsx
https://github.com/jamflcgh/edesigner_core/blob/master/edesigner/resources/EDESIGNER_PAR_publication_version.v.10.xlsx
https://github.com/jamflcgh/edesigner_core/blob/master/edesigner/resources/EDESIGNER_PAR_publication_version.v.10.xlsx


 

Supplementary Figure 1: Incompatibility matrix for functional groups in the same BBT. Magenta color means incompatible, cyan color means 

compatible. 

 



 

Supplementary Figure 2: Incompatibility matrix for functional groups regarding deprotection reactions. Magenta color means incompatible, 

cyan color means compatible 

 



 

Supplementary Figure 3 (1): Incompatibility matrix for functional groups on DNA regarding reactions. Magenta color means incompatible, 

cyan color means compatible 



 

Supplementary Figure 3 (2): Incompatibility matrix for functional groups on DNA regarding reactions. Magenta color means incompatible, 

cyan color means compatible 

 



 

Supplementary Figure 4 (1): Incompatibility matrix for functional groups off DNA regarding reactions. Magenta color means incompatible, 

cyan color means compatible 



 

Supplementary Figure 4 (2): Incompatibility matrix for functional groups off DNA regarding reactions. Magenta color means incompatible, 

cyan color means compatible 

 



Supplementary Table 1: Figures of functional group examples 
 

id Name Example 

1 ALDEHYDES 

 
2 ALKYNES_TERMINAL 

 
3 AMINES_ALIPHATIC_SECONDARY 

 
4 AZIDE 

 
5 CARBOXYLIC_ACIDS 

 
6 THIOLS 

 
7 calc_THIOPHENOLS 

 
8 calc_NITRO 

 
9 calc_PHENOLS 

 
10 SEC_FMOC 

 
11 SULFONYL_CHLORIDES 

 
12 BORONICS_AROMATIC 

 
13 TERT_FMOC 

 
14 ESTERS_METHYL_ETHYL 

 
15 NITRO_FLUORO 

 
16 SEC_BOC 

 
17 TERT_BOC 

 
18 O_NITRO_SEC_ANILINE 

 



19 calc_ARYLIODIDE 

 
20 ARYLBROMIDE 

 
21 AMINES_ALIPHATIC_PRIMARY 

 
22 calc_AMINES_AROMATIC_PRIMARY 

 
23 AMINES_HETEROAROMATIC_PRIMARY 

 
24 ISOCYANATES 

 
25 ISOTHIOCYANATES 

 
26 O_IODO_ANILINE 

 
27 HYDRAZINES_PRIMARY 

 
28 A_H_KETONES 

 
29 KETONES_A_BROMO 

 
30 YNONES 

 
31 AMIDINES_PRIMARY 

 
32 AMIDINES_SECONDARY 

 
33 GUANIDINES_SECONDARY_PRIMARY 

 
34 GUANIDINES_SECONDARY_SECONDARY 

 
35 GUANIDINES_TERTIARY_PRIMARY 

 
36 GUANIDINES_TERTIARY_SECONDARY 

 



37 calc_NAS_ELECTROPHILE 

Among several other substructures 

38 O_AMINO_PHENOLS 

 
39 O_AMINO_THIOPHENOLS 

 
40 O_IODO_SEC_ANILINE 

 
41 TRIAZINE_DICHLORO 

 
42 TRIAZINE_MONOCHLORO 

 
 



Supplementary Table 2: Figures of eDESIGNER coupling reactions examples 

id Name Example 

1 1.2.1_Aldehyde_reductive_amination_FROM_aldehydes
_AND_amines.rxn 

 
2 1.2.1_Aldehyde_reductive_amination_FROM_amines_A

ND_aldehydes.rxn 

 
3 1.3.1_Bromo_Buchwald-

Hartwig_amination_FROM_arylbromide_AND_amines_a
romatic.rxn 

 
 1.3.1_Bromo_Buchwald-

Hartwig_amination_FROM_amines_aromatic_AND_aryl
bromide.rxn 

 
 1.3.3_Iodo_Buchwald-

Hartwig_amination_FROM_amines_aromatic_AND_aryli
odide.rxn 

 
 1.3.3_Iodo_Buchwald-

Hartwig_amination_FROM_aryliodide_AND_amines_aro
matic.rxn 

 
 1.3.8_Fluoro_N-

arylation_FROM_amines_AND_nitro_fluoro.rxn 

 
 1.3.8_Fluoro_N-

arylation_FROM_nitro_fluoro_AND_amines.rxn 

 
 1.7.11_SNAr_ether_synthesis_FROM_phenols_AND_NA

S_electrophile.rxn 

 
 1.7.11_SNAr_ether_synthesis_FROM_NAS_electrophile_

AND_phenols.rxn 

 
 1.7.11_SNAr_ether_synthesis_FROM_triazine_chloro_A

ND_phenols.rxn 

 
 1.8.5_Thioether_synthesis_FROM_thiophenols_AND_NA

S_electrophile.rxn 

 



