Supplementary Information

Templated Interfacial Synthesis of Metal-Organic Framework (MOF) Nano- and Micro-Structures with Precisely Controlled Shapes and Sizes

Lingyao Meng,¹Binyu Yu² and Yang Qin^{1,2} *

¹ Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA

² Department of Chemical and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, CT 06269, USA

* Corresponding Author; E-mail: yang.qin@uconn.edu

Figure S1: Scanning electron microscopy (SEM) images of both surfaces of pristine track-etched polycarbonate (PCTE) membranes with different pore sizes applied for the templated interfacial synthesis in the current studies. The terms "organic" and "aqueous" indicate surfaces in contact with 1-octanol and water solutions during synthesis, respectively.

-	-			
 Pore Diameter	Thickness (µm)	Pore Density (pores/cm ²)	Open Area (%)	
 10 nm	6	6 x 10 ⁸	< 1	
30 nm	6	$6 \ge 10^8$	<1	
100 nm	6	$4 \ge 10^8$	3	
200 nm	10	$3 \ge 10^8$	10	
2 µm	10	$2 \ge 10^{6}$	6	
10 µm	10	1 x 10 ⁵	8	
20 µm	3	$4 \ge 10^4$	13	

Table S1. Manufactory specifications of the track-etched polycarbonate (PCTE) membranes.

ZIF-8/Pore Size	$[Zn^{2+}]$ Conc.(M)	[2-MIM] Conc. (M)	Reaction Time (h)
10 nm	0.06	1	4
30 nm	0.025	1	1
100 nm	0.042	2	1
200 nm	0.025	0.5	4
2 µm	0.1	2	4
10 µm	0.025	1	4
20 µm	0.025	2	4
ZIF-67/Pore Size	$[Co^{2+}]$ Conc.(M)	[2-MIM] Conc. (M)	Reaction Time (h)
ZIF-67/Pore Size 10 nm	[Co ²⁺] Conc.(M) 0.042	[2-MIM] Conc. (M) 2	Reaction Time (h) 4
<i>ZIF-67/Pore Size</i> 10 nm 30 nm	[Co ²⁺] Conc.(M) 0.042 0.025	[2-MIM] Conc. (M) 2 0.75	Reaction Time (h) 4 1
ZIF-67/Pore Size 10 nm 30 nm 100 nm	[Co ²⁺] Conc.(M) 0.042 0.025 0.06	[2-MIM] Conc. (M) 2 0.75 2	Reaction Time (h) 4 1 1
ZIF-67/Pore Size 10 nm 30 nm 100 nm 200 nm	[Co ²⁺] Conc.(M) 0.042 0.025 0.06 0.06	[2-MIM] Conc. (M) 2 0.75 2 2 2	<i>Reaction Time (h)</i> 4 1 1 4
ZIF-67/Pore Size 10 nm 30 nm 100 nm 200 nm 2 μm	$\begin{array}{c} \hline [Co^{2+}] \ Conc.(M) \\ 0.042 \\ 0.025 \\ 0.06 \\ 0.06 \\ 0.1 \end{array}$	[2-MIM] Conc. (M) 2 0.75 2 2 2 2	<i>Reaction Time (h)</i> 4 1 1 4 4 4
ZIF-67/Pore Size 10 nm 30 nm 100 nm 200 nm 2 μm 10 μm	$[Co^{2+}] Conc.(M)$ 0.042 0.025 0.06 0.06 0.1 0.06	[2-MIM] Conc. (M) 2 0.75 2 2 2 2 1	<i>Reaction Time (h)</i> 4 1 1 4 4 4 6

Table S2. Reaction conditions for the synthesis of ZIF-8 and ZIF-67 nano- and micro-structures.

Table S3. Crystallographic preferred orientation (CPO) indices for different sizes of MOF nanostructures.

