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Supplementary Information 

Supplementary Note 1: 

Derivation of Gaussian Process for Linearly Transformed and Repeated Measurements 

The RXES spectrum is a function of 𝐱 = [𝜔𝑒 , 𝜔𝑖], where 𝜔𝑖 is the incident photon energy and 𝜔𝑒 

is the emission photon energy. At a given 𝐱, the RXES function returns a scalar intensity 𝑦 =
𝑓(𝐱). To obtain the RXES plane, one repeatedly probes this function for a grid of input values 𝐗 

that are of interest. A Gaussian Process (GP) is a flexible distribution over scalar-valued 

functions that accepts multi-dimensional inputs. We can use some of its unique statistical 

properties to form a tractable Bayesian model to recover the RXES function from the 

measurements. We assume the intensity observations are corrupted by Gaussian noise 

𝐲~𝑁(𝐟, 𝜎2𝐈), a standard assumption for GP models that allows one to analytically state the 

conditional distribution of the RXES function given observations. In this derivation, we show 

how the standard GP regression setting (see Chapter 2 of Rasmussen and Williams1) can be 

adapted to linearly transformed and repeated measurements in a computationally efficient way. 

During the experiment, we do not observe the RXES function directly. Instead each 

polychromatic shot produces an intensity that is related to the RXES function as a linearly 

weighted sum of RXES function values: 𝑦𝑖 = 𝐰𝑇𝑓(𝐗), where 𝐰 is a vector representing the 

SASE spectral intensity for a given shot. In addition to linearly transforming the observations, 

there are two key constraints in this problem setting that have a large impact on computational 

cost. The first is that the input 𝐗 is repeated for each shot taken since both SASE and emission 

spectrometers remain fixed. Second, the input 𝐗 is as a Cartesian product over all possible 

incident and emission energy pairs. These aspects will be exploited later in the derivation with 

the consequence that training computational cost is independent of the number of shots taken. 

We can show that any linear operator acting on the RXES function during measurement 

results only in a slight modification of the setting. A practitioner will need two expressions: the 

marginal likelihood, which is the objective function used to optimize hyper parameters, and the 

predictive distribution, which is used to plot the spectrum and error estimate. The marginal 

likelihood is the distribution of the observed intensities under the assumed model when all 

possible values of the RXES function have been integrated out. In this problem setting, the 

marginal likelihood is 𝑦~ ∫ 𝑑𝑓 𝑁(𝑦; 𝐎𝐟, 𝜎2𝐈)𝑁(𝐟; 0, 𝑘(𝐗)), where 𝑁(∙; 𝜇, 𝜎) is a normal 

distribution density, 𝐎 is a linear operator, and 𝑘(∙) is the kernel function (see main text). If 𝐎 is 

the identity matrix, this statement of the marginal likelihood corresponds that found in the 

standard GP setting. With a change of variables 𝐠 = 𝐎𝐟, we can instead write 

𝐲~ ∫ 𝑑𝐠 𝑁(𝐲; 𝐠, 𝜎2𝐈)𝑁(𝑔; 0, 𝐎𝑘(𝐗)𝐎𝑇). This integral, the convolution of two Gaussian densities, 

is also Gaussian, so 𝑦~𝑁(𝐲; 0, 𝐎𝑘(𝐗)𝐎𝑇 + 𝜎2𝐈). Under the GP model all values of the RXES 

function are distributed jointly as a multivariate normal for any finite set of points, which means 

the joint distribution of polychromatic observations 𝐲 and RXES function values 𝑓(𝐗∗) are given 

by: 

 
[

𝐲

𝑓(𝐗∗)] ~𝑁 ([
0
0

] , [
𝜎2𝐈 + 𝐎𝑘(𝐗)𝐎𝑇 𝐎𝑘(𝐗, 𝐗∗)

𝑘(𝐗∗, 𝐗)𝐎𝑇 𝑘(𝐗∗)
]) 

 

(1) 
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From this joint distribution, the conditional distribution of the RXES function given our 

linearly transformed measurements, also known as the predictive distribution, is also normally 

distributed. The mean and covariance of the predictive distribution is: 

