

Clinical outcomes of bronchiectasis in India: data from the EMBARC/Respiratory Research Network of India registry

Raja Dhar¹, Sheetu Singh², Deepak Talwar³, B.V. Murali Mohan⁴, Surya Kant Tripathi⁵, Rajesh Swarnakar⁶, Sonali Trivedi⁷, Srinivas Rajagopala [®]⁸, George D'Souza⁹, Arjun Padmanabhan¹⁰, B. Archana¹¹, P.A. Mahesh ^{®12}, Babaji Ghewade¹³, Girija Nair¹⁴, Aditya Jindal¹⁵, Gayathri Devi H. Jayadevappa¹⁶, Honney Sawhney¹⁷, Kripesh Ranjan Sarmah¹⁸, Kaushik Saha¹⁹, Suresh Anantharaj²⁰, Arjun Khanna²¹, Samir Gami²², Arti Shah ^{©23}, Arpan Shah²⁴, Naveen Dutt²⁵, Himanshu Garg²⁶, Sunil Vyas²⁷, Kummannoor Venugopal²⁸, Rajendra Prasad²⁹, Naveed M. Aleemuddin³⁰, Saurabh Karmakar³¹, Virendra Singh³², S.K. Jindal¹⁵, Shubham Sharma ^{©1}, Deepak Prajapat³, Sagar Chandrashekar⁴, Michael Loebinger³³, Aditi Mishra⁶, Francesco Blasi ^{©34}, Ramanathan Palaniappan Ramanathan⁸, Pieter C. Goeminne ^{©35}, Preethi Vasudev¹⁰, Amelia Shoemark ^{©36}, B.S. Jayaraj ^{©12}, Rahul Kungwani¹³, Akanksha Das¹⁴, Mehneet Sawhney¹⁷, Eva Polverino ^{©37}, Tobias Welte ^{©38}, Nayan Sri Gulecha²⁰, Michal Shteinberg ^{©39}, Anshul Mangala²³, Palak Shah²⁴, Nishant Kumar Chauhan²⁵, Nikita Jajodia²⁶, Ashutosh Singhal²⁷, Sakshi Batra²⁹, Ashfaq Hasan³⁰, Stefano Aliberti ^{©40}, Megan L. Crichton³⁶, Sneha Limaye⁴¹, Sundeep Salvi⁴¹ and James D. Chalmers³⁶ for the EMBARC-India study group

¹Fortis Hospital Kolkata, Kolkata, India. ²Institute of Respiratory Disease, SMS Medical College, Jaipur, India. ³Metro Centre for Respiratory Diseases, Noida, India. ⁴Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India. ⁵King George's Medical University, Uttar Pradesh, India. ⁶Getwell Hospital and Research Centre, Nagpur, India. ⁷Jawaharlal Nehru Hospital and Research Centre, Bhilai, India. ⁸PSG Institute of Pulmonary Medicine, Coimbatore, India. ⁹St John Medical College, Bengaluru, India. ¹⁰Kerala Institute of Medical Sciences Trivandrum, Trivandrum, India. ¹¹Kempegowda Institute of Medical Sciences, Bengaluru, India. ¹⁴Department of Respiratory Medicine, D.Y. Patil School of Medicine, Navi Mumbai, India. ¹⁵Jindal Clinics, Chandigarh, India. ¹⁶MS Ramaiah Medical College, Bengaluru, India. ¹⁷Government Multispecialty Hospital, Chandigarh, India. ¹⁸Apollo Hospitals, Guwahati, India. ¹⁹Burdwan Medical College, Burdwan, India. ²⁰Sundaram Medical Foundation and SRM Institute of Medical Sciences, Chennai, India. ²¹Galaxy Hospital Delhi and Yashoda Super Speciality Hospital Kaushambi, Uttar Pradesh, India. ²⁴Dranayam Lung and Heart Institute and Research Centre, Vadodara, India. ²⁵All India Institute of Medical Sciences, Jodhpur, India. ²⁶Artemis Hospitals, Gurgaon, India. ²⁷Dr SN Medical College, Jodhpur, India. ²⁸Government Medical College, Cherpulassery, India. ²⁹Era's Lucknow Medical College and Hospital, Era University, Lucknow, India. ³⁰Deccan College of Medical Sciences, Hyderbad, India. ³¹All India Institute of Medical Sciences Patna, Bihar, India. ³³Department of Respiratory Medicine, Royal Brompton Hospital, London, UK. ³⁴Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy. ³⁵Department of Respiratory Medicine, AZ Nikolaas, Sint-Niklaas, Belgium. ³⁶Division of Molecular and Clinical Medical Center, Haifa, Israel. ⁴⁰IRCCS Humanitas Research Hospital, Humanitas University, Milan, Italy. ⁴¹Chest

Corresponding author: James D. Chalmers (jchalmers@dundee.ac.uk)

Check for updates	 Shareable abstract (@ERSpublications) Long-term follow-up of patients in the Indian Bronchiectasis Registry identifies independent predictors of poor outcome including frequent exacerbations and chronic infection with Gramnegative pathogens such as <i>Klebsiella pneumoniae</i> https://bit.ly/3cWh1u7 Cite this article as: Dhar R, Singh S, Talwar D, <i>et al.</i> Clinical outcomes of bronchiectasis in India: data from the EMBARC/Respiratory Research Network of India registry. <i>Eur Respir J</i> 2023; 61: 2200611 [DOI: 10.1183/13993003.00611-2022]. This single-page version can be shared freely online.
Copyright ©The authors 2023.	Abstract Background Identifying risk factors for poor outcomes can help with risk stratification and targeting of treatment. Risk factors for mortality and exacerbations have been identified in bronchiectasis but have been

This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org

This article has an editorial commentary: https://doi.org/10.1183/ 13993003.01977-2022

Received: 21 May 2022 Accepted: 24 July 2022

almost exclusively studied in European and North American populations. This study investigated the risk factors for poor outcome in a large population of bronchiectasis patients enrolled in India.

Methods The European Multicentre Bronchiectasis Audit and Research Collaboration (EMBARC) and Respiratory Research Network of India (EMBARC-India) registry is a prospective observational study of adults with computed tomography-confirmed bronchiectasis enrolled at 31 sites across India. Baseline characteristics of patients were used to investigate associations with key clinical outcomes: mortality, severe exacerbations requiring hospital admission, overall exacerbation frequency and decline in forced expiratory volume in 1 s.

Results 1018 patients with at least 12-month follow-up data were enrolled in the follow-up study. Frequent exacerbations (\geq 3 per year) at baseline were associated with an increased risk of mortality (hazard ratio (HR) 3.23, 95% CI 1.39–7.50), severe exacerbations (HR 2.71, 95% CI 1.92–3.83), future exacerbations (incidence rate ratio (IRR) 3.08, 95% CI 2.36–4.01) and lung function decline. Coexisting COPD, dyspnoea and current cigarette smoking were similarly associated with a worse outcome across all endpoints studied. Additional predictors of mortality and severe exacerbations (predominantly *Klebsiella pneumoniae*) was independently associated with increased mortality (HR 3.13, 95% CI 1.62–6.06), while *Pseudomonas aeruginosa* infection was associated with severe exacerbations (HR 1.41, 95% CI 1.01–1.97) and overall exacerbation rate (IRR 1.47, 95% CI 1.13–1.91).

Conclusions This study identifies risk factors for morbidity and mortality among bronchiectasis patients in India. Identification of these risk factors may support treatment approaches optimised to an Asian setting.