ZIF-8/Pore Size	CPO (002)/(011)	CPO (002)/(112)
10 nm	6.17	1.26
30 nm	5.25	1.51
100 nm	7.09	1.96
200 nm	5.64	1.38
2 µm	6.14	1.27
10 µm	7.34	1.45
20 µm	7.55	1.98
ZIF-67/Pore Size	CPO (002)/(011)	CPO (002)/(112)
10 nm	11.28	2.05
30 nm	9.20	2.78
100 nm	10.02	2.13
200 nm	9.49	2.21
2 µm	7.78	2.46
10 µm	10.60	2.08
20 µm	7.89	1.79

Figure S2. (a)-(h) Transmission electron microscopy (TEM) images of ZIF-8 and ZIF-67 nanowires and nanorods formed within 10 nm, 30 nm, 100 nm and 200 nm pores of corresponding PCTE templates; (i)-(n) optical microscopic images of ZIF-8 and ZIF-67 micro-rods, micro-cylinders, and micro-disks formed respectively in 2μ m, 10 μ m, and 20 μ m pores of corresponding PCTE templates.

		_	
Structure	Template pore diameter	Diameter	Length
10 nm ZIF-8	N/A	$18.33 \pm 2.51 \text{ nm}$	$1.74\pm0.26~\mu m$
30 nm ZIF-8	$26.48 \pm 4.79 \text{ nm}$	$30.53\pm2.24~\text{nm}$	$1.65\pm0.69~\mu m$
100 nm ZIF-8	$84.24 \pm 12.96 \text{ nm}$	$112.51 \pm 14.30 \text{ nm}$	$2.39\pm0.91~\mu m$
200 nm ZIF-8	$197.62 \pm 16.23 \text{ nm}$	$197.25 \pm 24.52 \text{ nm}$	$2.60\pm0.66~\mu m$
2 μm ZIF-8	$1.67\pm0.12~\mu m$	$1.58\pm0.16~\mu m$	$7.56\pm0.59~\mu m$
10 µm ZIF-8	$8.13\pm0.84~\mu m$	$7.24\pm1.07~\mu m$	$10.67\pm2.48~\mu m$
20 µm ZIF-8	$19.14\pm1.67~\mu m$	$19.22\pm1.45~\mu m$	$2.38\pm0.60~\mu m$
10 nm ZIF-67	N/A	$24.01\pm2.62~\text{nm}$	$1.78\pm0.70~\mu m$
30 nm ZIF-67	$26.48 \pm 4.79 \text{ nm}$	$28.86\pm2.71~\text{nm}$	$1.38\pm0.39~\mu m$
100 nm ZIF-67	$84.24 \pm 12.96 \text{ nm}$	$76.01\pm7.63~\text{nm}$	$1.98\pm0.37~\mu m$
200 nm ZIF-67	$197.62 \pm 16.23 \text{ nm}$	$204.18\pm17.26~\mu m$	$4.02\pm0.63~\mu m$
2 µm ZIF-67	$1.67\pm0.12~\mu m$	$1.76\pm0.13~\mu m$	$6.92\pm0.48~\mu m$
10 µm ZIF-67	$8.13\pm0.84~\mu m$	$8.20\pm0.79~\mu m$	$9.63\pm2.37~\mu m$
20 µm ZIF-67	$19.14\pm1.67~\mu m$	$18.94\pm1.35~\mu m$	$2.88\pm0.52~\mu m$

Table S4. Template pore diameters, ZIF structure diameters and lengths sampled and averaged from 100 individual subjects of dissolved structures.

Table S5. Synthesis condition optimization for ZIF-7 nano-structures using PCTE templates with 100 nm pore sizes. BIM: benzimidazole. $Zn(NO_3)_2$ is the Zn^{2+} source.

Attempts	$[Zn^{2+}]$ Conc.(M)	[BIM] Conc. (M)	Reaction Time (h)
(a)	0.236	1	4
(b)	0.236	2	4
(c)	0.236	3	4

Figure S3. PXRD profiles of post-synthesis templates using conditions listed in Table S5.

Figure S4. TEM images of isolated ZIF-7 nanostructures from reaction conditions (b) in Table S5.