 1.8.5_Thioether_synthesis_FROM_NAS_electrophile_AN
D_thiophenols.rxn 

 
 1.8.5_Thioether_synthesis_FROM_NAS_electrophile_AN

D_thiols.rxn 

 
 1.8.5_Thioether_synthesis_FROM_thiols_AND_NAS_elec

trophile.rxn 

 
 1.8.5_Thioether_synthesis_FROM_triazine_chloro_AND_

thiophenols.rxn 

 
 1.8.5_Thioether_synthesis_FROM_triazine_chloro_AND_

thiols.rxn 

 
 1.8.7_Migita_thioether_synthesis_FROM_arylbromide_

AND_thiophenols.rxn 

 
 1.8.7_Migita_thioether_synthesis_FROM_arylbromide_

AND_thiols.rxn 

 
 1.8.7_Migita_thioether_synthesis_FROM_aryliodide_AN

D_thiophenols.rxn 

 
 1.8.7_Migita_thioether_synthesis_FROM_aryliodide_AN

D_thiols.rxn 

 
 1.8.7_Migita_thioether_synthesis_FROM_thiophenols_A

ND_arylbromide.rxn 

 
 1.8.7_Migita_thioether_synthesis_FROM_thiophenols_A

ND_aryliodide.rxn 

 



 1.8.7_Migita_thioether_synthesis_FROM_thiols_AND_ar
ylbromide.rxn 

 
 1.8.7_Migita_thioether_synthesis_FROM_thiols_AND_ar

yliodide.rxn 

 
 2.1.2_Carboxylic_acid_+_amine_condensation_FROM_a

mines_AND_carboxylic_acids.rxn 

 
 2.1.2_Carboxylic_acid_+_amine_condensation_FROM_c

arboxylic_acids_AND_amines.rxn 

 
 2.2.3_Sulfonamide_Schotten-

Baumann_FROM_amines_AND_sulfonyl_chlorides.rxn 

 
 2.3.1_Isocyanate_+_amine_urea_coupling_FROM_amin

es_aliphatic_AND_isocyanates.rxn 

 
 2.3.2_Isothiocyanate_+_amine_thiourea_coupling_FRO

M_amines_aliphatic_AND_isothiocyanates.rxn 

 
 2.3.2_Isothiocyanate_+_amine_thiourea_coupling_FRO

M_isothiocyanates_AND_amines_aliphatic.rxn 

 
 3.1.1_Bromo_Suzuki_coupling_FROM_arylbromide_AND

_boronics.rxn 

 
 3.1.3_Iodo_Suzuki_coupling_FROM_aryliodide_AND_bor

onics.rxn 

 
 3.11.13_Ullmann-

type_biaryl_coupling_FROM_amines_aliphatic_primary_
AND_arylbromide.rxn 

 
 3.11.13_Ullmann-

type_biaryl_coupling_FROM_amines_aliphatic_primary_
AND_aryliodide.rxn 

 
 3.11.13_Ullmann-

type_biaryl_coupling_FROM_arylbromide_AND_amines
_aliphatic_primary.rxn 

 



 3.11.13_Ullmann-
type_biaryl_coupling_FROM_aryliodide_AND_amines_al
iphatic_primary.rxn 

 
 3.9.21_Alkyne_coupling_FROM_alkynes_terminal_AND_

carboxylic_acids.rxn 

 
 3.9.21_Alkyne_coupling_FROM_carboxylic_acids_AND_a

lkynes_terminal.rxn 

 
 4.1.1_1_2_3-

Triazole_synthesis_FROM_azide_AND_alkynes_terminal.
rxn 

 
 4.1.1_1_2_3-

Triazole_synthesis_FROM_alkynes_terminal_AND_azide.
rxn 

 
 4.1.11_Larock_indole_synthesis_FROM_alkynes_termin

al_AND_o_iodo_aniline.rxn 

 
 4.1.11_Larock_indole_synthesis_FROM_o_iodo_aniline_

AND_alkynes_terminal.rxn 

 
 4.1.12_Imidazole_synthesis_FROM_guanidines_tertiary_

primary_AND_ketones_a_bromo.rxn 

 
 4.1.12_Imidazole_synthesis_FROM_guanidines_tertiary_

primary_AND_a_h_ketones.rxn 

 
 4.1.12_Imidazole_synthesis_FROM_guanidines_tertiary_

secondary_AND_ketones_a_bromo.rxn 

 
 4.1.12_Imidazole_synthesis_FROM_guanidines_tertiary_

secondary_AND_a_h_ketones.rxn 

 
 4.1.45_Benzimidazole_synthesis_FROM_aldehydes_AND

_o_nitro_sec_aniline.rxn 

 
 4.1.45_Benzimidazole_synthesis_FROM_o_nitro_sec_ani

line_AND_aldehydes.rxn 

 
 4.1.48_Pyrimidine_synthesis_FROM_guanidines_sectert

_primary_AND_ynones.rxn 

 



 4.1.48_Pyrimidine_synthesis_FROM_ynones_AND_guani
dines_sectert_primary.rxn 

 
 4.1.60_Pyrazole_synthesis_FROM_ynones_AND_hydrazi

nes_primary.rxn 

 
 4.1.60_Pyrazole_synthesis_FROM_hydrazines_primary_

AND_ynones.rxn 

 
 4.2.17_1,3-

Benzoxazole_synthesis_FROM_amines_aliphatic_primar
y_AND_o_amino_phenols.rxn 

 
 4.2.17_1,3-

Benzoxazole_synthesis_FROM_amines_aromatic_primar
y_AND_o_amino_phenols.rxn 

 
 4.2.17_1,3-

Benzoxazole_synthesis_FROM_o_amino_phenols_AND_i
sothiocyanates.rxn 

 
 4.2.2_1,2,4-

Oxadiazole_synthesis_FROM_amines_aliphatic_primary
_AND_carboxylic_acids.rxn 

 
 4.3.9_Benzothiazole_synthesis_FROM_amines_aliphatic

_primary_AND_o_amino_thiophenols.rxn 

 
 4.3.9_Benzothiazole_synthesis_FROM_amines_aromatic

_primary_AND_o_amino_thiophenols.rxn 

 
 4.3.9_Benzothiazole_synthesis_FROM_o_amino_thioph

enols_AND_isothiocyanates.rxn 

 
 9.7.8_Amino_to_guanidino_FROM_amines_aliphatic_AN

D_amines_aliphatic.rxn 

 
 X.X.X_Aminothiazole_synthesis_FROM_amines_aliphatic

_primary_AND_ketones_a_bromo.rxn 

 