 𝔼[𝑓(𝐗∗)] = 𝑘(𝐗∗, 𝐗)𝐎𝑇[𝜎2𝐈 + 𝐎𝑘(𝐗)𝐎𝑇]−1𝐲 
𝕍[𝑓(𝐗∗)] = 𝑘(𝐗∗) − 𝑘(𝐗∗, 𝐗)𝐎𝑇[𝜎2𝐈 + 𝐎𝑘(𝐗)𝐎𝑇]−1𝐎𝑘(𝐗, 𝐗∗) 

(2) 

The mean and covariance functions are the best fit and error of the fit, respectively. The 

linear operator 𝐎 can be broken into two linear operators, one that tiles the RXES function to 

reflect the repeated measurement axes for each shot, and one that applies the SASE spectral 

weights. To tile the RXES function evaluated on a grid of emission and incident energy positions 

with a linear operator 𝑛 times, we left multiply by 𝐓 = 𝐈𝑞 ⊗ 𝟏𝑛 ⊗ 𝐈𝑟. 𝟏𝑛 is a column vector of 

value 1 with 𝑛 rows, 𝐈𝑟 is an identity matrix of size the number of pixels in the SASE 

spectrometer measurement, 𝐈𝑞 is an identity matrix of size the number of pixels in the emission 

spectrometer measurement, and ⊗ denotes a Kronecker product. To apply SASE weights, the 

operator is �̃� = 𝐈𝑞 ⊗ 𝑅𝐾𝑅{𝐈𝑛, 𝐖}, where W are the SASE spectral intensity measurements 

arranged in rows, and RKR denotes the row-partitioned Khatri-Rao2 product. The two operators 

can be simultaneously applied, which results in considerable simplification: 

 𝐓�̃� = (𝐈𝑞 ⊗ 𝟏𝑛 ⊗ 𝐈𝑟)(𝐈𝑞 ⊗ 𝑅𝐾𝑅{𝐈𝑛, 𝐖}) 

 = 𝐈𝑞 ⊗ 𝐖 

≜ 𝐎 

(3) 

Equipped with this definition of the linear operator, we have a naïve set of equations 

which can solve the problem, but as posed both the prediction and objective function scale 

cubically in the number of shots, which would make it only feasible to measure around 10k shots 

before exhausting compute resources on a desktop machine. The cubic computational cost comes 

from the need to invert the matrix 𝜎2𝐈 + 𝐎𝑘(𝐗)𝐎𝑇 as well as to find its determinant (which 

appears in the evaluation of the marginal likelihood). The linear operator 𝐎 is of size 𝑛 × 𝑞𝑟 and 

for many more shots 𝑛 than pixels in the RXES plane 𝑞𝑟, this matrix takes on an advantageous 

diagonal plus low-rank matrix format. The Woodbury matrix identity3 and determinant lemma4 

allows us to exactly re-write the inverse and determinant of a diagonal plus low-rank form 

matrix, respectively as: 

 𝚺 = 𝜎2𝐈 + 𝐎𝑘(𝐗)𝐎𝑇 
𝐁 ≜ 𝐈𝑟𝑞 + 𝜎−2𝐋𝑇𝐎𝑇𝐎𝐋 

𝚺−1 = 𝜎−2𝐈 − 𝜎−4𝐎𝐋𝐁−1𝐋𝑇𝐎𝑇 
det(𝚺) ≜ 𝜎2𝑛det(𝐁) 

(4) 

Where 𝐋 denotes the Cholesky factor of 𝑘(𝐗). In this form, the computational complexity 

will be dominated by computing the Cholesky factorization of 𝐁, which is 𝑟 × 𝑞, hence the 

computation is cubic in the size of the RXES plane, rather than the number of shots. With these 

pieces, we can state the formulae used to obtain the spectra in Figure 2 and the various simulated 

signal recovery scenarios. A few intermediate variables to abbreviate the equations: 

 𝐋𝑖 ≜ cholesky(𝑘i(𝐗)) 

Le ≝ cholesky(𝑘𝑒(𝑥)) 

