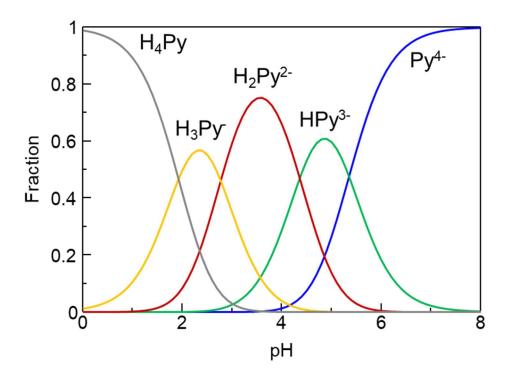
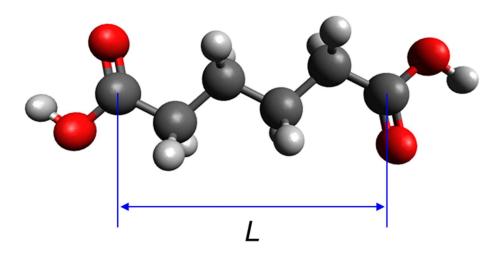

Supplementary Information


Incorporation of tetracarboxylate ions into octacalcium phosphate for the development of next-generation biofriendly materials

Taishi Yokoi^{1,2*}, Tomoyo Goto³, Mitsuo Hara⁴, Tohru Sekino³, Takahiro Seki⁴, Masanobu Kamitakahara⁵, Chikara Ohtsuki⁶, Satoshi Kitaoka², Seiji Takahashi² and Masakazu Kawashita¹


- ¹ Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
- ² Materials Research and Development Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
- ³ The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
- ⁴ Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- ⁵ Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- ⁶ Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Supplementary Figure 1: Powder XRD pattern of calcium pyromellitate. Calcium pyromellitate was synthesised by mixing the following solutions at 60.5 °C: 5 cm³ of 1 mol·dm⁻³ CaCl₂ solution and 200 mol·m⁻³ of acetate buffer solution containing 5 mol·m⁻³ pyromellitic acid (pH=5.5).

Supplementary Figure 2: Dissociation states of pyromellitate ions with respect to the pH. The dissociation states of pyromellitic acid were calculated based on the following dissociation constants: $pK_{a1}=1.92$, $pK_{a2}=2.77$, $pK_{a3}=4.36$, and $pK_{a4}=5.35$ [Ref. 39].

Supplementary Figure 3: Schematic illustration showing the definition of L. L is the distance between the carbon atoms of two carboxy groups of a carboxylic acid (in this case adipic acid).