 X.X.X_Aminothiazole_synthesis_FROM_amines_aliphatic
_primary_AND_a_h_ketones.rxn 

 
 X.X.X_SNAr_aniline_synthesis_FROM_amines_aliphatic_

primary_AND_NAS_electrophile.rxn 

 
 X.X.X_SNAr_aniline_synthesis_FROM_amines_aliphatic_

secondary_AND_NAS_electrophile.rxn 

 
 X.X.X_SNAr_aniline_synthesis_FROM_NAS_electrophile_

AND_amines_aliphatic_primary.rxn 

 
 X.X.X_SNAr_aniline_synthesis_FROM_NAS_electrophile_

AND_amines_aliphatic_secondary.rxn 

 
 X.X.X_SnAr_aniline_synthesis_FROM_triazine_chloro_A

ND_amines.rxn 

 
 X.X.X_Carboxylic_acid_+_nitro_condensation_FROM_car

boxylic_acids_AND_o_nitro_sec_aniline.rxn 

 
 X.X.X_Carboxylic_acid_+_nitro_condensation_FROM_o_

nitro_sec_aniline_AND_carboxylic_acids.rxn 

 
 

 

 



Supplementary Table 3: Figures of eDESIGNER deprotection reaction examples 

id Name Example 

1 3.3.2_Bromo_Sonogashira_coupling_FROM_arylbromide_AND_Null.rxn 

 
 3.3.4_Iodo_Sonogashira_coupling_FROM_aryliodide_AND_Null.rxn 

 
 6.1.1_N-Boc_deprotection_FROM_boc_AND_Null.rxn 

 
 6.1.6_N-Fmoc_deprotection_FROM_fmoc_AND_Null.rxn 

 
 7.1.1_Nitro_to_amino_FROM_nitro_AND_Null.rxn 

 
 9.7.61_Ester_hydrolysis_FROM_esters_methyl_ethyl_AND_Null.rxn 

 
 9.7.8_Amino_to_guanidino_FROM_amines_aliphatic_AND_Null.rxn 

 
 X.X.X_Triazine_Dichloro_FROM_amines_aliphatic_AND_Null.rxn 

 
 X.X.X_Esters_methyl_ethyl_WITH_Amines_FROM_aldehydes_AND_Null.rxn 

 
 X.X.X_Nitro_fluoro_FROM_amines_aliphatic_AND_Null.rxn 

 
 X.X.X_O_nitro_sec_aniline_WITH_Carboxylic_acid_FROM_amines_aliphatic_pr

imary_AND_Null.rxn 

 
 X.X.X_O_iodo_aniline_FROM_amines_aliphatic_AND_Null.rxn 

 

 



Supplementary method 2: eDESIGNER Code. 

 

2.1.- Functional groups (FGs) 

Functional groups are coded as integer indexes. The functional group 0 is defined as Null Functional Group, which is added for convenience 

purposes in the computation.  

2.2.- Building Block Types (BBTs) 

BBTs are defined as a combination of exactly three functional groups and are coded as a tuple of three numbers, each of these representing 

the index of one functional group. BBTs are represented also by a sparse vector of 42 dimensions, each representing one possible functional 

group, except the null FG, and containing the number of occurrences of this functional group in the BBT.  

The BBT objects are coded in python as an instance of the BBT class. The attributes of the class are summarized in Supplementary figure 5 

of this supplementary information. The main attributes are the BBT and BBT_long which are python lists describing a condensed and sparse 

version of the vector listing the FGs combination for this BBT respectively. The n_compounds and the associated n_internal and n_external 

fields will be used later to ensure that the BBTs incorporated into a library eDESIGN fulfill the pre-defined number of atoms distribution in 

the final molecules. The integers in these lists represent the total number of building blocks belonging to the BBT with equal or less heavy 

atom count than a given atom number for each value of that number ranging from 0 to 100. Here it is important to note that, the number 

of atoms recorded is not the number of atoms calculated directly from the building block smiles, but the number of atoms from the free 

base or acid smiles corrected by the number contained in the atom_dif column in the functional group table (fg spreadsheet in parameters 

workbook), for each of the FGs belonging to this BBT. This number represents the most probable number of atoms that a building block 

belonging to this BBT will contribute to the final molecule in the library and we will refer to it as the effective number of heavy atoms. 

2.3- Incorporation of building blocks to BBTs 

Building blocks that will be later used in the enumeration of real examples are incorporated in files named with the index of the BBT they 

belong to. There are two files for each BBT, one containing only internally available BBs and the other containing all possible BBs. The number 

of atoms and rotatable bonds for each BB is calculated by subtracting the excess_rb column or adding the atom_dif column values to the 

number of calculated rotatable bonds or number of atoms respectively and eliminating those outside the pre-specified limits. The remaining 

building blocks are assigned to the corresponding BBTs. When the same free base or acid is repeated in multiple entries from the same or 

different databases, only one instance of the molecule is stored, with all compound IDs appended to a field in that entry  for back tracking. 