LTOT𝑦 ≝ Le
T⊗Li

𝑇WTy 
B ≝ I + σ−2Le

TLe ⊗ Li
𝑇𝑊𝑇𝑊Li 

k(∗, 𝑥) ≝ ke(∗, 𝑥) ⊗ ki(∗, 𝑥) 
k(∗, 𝑥)OTOL ≝ ke(∗, 𝑥)Le ⊗ ki(∗, 𝑥)WTWLi 

k(∗, x)OT ≝ ke(∗, x) ⊗ ki(∗, 𝑥)WT 

(5) 
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𝐂 ≜ ke(∗, 𝐗)Le ⊗ 𝑘i(∗, 𝐗)𝐖𝑇𝐖𝐋i 
 

 𝔼[𝑓(∗)] = σ−2𝑘e(∗, 𝐗) ⊗ 𝑘i(∗, 𝐗)𝐖T𝐲
+ σ−4k(∗, 𝐗)𝐎T𝐎𝐋𝐁−1𝐋T𝐎T𝐲 

𝕍[𝑓(∗)] = ke(∗,∗) ⊗ ki(∗,∗) − σ−2ke(∗, 𝐗)ke(𝐗,∗)
⊗ ki(∗, 𝐗)ki(𝐗,∗) + 𝐂𝐁−1𝐂T 

ℒ = −
𝑛𝑞

2
log(2𝜋) −

𝑛𝑞

2
log(𝜎−2) − sumlogdiag(cholesky(𝐁))

− 𝜎−2𝐲𝑇𝐲 + 𝜎−4𝐲𝑇𝐎𝐋𝐁−1𝐋𝑇𝐎𝑇𝐲 

  

The notation 𝑘𝑒(∙) indicates that a separate kernel is used for the emission energy values 

from the incident energy kernel 𝑘𝑖(∙). This separation is valid for separable kernels, such as 

Squared Exponential or the Matern family of kernels. The overall kernel for a two-dimensional 

input is given by the product: 𝑘𝑒(∙)𝑘𝑖(∙), which for gridded inputs results in a Kronecker product: 

𝑘(∙) = 𝑘𝑒(∙) ⊗ 𝑘𝑖(∙). Furthermore, we signify training energy positions always as 𝐗 while 

prediction positions are noted ∗. These positions may be the same or different from one another. 

Note that terms that scale with the number of shots 𝑛 like 𝐖 or 𝐲 always appear as either 𝐖𝑇𝐲 or 

𝐖𝑇𝐖, which means that these terms can be pre-compute and cached – eliminating any scaling of 

the predictive distribution 𝑓(∗) or the objective function ℒ on the number of shots.  

  

 

 

As for Figure 1, in panel a, the recovered RXES plane of the Kα1 line in the pre-edge region 

from polychromatic beam measurements for 101,000 shots is compared to a monochromatic 

measurement with 42,000 shots in panel b. Solid black contour lines indicate an increase of 

RXES intensity by 2σ, where σ is the standard deviation of the predictive distribution estimated 

for a given emission/incident energy point. In panel c, a slice at constant emission energy 

(6.4033 keV) through the RXES plane is shown spanning a wider range of incident energies than 

in panels a and b. 

 

Supplementary Figure 1: Impact of longer measurement for stochastic spectroscopy 
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In Figure 1, the corrected monochromatic signal is shown. The effect of the correction is shown 

in panel a. The correction mainly affects contrast between features from 7.115-7.120 keV 

compared with the peak near 7.130 keV. The shape of the filter, shown in panel b, was optimized 

to match reference measurements of the same compound5. The shape of the filter applied, and the 

fact that the polychromatic measurements required no correction to match reference spectra, 

suggests the loss of contrast is due to a shift of beam spatial intensity distribution upon changing 

from SASE to monochromatic beam. Panel c depicts the average SASE spectrum transmitted 

through all monochromator settings before and after the corrective filter is applied. 

Supplementary Figure 2: Corrective effects applied to monochromatic data 
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In panel a, the average SASE spectrum for each of the 17 independent subsets studied in Figure 

2 is shown, with their lines colored the same as in Figure 2. In panel b, the intensity distribution 

over all shots of the simulated data is compared to the experimentally measured through an 

empirical histogram. 

 

Supplementary Figure 3: Simulation details 
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