Table S6. Synthesis condition optimization for ZIF-8 nano-structures using PCTE templates with 10 nm pore sizes. 2-MIM: 2-Methylimidazole. $Zn(NO_3)_2$ is the Zn^{2+} source.

Attempts	[Zn ²⁺] Conc.(M)	[2-MIM] Conc. (M)	Reaction Time (h)
(a)	0.025	1	4
(b)	0.06	1	4
(c)	0.025	2	4

Figure S5. PXRD profiles of post-synthesis templates using conditions listed in Table S6.

Figure S6. TEM images of isolated ZIF-8 10 nm nano-structures from reaction conditions (a)-(c) in Table S6.

Table S7. Synthesis condition optimization for ZIF-8 nano-structures using PCTE templates with 200 nm pore sizes. 2-MIM: 2-Methylimidazole. $Zn(NO_3)_2$ is the Zn^{2+} source.

Attempts	$[Zn^{2+}]$ Conc.(M)	[2-MIM] Conc. (M)	Reaction Time (h)
(a)	0.025	0.5	4
(b)	0.025	1	4
(c)	0.025	2	4

Figure S7. PXRD profiles of post-synthesis templates using conditions listed in Table S7.

Figure S8. TEM images of isolated ZIF-8 200 nm nano-structures from reaction conditions (a)-(c) in Table S7.

Table S8. Synthesis condition optimization for ZIF-8 micro-structures using PCTE templates with 2 μ m pore sizes. 2-MIM: 2-Methylimidazole. Zn(NO₃)₂ is the Zn²⁺ source.

Attempts	$[Zn^{2+}]$ Conc.(M)	[2-MIM] Conc. (M)	Reaction Time (h)
(a)	0.025	1	4
(b)	0.06	1	4
(c)	0.1	1	4
(d)	0.5	1	4
(e)	1	1	4
(f)	1.5	1	4
(g)	2	1	4
(h)	0.025	2	4
(i)	0.06	2	4
(j)	0.1	2	4
(k)	0.5	2	4

Figure S9. PXRD profiles of post-synthesis templates using conditions listed in Table S8.

Figure S10. TEM images of isolated ZIF-8 2 μ m micro-structures from reaction conditions (a), (h), (i), (j) in Table S8.

Table S9. Synthesis condition optimization for ZIF-8 micro-structures using PCTE templates with 10 μ m pore sizes. 2-MIM: 2-Methylimidazole. Zn(NO₃)₂ is the Zn²⁺ source.

Attempts	$[Zn^{2+}]$ Conc.(M)	[2-MIM] Conc. (M)	Reaction Time (h)
(a)	0.025	1	4
(b)	0.06	1	4
(c)	0.1	1	4
(d)	0.5	1	4
(e)	1	1	4
(f)	0.025	2	4
(g)	0.06	2	4
(h)	0.1	2	4
(i)	0.5	2	4
(j)	1	2	4

Figure S11. PXRD profiles of post-synthesis templates using conditions listed in Table S9.

Figure S12. Optical microscopy images of isolated ZIF-8 10 μ m micro-structures from reaction conditions (a), (b), (f) in Table S9.

Table S10. Synthesis condition optimization for ZIF-8 micro-structures using PCTE templates with 20 μ m pore sizes. 2-MIM: 2-Methylimidazole. Zn(NO₃)₂ is the Zn²⁺ source.

Attempts	$[Zn^{2+}]$ Conc.(M)	[2-MIM] Conc. (M)	Reaction Time (h)
(a)	0.025	1	4
(b)	0.025	2	4

 2θ (°) Figure S13. PXRD profiles of post-synthesis templates using conditions listed in Table S10.

Table S11. Synthesis condition optimization for ZIF-67 nano-structures using PCTE templates with 10 nm pore sizes. 2-MIM: 2-Methylimidazole. $Co(NO_3)_2$ is the Co^{2+} source.

Attempts	$[Co^{2+}]$ Conc.(M)	[2-MIM] Conc. (M)	Reaction Time (h)
(a)	0.025	1	4
(b)	0.042	1	4
(c)	0.06	1	4
(d)	0.025	2	4
(e)	0.042	2	4
(f)	0.06	2	4

Figure S14. PXRD profiles of post-synthesis templates using conditions listed in Table S11.