Building blocks are stored in BBT files in increasing order of number of atoms and the number of compounds for each number of  atoms is 

stored in the BBT instance dictionary. 

 

 

Supplementary Figure 5. BBT codification 

 

2.4- Reactions: 

Each reaction is coded with a pair of tuples containing two integers each. The first component of the first tuple is the index of the reacting 

FG being carried by the BBT attached to the DNA (on-DNA). The second number of the first tuple corresponds to the reacting FG being 

https://github.com/jamflcgh/edesigner_core/blob/master/edesigner/resources/EDESIGNER_PAR_publication_version.v.10.xlsx
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carried by the incoming BBT, added as a reactant (off-DNA), if such BBT exists; otherwise the second index of the first tuple becomes 0. The 

second tuple contains the FGs that arise from the reaction, if any. If there are no new FGs formed, the second tuple becomes (0, 0).  

There are two main types of reactions: The first type contains reactions that connect two BBTs using an exposed functional group from each 

one. When this happens, in most cases, the original functional groups cancel out and become no functional groups. For example, an 

amidation reaction uses the carboxylic acid functional group (5) and the primary aliphatic amine functional group (21) to attach two building 

blocks and produces as a result an amide functional group. Since amides are not in the list of eDESIGNER functional groups, the net result is 

that the reaction produces two new no functional groups and the codification of the reaction is (5, 21); (0, 0). Other reactions produce at 

least one functional group that is included in the eDESIGNER functional groups list. For example, the reductive amination of primary aliphatic 

amines (21) and aldehydes (1) (Supplementary figure 1, entry b) result in a secondary aliphatic amine functional group (3), which is in the  

list of functional groups. The codification for this reaction becomes (21, 1); (3, 0).  

The second type of reactions comprise the de-protection reactions and the scaffold introduction reactions since none of them involve an 

off-DNA BBT and, therefore, the second index of the first tuple is always 0. One example of de-protection reaction is the BOC de-protection 

of aliphatic primary amines (Supplementary figure 4, entry c). The codification of this reaction is (16, 0); (21, 0) since the primary amine BOC- 

protected is coded with the index 16. The scaffold inclusion reaction is very similar in nature to the de-protection reaction. For example, the 

introduction of the triazine scaffold by a reaction of a primary aliphatic amine with cyanuric acid is coded as (21, 0); (41, 0). 21 is the index 

of the primary aliphatic amine functional group and 41 is the index of the dichlorotriazine functional group. Note that, in t his case, and in 

contrast to the BOC de-protection reaction, additional mass is added to the on-DNA BBT. However, the mass does not come from a BBT but 

from a reactant (in other words, the incorporated chemical matter is not variable, it is the same for all the molecules in th e library) and 

therefore, for technical implementation reasons, the reaction is grouped with the de-protection reactions rather than to the connection 

reactions. This has implications that are explained later. 

2.5.- Creation of eDESIGNS: 

Supplementary figure 6 in this supplementary information, lists the encoding of an eDESIGN. The eDESIGN, similarly to the BBT object, is 

coded as a class and each individual eDESIGN is an instance of this class. The collection of eDESIGNS is then stored in a lis t of eDESIGN 

instances. The eDESIGN dictionary stores the BBTs used, the deprotections used to activate functional groups and to incorporate scaffolds, 

the reactions used to connect BBTs and the connectivity (topology) of the design. Thus, the field n_cycles holds the information of how many 

BBTs the design incorporates (excluding the headpiece). The field bbts contain the index of the BBT that is incorporated in each cycle 

(including the headpiece as cycle 0). The field fgs contains the list of non-null FG indexes that each design holds at any given step.  

At each cycle, eDESIGNER will attempt a de-protection or scaffold incorporation and then conduct a reaction where a new BBT is 

incorporated. The indexes for these reactions and de-protections are stored in the reactions and deprotections fields respectively. For each 

FG in the fgs field, a code representing its origin (when and how it was incorporated to the eDESIGN) is stored in the field fg_sources. The 

source of an FG can be either a BBT, a reaction or a deprotection. For example, a reductive amination of a primary amine creates the 

secondary amine FG, an ester hydrolysis creates the acid FG and any FG can be incorporated as a part of a BBT. The topology fields track the 

source of the functional group that was used to attach each of the BBTs or to conduct a deprotection in the eDESIGN. There are two types 

of topology fields. The btopology tracks the source of the FG used to attach each BBT and the dtopology tracks the source of the FGs that 

are used to conduct each deprotection. 

The initial list of eDESIGNS is created with the six headpieces that are incorporated by adding all non-null FGs to the fgs field and updating 

sources and topology. Then, the first de-protection reaction is attempted by matching the first index of the first tuple of the reaction (the 

on-DNA index) with every index in the fgs field of the eDESIGN. Whenever a match is found a new eDESIGN is created by cloning the current 

design. Then, the new design is checked out for reaction incompatibilities (vide infra) and, if it survives, it is appended to the list of designs 

after adjusting all the eDESIGN fields including the fgs field with the information from the reaction. The original eDESIGN is always kept in 

the list of designs when incorporating deprotections. The net result of the incorporation of a de-protection step is a new set of eDESIGNS 

from each eDESIGN, where the original one is kept and all possible compatible de-protections (or scaffold incorporations) are executed, one 

at a time, each one generating a new design. 

