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Supplemental Materials and Methods 
 
Data sources  
 
Mortality: We compiled information from inoculation studies and field-based surveys of natural 
mortality to determine the ability of different mammal species to tolerate Ebolavirus infection. 
Using the search terms ‘Ebola’ or ‘Filovirus’ and ‘inoculation experiment’, we found 149 
experimental inoculation or field-based studies of Ebolavirus up to the year 2021. Of these, death 
in individual animals from Ebolavirus was recorded in 103 studies. For each study, we recorded 
species, sample size, inoculation dose, virus strain, mortality, extent of illness and viral titer in 
different organs, if available. Based on multiple laboratory experiments [1,2] and field 
observations [3,4], Ebolavirus is considered to be unusual among viruses in that most mammal 
species either show extremely high or extremely low mortality when infected (often approaching 
100% in either case). We created a binary variable of 1 for high mortality after exposure, which 
included >60% mortality observed in laboratory studies and estimates of mortality in the wild 
>25%; the binary variable = 0 for little or no mortality after exposure (<10% for all species). The 
threshold for “high mortality” was set lower for species sampled in the wild because of the 
difficulty in determining the cause of mortality, and the difficulty in estimating the number of 
individuals exposed to the virus (e.g. [4,5]). In analyses, we removed studies where experimental 
inoculation was performed with Reston ebolavirus, which is endemic to southeast Asia and 
exhibits much lower pathogenicity than African Ebolaviruses [6–8]. We further excluded studies 
in which pathogenicity was only observed with strains created using repeated serial laboratory 
infections of mice and guinea pigs to create mouse and guinea pig-adapted Ebolavirus strains. 
We included studies performed on carcasses of gorilla, duiker (subfamily Cephalophinae), and 
chimpanzees that showed strong evidence of high mortality from exposure to Ebolavirus (e.g. 
[5]). Although most inoculation experiments focused on Zaire and Sudan ebolavirus, our data 
captures deaths following exposure to all known wild type African Ebolaviruses including Zaire 
ebolavirus, Sudan ebolavirus, Bundibugyo ebolavirus, Taï forest ebolavirus and Ivory Coast 
ebolavirus (raw data provided on figshare: https://doi.org/10.6084/m9.figshare.20250408.v1).   
 
Infection status: We searched the literature for studies documenting infection status in mammal 
hosts via either PCR or antibody tests. Using the search terms ‘Ebola’ or ‘Filovirus’ and ‘host’ or 
‘reservoir’, we compiled 974 rows for which species-level identification of taxa was possible up 
to the year 2021. We included data from the PREDICT database, a large-scale effort to identify 
zoonotic viruses in mammals (http://data.predict.global, accessed & downloaded on 14th April 
2021). Out of 974 observations, positive infection status was recorded 120 times. For each study, 
we compiled species identity, sample size, type of test (PCR, antibody, or viral assay), number of 
positive tests, location, and whether the observed animal was captive or wild. Response was 
scored as 1 for positive test of infection and 0 for negative test of infection (raw data provided on 



figshare: https://doi.org/10.6084/m9.figshare.20250408.v1). Again, we excluded observations of 
Reston ebolavirus, since infections have only been documented outside of Africa (in the 
Philippines and nearby southeast Asian countries) and because this virus is known to occur in 
domesticated and captive species where it shows low pathogenicity [6–8].  
 
Animal host traits: We used COMBINE [9], a mammal macroecological trait database compiled 
from multiple sources, including Phylacine [10], EltonTraits [11], PanTHERIA [12], 
TetraDENSITY [13], and MammalDIET2 [14], with good coverage across mammals. To provide 
nearly complete trait information for 21 traits including some related to pace-of-life such as 
female age at first reproduction, litter size, and maximum longevity, Soria et al. [9] imputed 
missing values, which we incorporated into our analyses. Pace-of-life traits capture mammal life 
history strategies [15], and previous studies have shown pace-of-life traits to be predictors of the 
mammal species in which filovirus and other zoonotic infections have been found [16–18]. We 
chose traits from COMBINE that were imputed with low estimated error and were nearly 
complete across mammal species, focusing on pace-of-life traits [15], and brain mass, which has 
also been shown to reflect life history trade-offs [19]. We also included dietary traits since 
Schmidt et al. [16] found frugivory to be an important predictor of infection status. Filtering by 
these criteria, we included (i) adult mass (g), (ii) brain mass (g), (iii) maximum longevity (d), (iv) 
age at first reproduction (d), (v) gestation length (d), (vi) litter size, (vii) litters per year and traits 
reflecting variation in diet including percent diet comprised of (viii) scavenged meat, (ix) grain, 
(x) fruit, and (xi) plant material. We also included (xii) distance of geographic range to a 
spillover site (m; computed as distance of the centroid of the IUCN range map to the nearest 
spillover site in [20]) and (xiii) a binary variable of 1 for volant mammal and 0 for non-volant 
mammal to distinguish bats from other species. For infection status models based on antibody 
and PCR tests, we (xiv) summed the number of individuals sampled across all studies as a 
measure of sampling effort. 
 
