Severe, short-term sleep restriction reduces gut microbiota community richness but does not alter intestinal permeability in healthy young men

J. Philip Karl^{1*}, Claire C. Whitney¹, Marques A. Wilson¹, Heather S. Fagnant¹, Patrick N. Radcliffe^{1,2}, Nabarun Chakraborty³, Ross Campbell⁴, Allison Hoke³, Aarti Gautam³, Rasha Hammamieh³ and Tracey J. Smith¹

*Corresponding author:

J. Philip Karl
US Army Research Institute of Environmental Medicine
Military Nutrition Division
10 General Greene Ave; Bldg 42
Natick, MA 01760
james.p.karl.civ@health.mil
+01 508-206-2318

¹U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA

²Oak Ridge Institute of Science and Education, Oak Ridge, TN, USA

³Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, USA

⁴Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD, USA.

Supplementary Table S1. Energy and macronutrient intakes and energy balance during three consecutive days of adequate sleep (AS) or sleep restriction (SR).

	AS (mean ± SD)	SR (mean ± SD)	Mean difference [95% CI]	<i>P</i> -value [†]
Energy (kcal/d)	2762 ± 349	2877 ± 339	115 [67, 164]	< 0.001
Carbohydrate (g/d)	432 ± 64	459 ± 64	27 [18, 35]	< 0.001
Fat (g/d)	84 ± 10	85 ± 8	1 [-2, 3]	0.55
Protein (g/d)	68 ± 6	69 ± 7	1 [-1, 2]	0.36
Energy Balance (kcal/d)	73 ± 131	42 ± 106	-31 [-72, 10]	0.12

n = 19.

[†]Paired samples *t*-test.

Supplementary Table S2. Morning fasted body weights measured during three consecutive days of adequate sleep (AS) or sleep restriction (SR).

						<i>P</i> –value [†]	
	Day 1	Day 2	Day 3	Day 4	Condition	Day	Condition* Day
AS	77.0 ± 7.2	76.9 ± 7.4	76.9 ± 7.4	76.9 ± 7.5	< 0.001	0.71	0.22
SR	75.9 ± 7.6^a	76.4 ± 7.4^b	76.3 ± 7.3^b	76.4 ± 7.6^b			

[†]Linear mixed model with condition, day and their interaction as fixed factors and subject as a random intercept.

^{a,b}Linear mixed model within condition, including day as a fixed factor and subject as a random intercept. Main effect of day within AS, P = 0.84. Main effect of day within SR, P = 0.02. Within a row, values not sharing a superscript letter are significantly different, P < 0.05.

Supplementary Table S3. Serum markers of stress and inflammation following three consecutive nights of adequate sleep (AS) or sleep restriction (SR).

	SR-day 1	SR-day 4 [†]	AS-day 4 [‡]
Cortisol (µg/dL; mean ± SD)	16.0 ± 2.4	13.5 ± 2.8***	15.5 ± 2.1*
hsCRP (mg/L; median [IQR])§	0.34 [0.90]	0.25 [1.41]	0.39 [1.34]

n = 19.

[†]Within-condition comparisons analyzed by paired *t*-tests. ***Significantly different from SR-day 1 (P < 0.001).

[‡]Between-condition comparisons analyzed by mixed model ANOVA. *Significantly different from SR-day 4 (P = 0.03).

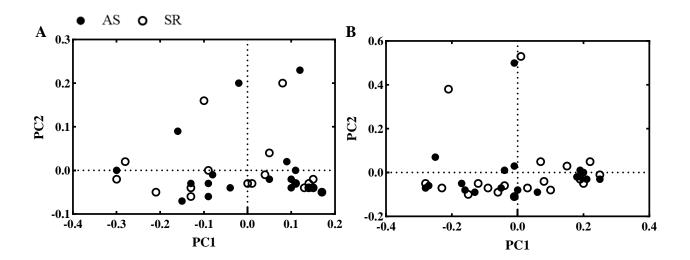
[§]Log₁₀-transformed for analysis.

Supplementary Table S4. Intestinal permeability measured following three consecutive nights of adequate sleep (AS) or sleep restriction (SR).

	AS	SR	<i>P</i> -value [†]
Urine volume (mL; mean ± SD)	985 ± 359	1063 ± 249	0.53
Lactulose (%; median [IQR]) [‡]	0.08 [0.10]	0.10 [0.11]	0.77
Mannitol (%; median [IQR]) [‡]	16.3 [6.2]	15.6 [5.9]	0.47
Lactulose:mannitol ratio (median [IQR]) [‡]	0.0047 [0.0056]	0.0057 [0.0067]	0.39

n=17.

[†]Mixed model ANOVA. ‡Log₁₀-transformed for analysis.


Supplementary Table S5. Genera and amplicon sequencing variants (ASVs) demonstrating between-condition differences (P < 0.05) following two consecutive days of adequate sleep (AS) or sleep restriction (SR).

Taxon	$\beta \pm SE^{\ddagger}$	<i>P</i> -value	<i>q</i> -value
Genera			
Campylobacter	-0.32 ± 0.10	0.007	0.29
Roseburia	-0.17 ± 0.07	0.02	0.43
Papillibacter	0.26 ± 0.12	0.04	0.57
ASV			
Firmicutes.Clostridia.Clostridiales.Ruminococcaceae	-0.39 ± 0.10	0.001	0.20
Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.	-0.34 ± 0.13	0.02	0.92
Clostridia.Clostridiales.Lachnospiraceae.Clostridium	-0.26 ± 0.10	0.02	0.92
Firmicutes.Clostridia.Clostridiales.Ruminococcaceae. Subdoligranulum variabile	-0.30 ± 0.11	0.02	0.92
Firmicutes.Clostridia.Clostridiales.Ruminococcaceae	-0.19 ± 0.08	0.03	0.92
Firmicutes.Clostridia.Clostridiales.Ruminococcaceae	-0.31 ± 0.13	0.03	0.92
Bacteroidetes.Bacteroidia.Bacteroidales.Bacteroidaceae. Bacteroides	0.25 ± 0.11	0.03	0.92
Bacteroidetes.Bacteroidia.Bacteroidales.Prevotellaceae. *Prevotella**	-0.12 ± 0.06	0.04	0.92
Firmicutes.Clostridia.Clostridiales.Lachnospiraceae. Roseburia inulinivorans	-0.14 ± 0.07	0.05	0.92

[†]Analyzed by Microbiome Multivariable Associations with Linear Models¹ with treatment, treatment order and study period included as fixed factors, and subject as a random factor. [‡]AS is the reference group.

¹Mallick H, Rahnavard A, McIver LJ, et al. Multivariable association discovery in population-scale meta-omics studies. *PLoS Comput Biol.* 2021;17(11):e1009442.

Supplemental Figure 1

Supplemental Figure 1. Gut microbiota composition following two consecutive days of adequate sleep (AS) or sleep restriction (SR). Principal coordinates analysis of (A) weighted and (B) unweighted Unifrac distances. PERMANOVA, P = 1.0.