Environ Health Perspect

DOI: 10.1289/EHP10745

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Long-Term Exposure to Transportation Noise and Ischemic Heart Disease: A Pooled Analysis of Nine Scandinavian Cohorts

Andrei Pyko, Nina Roswall, Mikael Ögren, Anna Oudin, Annika Rosengren, Charlotta Eriksson, David Segersson, Debora Rizzuto, Eva M. Andersson, Gunn Marit Aasvang, Gunnar Engström, Hrafnhildur Gudjonsdottir, Jeanette T. Jørgensen, Jenny Selander, Jesper H. Christensen, Jørgen Brandt, Karin Leander, Kim Overvad, Kristina Eneroth, Kristoffer Mattisson, Lars Barregard, Leo Stockfelt, Maria Albin, Mette K. Simonsen, Pekka Tiittanen, Peter Molnar, Petter Ljungman, Steen Solvang Jensen, Susanna Gustafsson, Timo Lanki, Youn-Hee Lim, Zorana J. Andersen, Mette Sørensen, and Göran Pershagen

Table of Contents

Table S1. Detailed information on the cohorts included in the study.

Table S2. Detailed information on estimation of road, railway and aircraft noise for the cohorts included in the study.

Table S3. Detailed information on estimation of air pollution for the cohorts included in the study.

Table S4. Results from testing the proportional hazard assumption by a correlation test between scaled Schoenfeld residuals and the rank order of event time.

Table S5. Correlation matrix between exposure to traffic noise and air pollution indicators during five years preceding the study baseline.

Table S6. Hazard Ratio (HR) for IHD, IHD excluding angina pectoris, and myocardial infarction in relation to transportation noise exposure during one year prior to the event in pooled data of nine Scandinavian cohorts (N= 132,801).

Figure S1. Median recruitment age and median length of follow-up in nine cohorts from Scandinavia included in the study.

Figure S2. Distribution of road traffic and railway noise exposure during five years prior to the baseline in the study cohorts and overall (only levels of 40 dB L_{den} and above are displayed; X-axis – dB L_{den} , Y-asix – % of the population with noise exposure level 40 dB L_{den} and above).

Figure S3. Hazard ratios and 95 % confidence intervals for IHD excluding angina pectoris in relation to exposure to road traffic (A) and railway noise (B) per 10 dB L_{den} five years prior to the event in each of the included cohorts. Results are presented per cohort, adjusted for age (by design), sex (men/women), calendar year (in 5-y periods), educational level (low/medium/high), marital status (single/married), area-income (quartiles), and other noise sources indicator (yes/no: road, railway, and aircraft noise; for the three cohorts without aircraft noise information, all cohort members were assigned as no exposure).

Figure S4. Hazard Ratio (HR) and 95 % confidence interval for IHD excluding angina pectoris, in relation to aircraft noise during five years prior to the event. Cohort specific results are from separate analysis where a cohort indicator was included as an interaction term with the categorical aircraft noise variable (dB L_{den}), and adjusted for age (by design), cohort (strata), sex (men/women), calendar year (in 5-y periods), educational level (low/medium/high), marital status (single/married), area-income (quartiles), and other noise sources indicator (yes/no: road and railway noise). The analysis is conducted only among cohorts with aircraft noise exposure (thus excluding the MDC, PPS, and GOT-MONICA cohorts) with remaining 7821 cases of IHD without angina pectoris.

Figure S5. Hazard ratio and 95 % confidence interval for ischemic heart disease in relation to exposure to noise from road traffic (Left) and railways (Right) per 10 dB L_{den} during five years prior to the event according to covariates and air pollution exposure. P-values are Wald p_{Interaction} terms. Results are presented according to strata of potential effect modifiers based on separate models with interaction terms between transportation noise and each potential modifier, adjusted for age (by design), cohort (strata), sex (men/women), calendar year (in 5-y periods), educational level (low/medium/high), marital status (single/married), area-income (quartiles), and other noise sources indicator (yes/no: road, railway, and aircraft noise; for the three cohorts without aircraft noise information, all cohort members were assigned as no exposure).

Figure S6. Hazard ratios and 95 % confidence interval for IHD excluding angina pectoris in relation to road traffic (Left) and railway (Right) noise exposure per 10 dB L_{den} during five years prior to the event for different adjustment models and leaving out of studies.