Each reaction in the reaction and deprotection parameters tables (parameters workbook) has an index (column n), which is incorporated 

into the eDESIGN fgs field. The pair of tuples coding the reaction are listed in the columns fg_input_on_off and gf_output_on_off. The first 

tuple describes the input FGs. Since there is not an incoming BBT in a deprotection reaction, the second element of the first tuple is always 

0 for deprotections. The second tuple describe the FGs that are added to the design, if any.  The column excluded_on lists all the functional 

groups, that are originally in the incoming eDESIGN, which are not compatible with this specific reaction. The excluded_off field contains the 

list of FGs that are part of the incoming BBT that are incompatible with the reaction. Again, this is set to -1 for deprotections since there is 

not incoming BBT for these reactions. The production column is added as an extra functionality so the user can define parametrically a 

subset of reactions to use in the study. In our case, we divided the reactions in two categories, the first containing reactions previously used 

in a library production and the second containing reactions only validated experimentally but not used in production at the date of writing 

this manuscript. 

Once the first deprotection reaction is added, the next task of eDESIGNER is to add the first BBT with a connection reaction. The process is 

similar to the one described above for the de-protection reaction but more combinatorial in nature. Each eDESIGN from the current list is 

evaluated but, contrary to what happened with the de-protection reaction, the original eDESIGN is not appended to the new list because 

only the designs able to grow can be incorporated to the list. A selection of all available BBTs (available means that there is at least one 

building block assigned to the BBT, 262 in this implementation) are attempted to react with each eDESIGN. For each BBT – eDESIGN 

combination all the pairs comprised of one FG from the eDESIGN and one FG from the BBT are enumerated, and for each pair a search is 

performed in the fg_input_on_off field of the connection reactions list. If a match is found, after checking for incompatibilities among FGs 
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in the eDESIGN and incoming BBT, the original eDESIGN is cloned, the incoming BBT appended, the FGs of the incoming BBT added to the 

design and the reacting FGs modified appropriately according to the reaction code. Then, a further check is performed: for an eDESIGN to 

be able to grow, it must contain at least one non-null functional group in the fgs field. All eDESIGNs that don’t fulfill these criteria are 

eliminated unless the current cycle is the last one. For eDESIGNs that survive the checks after each cycle, eDESIGNER updates all their fields. 

 

 

Supplementary Figure 6: eDESIGN codfication 

 

2.6- Creation of libDESIGNS: 

The libDESIGN is coded as a python class and instantiated for each library. The attributes in the instance dictionary are described in 

Supplementary figure 7 in this supplementary information. 

Before combining designs, all eDESIGNs are tagged using a tuple of integers coming from specific data in the eDESIGN and named lib_id. 

This tuple comprises the index of the BBT serving as a headpiece, the enum_indexes for all the construction reactions, the enum_indexes for 

all the de-protection reactions, and the topology indexes stored in the eDESIGN. All eDESIGNS that contain the same lib_id can be combined 

into a single design and produced experimentally as a single library. Therefore, once the lib_id is set for all eDESIGNS the libDESIGNs are 

constructed by combining all the eDESINGS with the same lib_id. 

The libDESIGN deprotections and reactions fields are based on the eDESIGN reactions and deprotections fields and specifically the values of 

the column enum_index parameters in the eDESIGN. These must be common for all the eDESIGNS corresponding to a libDESIGNs by 

definition. The scaffold_reactions field is extracted from the deprotections field. A deprotection reaction is determined to produce a scaffold 

when the number of heavy atoms produced by the reaction is positive. This number is taken from the atom_diff field for each specific 

reaction and the new value is stored as the enum_index for that specific reaction, so it is common for all eDESIGNs being combined. The 

bbts field of the libDESIGN contain a list for each cycle in the original eDESIGNs being each member of the list the index of the BBT for that 

eDESIGN at that cycle. Once the lists are created, the duplicated BBT indexes at each cycle are removed, so each BBT index appears only 

once for each cycle. 

The final step is to filter all libDESIGNs that do not reach a minimum number of compounds per design. We used the value n_int and a 

predefined parameter to filter out these libDESIGNs. The predefined parameter is the number of atoms that corresponds to the median of 

the desired distribution, so the result obtained by the method described above gives the maximum number of compounds for this libDESIGN 

containing a median that is equal or less than the predefined parameter. Once the number corresponding to the median is known the total 

number of compounds is straightforward to calculate; what is not known at this time is the number of atoms of the largest molecule that 

would give rise to this number of molecules at percentile 100. In order to calculate this number, and the maximum number of atoms coming 

from each cycle, the procedure described above is repeated for an increasing number of atoms until the calculated number of molecules in 

the design reaches the percentile 100, or the total number of atoms reaches a pre-specified parameter representing the maximum number 

of atoms allowed for a molecule in the lib_DESIGN. At this point the maximum number of atoms coming from each cycle is stored in the 

field best_index of the lib_DESIGN and the int_limits, all_limits, n_int and n_all calculated and stored using this value. 



 

 

Supplementary Figure 7: libDESIGN codification 

 

Once the libDESIGN is created, the next step is to calculate the int_limits, all_limits and best_index fields. The value of those fields determines 

the heavy atom distribution of final molecules in the libDESIGN and are calculated in such a way that the number of molecules in the 

libDESIGN is maximized while the desired heavy atom distribution is maintained. 