Phylogeny: We used estimates of host phylogenetic relationships from a recent global study of 
all mammals [21] based on a fully resolved molecular tree built from published molecular data 
from approximately 4500 species to which remaining species were added randomly based on 
their taxonomic relationships to create a Bayesian posterior distribution of potential fully 
resolved trees. We performed preliminary analyses using the maximum clade credibility tree, the 
tree with the overall highest posterior probability. Results in the main paper are based on this 
maximum clade credibility tree. To assess the robustness of our results to uncertainty in the 
relationships of species incorporated based solely on taxonomy, we repeated our analyses using a 
random sample of 100 trees from the full posterior distribution. See section titled ‘Robustness of 
results to phylogenetic uncertainty’ for more information on methods incorporating samples of 
trees. To incorporate phylogenetic information into our models, we used the R package ‘PVR’ 
[22] to decompose the full mammal phylogeny into eigenvectors. The first 48 eigenvectors of the 
maximum clade credibility tree cumulatively explained 75% of the total variation in the 
phylogeny.    
 
NPC1 genetic sequences: We mined orthologs for Niemann-Pick C1 (NPC1) protein from 
GenBank for all mammal species. We performed a search for NPC1 protein sequences using 
NCBI’s Eukaryotic Genome Annotation pipeline and RefSeq platform to identify all orthologs 
for vertebrate species uploaded to GenBank [23]. We then used NCBI’s Constraint-based 



multiple alignment tool (COBALT) to align all protein sequences [24,25] and visualized 
sequences with AliView v1.28 [26] (complete alignment and protein accession numbers 
available on figshare: https://doi.org/10.6084/m9.figshare.20250408.v1). We identified the loop-
1 and loop-2 amino acid positions that affect susceptibility of species to Marburgvirus and 
Ebolavirus, respectively [27]. Particular amino acids in positions 425 to 427 (TET) of loop-1 
confer resistance to Marburgvirus in laboratory studies of cell lines; whereas residues at 502 (F) 
and 505 (T) of loop-2 confer resistance to Ebolavirus [27]. To test whether these regions of 
NPC1 loop 1 and 2 can predict the infection status of species that have been sampled for 
Ebolaviruses in the wild, we chose a window of 10 base pairs on either side of these amino acid 
positions identified by Takadate et al. [27] for statistical analyses of sequence variation. Of 307 
mammal species for which NPC1 sequences were available, a total of 31 have been tested for 
Ebolavirus infection using antibodies or PCR. 
 
Statistical analyses 
 
Phylogenetic signal in response variables: We estimated phylogenetic signal in Ebolavirus 
infection status and mortality using the maximum clade credibility consensus tree from Upham 
et al. [21]. We measured phylogenetic signal using Fritz and Purvis’ D for binary traits using the 
R package ‘caper’ and tested for significance of D assuming no phylogenetic structure and 
random Brownian process from phylogeny (e.g. [28]). Fritz and Purvis’ D=1 or D>1 assumes 
binary traits that are random and overdispersed with respect to phylogeny. A value of 0 is 
expected for a Brownian model of evolution, and a value <0 for a phylogenetically conserved 
trait. Significance was tested by permuting binary traits across tips and recalculating D for each 
permutation, and by simulating traits along the phylogeny while assuming a Brownian process.   
 