Figure S15. TEM images of isolated ZIF-67 10 nm nano-structures from reaction conditions (b), (d), (e) in Table S11.

Table S12. Synthesis condition optimization for ZIF-67 nano-structures using PCTE templates with 30 nm pore sizes. 2-MIM: 2-Methylimidazole. $Co(NO_3)_2$ is the Co^{2+} source.

Attempts	$[Co^{2+}]$ Conc.(M)	[2-MIM] Conc. (M)	Reaction Time (h)
(a)	0.008	1	1
(b)	0.025	1	1
(c)	0.06	1	1
(d)	0.1	1	1
(e)	0.025	0.5	1
(f)	0.025	0.75	1
(g)	0.025	2	1

Figure S16. TEM images of isolated ZIF-67 30 nm nano-structures from reaction conditions (a)-(g) in Table S12.

Table S13. Synthesis condition optimization for ZIF-67 nano-structures using PCTE templates with 100 nm pore sizes. 2-MIM: 2-Methylimidazole. $Co(NO_3)_2$ is the Co^{2+} source.

Attempts	$[Co^{2+}]$ Conc.(M)	[2-MIM] Conc. (M)	Reaction Time (h)
(a)	0.025	2	1
(b)	0.042	2	1
(c)	0.06	2	1

Figure S17. TEM images of isolated ZIF-67 100 nm nano-structures from reaction conditions (a)-(c) in Table S13.

Table S14. Synthesis condition optimization for ZIF-67 nano-structures using PCTE templates with 200 nm pore sizes. 2-MIM: 2-Methylimidazole. $Co(NO_3)_2$ is the Co^{2+} source.

Attempts	$[Co^{2+}]$ Conc.(M)	[2-MIM] Conc. (M)	Reaction Time (h)
(a)	0.025	0.5	1
(b)	0.06	2	1
(c)	0.06	2	4

Figure S18. PXRD profiles of post-synthesis templates using conditions listed in Table S14.

Figure S19. TEM images of isolated ZIF-67 200 nm nano-structures from reaction conditions (b)-(c) in Table S14.

Table S15. Synthesis condition optimization for ZIF-67 micro-structures using PCTE templates with 10 μ m pore sizes. 2-MIM: 2-Methylimidazole. Co(NO₃)₂ is the Co²⁺ source.

Attempts	$[Co^{2+}]$ Conc.(M)	[2-MIM] Conc. (M)	Reaction Time (h)
(a)	0.025	1	4
(b)	0.025	1	6
(c)	0.06	1	4
(d)	0.06	1	6
(e)	0.06	2	6

Figure S20. PXRD profiles of post-synthesis templates using conditions listed in Table S15.

Figure S21. Optical microscopy images of isolated ZIF-67 10 μ m micro-structures from reaction conditions (b)-(d) in Table S15.

Table S16. Synthesis condition optimization for ZIF-67 micro-structures using PCTE templates with 20 μ m pore sizes. 2-MIM: 2-Methylimidazole. Co(NO₃)₂ is the Co²⁺ source.

Attempts	$[Co^{2+}]$ Conc.(M)	[2-MIM] Conc. (M)	Reaction Time (h)
(a)	0.025	2	4
(b)	0.025	2	6
(c)	0.06	2	4
(d)	0.06	2	6
(e)	0.1	2	4
(\mathbf{f})	0.1	2	6

Figure S22. PXRD profiles of post-synthesis templates using conditions listed in Table S16.

Figure S23. Optical microscopy images of isolated ZIF-67 20 μ m micro-structures from reaction conditions (d), (e), (f) in Table S16.

Figure S24. Cross-section SEM images of ZIF-8 post-synthesis templates of (A) PCTE and (B) PETE templates of 200 nm pore sizes. Reactions conditions are that optimized for ZIF-8 using 200 nm PCTE templates. Left side facing 1-octanol during synthesis in both images.