As described before, the bbts field contains the list of BBT indexes corresponding to the BBTs that can be mixed in that specific cycle. The 

int_limits and all_limits fields have the same structure (a list of integers for each cycle), but their values represent how many building blocks 

must be taken from each BBT smiles file (starting from the beginning) to construct the final file containing building blocks for t hat cycle. 

Since the compounds in the smiles file corresponding to each BBT were sorted in ascending order by heavy atoms count, the number of 

compounds taken from each individual file will determine the heavy atom distribution of the library. The reason that there are two different 

fields is because we have created two versions of each BBT smiles file, one containing only internally available building blocks (and thus 

accessible immediately) and the other containing both internally and externally compounds. 

The best_index field is the key field to determine the heavy atom distribution since the int_limits and all_limits fields are both derived from 

it. The best_index field represents the maximum number of heavy atoms that is allowed for a BBT in each cycle. This is a list of integers (one 

per cycle), and it is the value that maximizes the number of compounds in a libDESIGN while keeping the desired heavy atom distribution. 

The number of heavy atoms in a molecule belonging to a libDESIGN depend on three values  only: the number of atoms supplied by the 

headpiece, the number of atoms contained in the added scaffolds and the number of atoms supplied by the building blocks. The first value 

is taken as a parameter. It is worth noting that the headpiece (and attached DNA) is a huge molecule, that we largely ignore for atom 

counting purposes and solely focus on what it is going to be resynthesized off-DNA after finding actives. The decision of what is the exact 

portion of the headpiece added to the molecule to be re-synthesized is left to the medicinal chemist. In practice it is usually a small piece, 

therefore for the purposes of this study we have used 4 atoms as the parameter. The second value (the number of heavy atoms 

supplemented as scaffolds) is taken from the deprotection parameters table (parameters workbook) for each specific libDESIGN. After 

compiling all the de-protection reactions that increase molecular mass (stored in the libDESIGN field scaffold_reactions) the number of 

added atoms is computed by adding the atom_diff parameter. Since the first two values are constant for each libDESIGN, the optimization 

focuses on the third set of values (atoms that come from each building block). The method used is to enumerate all possible combinations 

of number of atoms coming from each cycle where the sum of those atoms plus the atoms coming from the headpiece and scaffolds add up 

to one pre-specified number (vide infra). Then, for each combination, the total number of molecules with equal or lower number of heavy 

atoms is computed. This is done using the field n_internal in the BBT dictionary corresponding to each BBT in the lib_DESIGN. The 

combination that gave the highest number of compounds was the one selected and stored along the number of compounds that it would 

produce. 

 

2.7.- Library compound enumeration: 

Library enumeration uses instructions in libDESIGN configuration files. Typically, each enumeration instruction set starts with the 

introduction of a headpiece chemical structure represented in smiles format. Instructions for each synthetic step or cycle follow including 
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reactions introducing appropriate building block sets and any necessary deprotection reactions. In the case of the former type of reactions 

necessary building block sets are provided through the libDESIGN file. Standard functional group deprotections are also invok ed at the 

conclusion of the enumeration process to ensure that molecules containing matching protecting groups are properly processed. Note that 

molecules not containing protecting groups are left intact.  

A sample of a libDESIGN configuration file for eDesigner 2-cycle library number 411 is shown in Supplementary figure 8 below. The 

enumeration is first instructed on how to build the building block files C1.smi and C2.smi that contain building blocks for each cycle. This is 

performed by picking a molecules from a number of files representing BBTs used in each cycle (format 

<bbt_file.smi>:number_of_molecules_to_include). The library initiates with an on-DNA substructure indicated at line starting with code 

word ‘START’. Each subsequent step starts with the code word ‘AND’ and ends with symbol ‘|’. Within each step the operation to be 

performed is always described by a reaction file name followed with the necessary reactants if required.  Step 1 introduces a scaffold by the 

reaction of the amine in the headpiece with cyanuric acid. This reaction generates a dichlorotriazine functional group that is used to perform 

a nucleophilic aromatic substitution with phenols contained in the file C1.smi. The third step is a second nucleophilic aromatic substitution, 

in this case with a collection of amines contained in the file C2.smi. The last steps are a set of boc and fmoc deprotections and ester hydrolysis 

to ensure all possible remaining functional groups in the molecules are deprotected. 

Supplementary figure 9 presents an example libDESIGN configuration file for 3-cycle library 1273. Supplementary figure 10 presents an 

example reaction file for amide formation (2.1.2_Carboxylic_acid_+_amine_condensation_FROM_amines_AND_carboxylic_acids). 



 

Supplementary Figure 8. lib_DESIGN number 441 in configuration file used for the enumeration of a DEL library. Comment lines begin with 

symbol ‘#’ 

# Start enumeration instructions 

# Design number 411 

# Design fingerprint (2, 3, 11, 68, 8, 0, -1, 1, 5, -1, 0, -1) 

# Design scope 411.ALL 

# Design size 2584050 

# Design number of cycles 2 

# MAKE C1.smi WITH 

{'9.smi':686,'90.smi':6,'188.smi':23,'272.smi':39,'309.smi':94,'310.smi':12,'311.smi':8,'313.smi':96,'314.smi':330,'320.smi': 41,'322

.smi':4,'2808.smi':9,'2809.smi':16,'3740.smi':1,'3744.smi':10,'3745.smi':35,'4213.smi':15,'4214.smi':46,'4250.smi':2,'4288.s mi':1,'