Statistical models: We used ridge regression with the R package ‘ridge’ [29,30] to model death 
of mammal hosts as a function of traits, distance of species range to nearest spillover site and the 
first 48 phylogenetic eigenvectors. Due to allometric scaling and evolutionary descent 
relationships, species traits tend to show high collinearity [31,32]. The ridge method is a 
penalized approach that typically performs well for multivariate analyses with correlated 
predictors [33]. However, for small sample sizes, selecting an appropriate shrinkage parameter 
(lambda) is challenging with methods that use cross-validation [29,34]. Our final dataset 
included only 21 species with any Ebolavirus mortality data, making cross-validation unreliable. 
We therefore used a modified procedure for selecting the ridge parameter that minimizes 
variance of predictions [29,34]. To assess model accuracy and quantify goodness-of-fit, we used 
leave-one-out cross validation to determine the fraction of observations correctly predicted by 
the model [35]. We predicted positive Ebolavirus infection status across different mammal 
species using trait variables, distance of species range to nearest spillover site, first 48 
phylogenetic eigenvectors and sampling effort as predictors in a machine learning ridge 
regression framework. We tuned this ridge regression model parameters using the R packages 
‘caret’ and ‘glmnet’ with repeated cross validation method, 5-fold with 5 repeats, downsampling 
to balance the design, and with area under the curve (AUC) as a performance measure. Across a 
range of lambda values 0-3, the parameter leading to the highest AUC value was selected as the 
shrinkage estimate. We then supplied the estimated lambda to the logisticRidge() command in R 
package ‘ridge’ to compute coefficient estimates, t-statistics, and accompanying p-values for all 
predictors [30].  



To estimate the relative contribution of each variable to predicting infection status, we 
calculated the AUC of a null model with non-significant predictors and then sequentially added 
each additional predictor to examine the change in AUC and thus the relative contribution of 
each variable. We chose this method because of the high degree of correlation among predictor 
variables. Traditionally, variable importance is computed by permuting one variable and 
calculating the difference in the performance measure, such as AUC. However, in highly 
correlated datasets, permuting a single variable to calculate variable importance may not be 
informative [36–38], because other, correlated, variables can be significant and explain the 
outcome, producing no change in performance even after permutation. We started with a null 
model that included percent of diet from scavenging and percent diet from granivory as 
predictors, variables not significantly related to infection status in preliminary models. Null 
models of these two variables yielded an AUC=0.477 (i.e., no ability to discriminate 0 and 1). 
We then added each new predictor one at a time and calculated AUC on test datasets created 
using the ‘caret’ package using the repeated cross validation approach (5 folds, 5 repeats, lambda 
parameter determined by cross validation). To ensure that our final regression predictors were 
robust, we repeated the analysis for subsets of the data including antibody- and PCR-tested 
species with sample sizes of 10 or more, PCR-tested species only, and free-ranging individuals 
only (excluding captive specimens or domesticated taxa).   
 Using our final model, we predicted the reservoir status of all terrestrial African 
mammals. For the infection status model, we set sampling effort to be a constant for all species 
at ~100 individuals (the mean number of individuals sampled for each species across all studies). 
Once we predicted death and infection probabilities, we set the cutoff to the threshold value for 
recovering known mortality for the 21 species in the mortality dataset and known infection for 
the 363 species in the infection dataset. We used the R package ‘OptimalCutpoints’ to identify 
these thresholds [39] and applied them to define death and infection. We then created four 
categories of reservoir status: 1. low probability of death and low probability of infection, which 
we interpreted as ‘low exposure and susceptibility’; 2. low probability of death and high 
probability of infection, which we interpreted as ‘potential reservoirs’; 3. high probability of 
death and low probability of infection, which we interpreted as ‘not exposed to Ebolavirus’; 4. 
high probability of death and high probability of infection, which we interpreted as ‘dead-end 
hosts’ succumbing to infection. 
 Finally, we tested whether amino acid residues from two loop regions of the NPC1 
receptor protein were related to infection status. We did not fit a model of NPC1 amino acid 
residues to death after inoculation with Ebolavirus due to the small number of taxa for which 
both inoculation status and NPC1 sequences were available. We created dummy variables for 
each amino acid residue at a given position using the R package ‘fastDummies’. We then 
predicted infection status by logistic ridge regression implemented in the R package ‘ridge’ 
[29,30]. To ensure that these results were robust, we repeated this regression with NPC1 
sequences and nuisance variables of distance of species range to spillover site and sampling 
effort as predictors for infection status. To investigate agreement between NPC1 and trait-based 
models, we compared percent correct predictions for each mammal order by trait and 
phylogenetic eigenvector models and percent correct predictions made by our NPC1 amino acid 
residues model.  
 
Robustness of results to phylogenetic uncertainty: We tested the sensitivity of our ridge 
regression models predicting mortality and infection status of mammalian hosts for uncertainty 



in species phylogenetic relationships. We downloaded a sample of 100 random trees from the 
Bayesian posterior distribution of potential fully resolved trees provided by Upham et al. [21]. 
For each of these 100 trees, we computed phylogenetic eigenvalues and eigenvectors using R 
package ‘PVR’ [22]. We determined the number of eigenvectors needed to capture 75% of the 
phylogenetic relationships for each of the 100 trees. We then repeated all ridge regressions with 
R package ‘ridge’ using the same trait variables of (i) adult mass (g), (ii) brain mass (g), (iii) 
maximum longevity (d), (iv) age at first reproduction (d), (v) gestation length (d), (vi) litter size, 
(vii) litter per year, percent diet comprised of (viii) scavenging, (ix) granivory, (x) frugivory, (xi) 
plant material, (xii) distance of geographic range to a spillover site (m), and, in the case of 
antibody and PCR datasets estimating infection status of animal host, (xiii) sampling effort. We 
also included the number of phylogenetic eigenvectors required to explain 75% of the variance in 
phylogenetic relationships among species in each tree. Across all 100 trees and for each response 
variable of mortality or infection status, we summarized the proportion of the 100 runs where the 
predictor was significant and the predictive power of the model. We used leave-one-out cross 
validation method to obtain percent accuracy of our host mortality model and area under the 
curve or AUC for the infection status model. We also summarized across all 100 runs, the 
minimum, lower 2.5% quantile, mean, median, upper 97.5% quantile and maximum t-values for 
each predictor. The direction of eigenvectors changed across different trees from the posterior 
distribution of trees in Upham et al. [21] for the same mammal clades. Therefore, we 
summarized the distribution of absolute values of the t-statistic for eigenvectors. Finally, we 
estimated skewness of the histogram of t-values for each predictor, using raw t-statistics for traits 
and the absolute values of t-statistics for the phylogenetic eigenvectors.      
 
Supplementary Results 
 
Validity of ridge model predictors: Life history traits describing pace of life, percentage of fruit 
in diet and sampling effort consistently explained infection status as estimated by antibody and 
PCR tests. We tested sensitivity of ridge regression models to the inclusion of studies 1) in which 
species were poorly sampled, 2) reliant only on antibody tests and inclusion of captive, and 3) 
including domesticated species (Table 2 in main paper). Exclusion of studies with poor sampling 
or of domesticated or captive species lowered AUC values to approximately 0.76-0.77 (Table 1 
in main paper). Across all regressions, infection status was found to be related to at least one 
pace of life trait including adult body mass, brain mass, maximum longevity, age at first 
reproduction, gestation length, litter size and number of litters per year (Table 2 in main paper). 
These life history traits had high relative importance in ridge regression models, improving AUC 
values from 0.17 to as much as 0.28 (S1 Table). Furthermore, 7 of the top 15 variables with the 
highest relative importances were traits related to pace of life (S2 Table). Percent fruit in diet 
was also a significant predictor of infection status across all sensitivity tests performed, even 
showing marginal significance at α=0.1 in PCR tested individuals (Table 2 in main paper). 
Inclusion of percent fruit in diet as a predictor increased the AUC value by 0.2 (S2 Table). 
Finally, sampling effort had the highest relative importance of 0.34 (S2 Table) and was always a 
significant predictor of infection status (Table 2 in main paper).  
 
Robustness of results to phylogenetic uncertainty: We found similar results across the random 
sample of 100 trees from the Bayesian posterior distribution of trees in Upham et al. [21]. The 
percent accuracy of our mortality model using leave-one-out cross validation method was on 



average 0.86 (95% quantile interval is 0.71-0.94). The average AUC value of our infection status 
model across 100 trees was 0.81 (95% quantile interval is 0.80-0.82). Mortality of animal host 
was positively predicted by gestation length and negatively by litters per year (S3 Table). The 
third phylogenetic eigenvector (c3) which differentiates Primates and Artiodactyla from other 
clades like Chiroptera and Rodentia (S5A Fig) was also related to mortality (S3 Table). High 
infection probability occurred in species with high maximum longevity, high age at first 
reproduction, longer gestation lengths, few litters per year and small litter sizes (S4 Table). 
Percent fruit in diet was also positively related to infection status, as was sampling effort (S4 
Table). Phylogenetic eigenvectors c3, c11 and c12 were also related to infection status (S4 
Table). These eigenvectors separate order Chiroptera including the particular clade that carries 
Pteropodid bats (S5B Fig), Primates including the clade with families Cercopithecidae and 
Hominidae (S5C Fig), and broader groupings that differentiate Primates and Artiodactyla from 
other clades (S5A Fig).  
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