4302.smi':24} 

# MAKE C2.smi WITH 

{'3.smi':413,'21.smi':686,'22.smi':1,'84.smi':22,'102.smi':32,'124.smi':12,'127.smi':1,'130.smi':49,'132.smi':74,'133.smi':44 ,'137.s

mi':2,'200.smi':29,'434.smi':113,'473.smi':102,'498.smi':93,'545.smi':2,'565.smi':17,'566.smi':3,'586.smi':5,'588.smi':4,'590.smi':1

,'1361.smi':1,'1658.smi':3,'2968.smi':6,'5311.smi':9,'5336.smi':1}START: [13CH3]OCCNC core 

AND: 

<reactions_folder>/X.X.X_Triazine_Dichloro_FROM_amines_aliphatic_AND_Null.rxn 

| 

AND: 

<reactions_folder>/1.7.11_SNAr_ether_synthesis_FROM_triazine_chloro_AND_phenols.rxn||file=<compounds_folder>/C1.smi 

| 

AND: 

<reactions_folder>/X.X.X_SnAr_aniline_synthesis_FROM_triazine_chloro_AND_amines.rxn||file=<compounds_folder>/C2.smi 

| 

AND: 

<reactions_folder>/6.1.1_N-Boc_deprotection_FROM_boc_AND_Null.rxn 

NOOP 

| 

AND: 

<reactions_folder>/6.1.1_N-Boc_deprotection_FROM_boc_AND_Null.rxn 

NOOP 

| 

AND: 

<reactions_folder>/6.1.6_N-Fmoc_deprotection_FROM_fmoc_AND_Null.rxn 

NOOP 

| 

AND: 

<reactions_folder>/6.1.6_N-Fmoc_deprotection_FROM_fmoc_AND_Null.rxn 

NOOP 

| 

AND: 

<reactions_folder>/9.7.61_Ester_hydrolysis_FROM_esters_methyl_ethyl_AND_Null.rxn 

NOOP 

| 

AND: 

<reactions_folder>/9.7.61_Ester_hydrolysis_FROM_esters_methyl_ethyl_AND_Null.rxn 

NOOP 

# End enumeration instructions 



 

Supplementary Figure 9. lib_DESIGN number 1273 in configuration file used for the enumeration of a DEL library. Comment lines begin with 

symbol ‘#’ 

 

# Start enumeration instructions 

# Design number 1273 

# Design fingerprint (3, 21, 7, 49, 27, 0, 0, 6, -1, 0, 5, 7, -1, -1, -1, 9) 

# Design scope 1273.ALL 

# Design size 41374476 

# Design number of cycles 3 

# MAKE C1.smi WITH {'15.smi':28,'459.smi':8,'460.smi':30} 

# MAKE C2.smi WITH {'55.smi':121,'1064.smi':4,'1065.smi':3,'1068.smi':13} 

# MAKE C3.smi WITH 

{'3.smi':1172,'21.smi':1672,'22.smi':10,'84.smi':46,'102.smi':56,'127.smi':2,'130.smi':156,'132.smi':227,'133.smi':169,'136.smi':8,'

137.smi':12,'139.smi':2,'316.smi':2,'434.smi':250,'473.smi':189,'498.smi':287,'544.smi':7,'545.smi':19,'565.smi':63,'566.smi' :33,'5

86.smi':7,'588.smi':5,'590.smi':1,'1361.smi':1,'1658.smi':6,'2063.smi':7,'2064.smi':6,'4284.smi':1,'4298.smi':6,'5311.smi':12,'5336

.smi':11,'5426.smi':1} 

START: [13CH3]OCCN core 

AND: 

<reactions_folder>/1.3.8_Fluoro_N-arylation_FROM_amines_AND_nitro_fluoro.rxn||file=<compounds_folder>/C1.smi 

| 

AND: 

<reactions_folder>/4.1.45_Benzimidazole_synthesis_FROM_o_nitro_sec_aniline_AND_aldehydes.rxn||file=<compounds_folder

>/C2.smi 

| 

AND: 

<reactions_folder>/9.7.61_Ester_hydrolysis_FROM_esters_methyl_ethyl_AND_Null.rxn 

| 

AND: 

<reactions_folder>/2.1.2_Carboxylic_acid_+_amine_condensation_FROM_carboxylic_acids_AND_amines.rxn||file=<compound

s_folder>/C3.smi 

| 

AND: 

<reactions_folder>/6.1.1_N-Boc_deprotection_FROM_boc_AND_Null.rxn 

NOOP 

| 

AND: 

<reactions_folder>/6.1.1_N-Boc_deprotection_FROM_boc_AND_Null.rxn 

NOOP 

| 

AND: 

<reactions_folder>/6.1.6_N-Fmoc_deprotection_FROM_fmoc_AND_Null.rxn 

NOOP 

| 

AND: 

<reactions_folder>/6.1.6_N-Fmoc_deprotection_FROM_fmoc_AND_Null.rxn 

NOOP 

| 

AND: 

<reactions_folder>/9.7.61_Ester_hydrolysis_FROM_esters_methyl_ethyl_AND_Null.rxn 

NOOP 

| 

AND: 

<reactions_folder>/9.7.61_Ester_hydrolysis_FROM_esters_methyl_ethyl_AND_Null.rxn 

NOOP 

# End enumeration instructions 



 

Supplementary Figure 10. Distributions of number of atoms (top) and clogP (bottom) for 5 random subsets of 2-cycle libDESIGN 411. The 5 

subsets consist of 1k, 10k, 100k, 1mln and 10mln compounds. Note that the distributions of all sets are practically indistinguishable with the 

exception of the 1k subset. 

 

 

Supplementary Figure 11. Distributions of number of atoms (top) and clogP (bottom) for 5 random subsets of 3-cycle libDESIGN 1273. The 

5 subsets consist of 1k, 10k, 100k, 1mln and 10mln compounds. Note that the distributions of all sets are practically indisti nguishable with 

the exception of the 1k subset. 

 

 



 

Supplementary Figure 12: Sample reaction description file in LillyMol format for reaction type:  

2.1.2_Carboxylic_acid_+_amine_condensation_FROM_amines_AND_carboxylic_acids.rxn. The reaction instructions connects “scaffold” 

building blocks with id 0 to “sidechain” building blocks with id 1. The scaffold building blocks must contain an aliphatic or  aromatic primary 

or secondary amine as represented by the smarts within the bracketed description of “Scaffold” description. The sidechain bui lding blocks 

must contain a carboxylic acid as represented by the smarts within the bracketed description of “Sidechain” description. Leaving atoms are 

indicated by the “remove_atom” directive. Bond joins are indicated by the “join” directive.  

A full listing of the reactions used by eDesigner can be found at https://github.com/EliLillyCo/LillyMol section contrib, eDesigner paper. 

  

(0 Reaction 

  (A C Comment "2.1.2_Carboxylic_acid_+_amine_condensation_FROM_amines_AND_carboxylic_acids")  

  (0 Scaffold 

     (A C smarts "[ND1H2]-[CX4]||[ND2H]([CX4])[CX4]||[ND1H2]-a||[ND2H]([CX4])-a||[ND2H](a)-a") 

  ) 

  (1 Sidechain 

     (A C smarts "[C](=O)([OH])")  

     (A I remove_atom 2) 

     (A I join (0 0)) 

  ) 

) 

https://github.com/EliLillyCo/LillyMol


Supplementary method 3: Sample Commands. 

 

The following commands can be found in the open source LillyMol github project available at: https://github.com/EliLillyCo/LillyMol  

3.1- Building Block Annotation file preparation example: 

tsubstructure -v -q F:fgqueries -A D -a train.smi > train_profile.txt 

    (generate a functional group annotation table (-a) for structures in 

train.smi using standard functional group annotation queries listed in file 

fgqueries(-q); use daylight aromaticity (-A); verbose mode (-v)) 

The list of functional group queries and the ‘fgqueries’ file can be found in the contrib folder of the LillyMol github project.  

3.2- libDESIGN enumeration example: 

 molecular_transformations -N 10000 -S sample_design -m RMX -z i -M RMX -Z -W 

rxsep='>>' -W rgsep='+' -A D -u -T sample_design.config 

    (read sample_design.config configuration file (-T) and enumerate 10000 

structures (-N); store the enumerated structures in file with stem sample_design; 

use Daylight aromaticity rules (-A D), one embedding per start atom (-u); ignore 

non reacting molecules (-z i); ignore non reacting sidechains (-Z); ignore 

molecules with multiple substructure matches (-m RMX); ignore sidechains with 

multiple substructure matches (-M RMX); place ‘>>’ between reaction steps (-W 

rxsep='>>'); place ‘+’ between reagents (-W rgsep='+') 

 

3.3- Fingerprint generation command example: 

iwfp train.smi > train.gfp 

    (calculate hashed path-based fingerprints for structures in train.smi 

 

3.4- Near neighbor calculation command example: 

gfp_nearneighbours -p pubchem.gfp -n 2 -T 0.5 train.gfp > train.nn 

 (compare fingerprints in train.gfp (needles) against fingerprints in 

fingerprint set pubchem.gfp (haystack, -p); retrieve 2 nearest neighbours for 

each needle in train.gfp (-n 2); discard distances greater than 0.5 (-T 0.) 

 

3.5- Spread calculation command example: 

gfp_spread_v2 -A haystack.gfp train.gfp > train.spd 

 (compute the spread distance of fingerprints in train.gfp. Bias away 

from fingerprints in the reference set haystack.gfp (-A)) 

 

https://github.com/EliLillyCo/LillyMol


Supplementary Notes 

 

Supplementary note 1: Reaction utilization. 

 

Supplementary figures 13 and 14 summarize the number of instances each reaction has been used in the selected 2-cycle and 3-cycle 

libDESIGNS respectively. Supplementary figures 15 and 16 summarize the number of instances each deprotection / scaffold incorporation 

has been used in the selected 2-cycle and 3-cycle libDESIGNS respectively. 

 

 

Supplementary Figure 13. BBT incorporation reaction analysis for 2 cycle libraries 

 



 

Supplementary Figure 14. BBT incorporation reaction analysis for 3 cycle libraries 



 

Supplementary Figure 15. deprotection reaction analysis for 2 cycle libraries 



 

Suppmentary Figure 16. deprotection reaction analysis for 3 cycle libraries 

  



Supplementary note 2: Spread design analysis. 

Supplementary figure 17 presents spread design analysis on the 3-cycle library (X) sets enumerated with internal BBs. Library spread design 

rank-orders libraries by diversity to a reference set in this case the ADEL and LDC compound sets. As shown, 3-cycle libDESIGNs have spread 

values ranging from 0.31 (most diverse from reference sets) to 0.17.  

 

Supplementary Figure 17. Spread design analysis for 3-cycle libDESIGNs 

 

 