References

Additional File- Excel Document

Cohort	Full name of	Recruitment	Sex	End of	Key references	Funding
	cohort			follow-up		
DCH	The Danish Diet	1993 to 1997 in	Men and	Dec 2016	Tjonneland et al	The Danish Cancer Society.
(Denmark)	Cancer and Health	the greater	women		2007 ¹ .	
N=57,053	cohort	Copenhagen or				
DUG		Aarhus area	***	D		
DNC	The Danish Nurse	1993 and 1999	Women	Dec 2016	Hundrup et al 2012^2	The Danish Council for Independent Research.
(Denmark)	Cohort	among members	only			
N=33,704		of the Danish				
		Nurse				
		Organization		D 2017	D = 1 + 1 + 1 + 10023	
MDC	The Malmo Diet	1991 to 1996 in	Men and	Dec 2017	Berglund et al. 1993°	Swedish Research Council (VR) Infrastructure grant,
(Sweden)	and Cancer conort	Malmo	women		Manjer et al .2001	Heart-Lung Foundation.
N=28,098		1070 to 1072 in	M	D., 2011	W7:11 1	The Deale of Green law Transactions are Free 1 on 141.
PPS (Sweden)	Study ashart	19/0 to $19/3$ in	Men only	Dec 2011	withermsen et al. 1072^5	Swedish Medical Descerate Council
(Sweden)	Study conort	Gounenburg			1972	Swedish Medical Research Council.
GOT	The Gothenburg	1085 1000 and	Mon and	Dec 2011	Wilhelmson et al	The Swedish Medical Research Council the Swedish
MONICA	cohort of the	1905, 1990, and	women	Dec 2011	1997 ⁶	Heart and Lung Foundation the Ingabritt and Arne
(Sweden)	"Multinational	Gothenburg	wonnen		1))/	Lundberg Research Fund the Göteborg Medical
N=3.325	Monitoring of	Goulenourg				Society and the Sahlgrenska University Hospital
10 5,525	Trends and					Funds
	Determinants in					
	Cardiovascular					
	Diseases"					
	(MONICA) project					
SDPP	The Stockholm	1992-1995 form	Men and	Dec 2011	Gudjonsdottir et al.	Swedish Environmental
(Sweden)	Diabetes Preventive	men and 1996-	women		2022^{7}	Protection Agency, the Swedish Council for Health,
N=7,949	Programme	1998 for women				Working Life and Social Research and the Swedish
	-	in five				Heart-Lung Foundation. The SDPP cohort was
		municipalities of				additionally funded by the Stockholm County
		Stockholm				Council, the Swedish Research Council, the Swedish
		County				Diabetes Association and Novo Nordisk Scandinavia.

<u>Table S1</u> Detailed information on the cohorts included in the study.

Cohort	Full name of	Recruitment	Sex	End of	Key references	Funding
	cohort			follow-up		
SIXTY	60-years cohort	1997-1999 in	Men and	Dec 2017	Wändell et al. 2007 ⁸	Swedish Environmental Protection Agency, the
(Sweden)		Stockholm	women			Swedish Council for Health, Working Life and Social
N=4,232		County				Research and the Swedish Heart-Lung Foundation.
						The SIXTY cohort was additionally funded by the
						Stockholm County Council and the Swedish
						Research Council.
SNAC-K	The Swedish	2001-2004 in	Men and	Dec 2016	Lagergren et al.	Swedish Environmental Protection Agency, the
(Sweden)	National Study of	Kungsholmen	women		2004 ⁹	Swedish Council for Health, Working Life, the
N=3,363	Aging and Care in	area of Central				Swedish Research Council and Social Research and
	Kungsholmen	Stockholm				the Swedish Heart-Lung Foundation. SNAC-K was
						additionally funded by the Ministry of Health and
						Social Affairs, Sweden, Stockholm County Council
						and the participating Municipalities and University
						Departments.
SALT	The Screening	1998-2002 in	Men and	Dec 2016	Lichtenstein et al.	Swedish Environmental Protection Agency, the
(Sweden)	Across the Lifespan	Stockholm	women		2006^{10}	Swedish Council for Health, Working Life and Social
N=7,043	Twin Study	County				Research and the Swedish Heart-Lung Foundation.
						The SALT cohort was additionally supported by NIH
						grant 575 AG-08724. The Swedish Twin Registry is
						managed by Karolinska Institutet and receives
						funding through the Swedish Research Council.

Cohort	Description	Calculation years	Key references
	Road traffic noise estimation		
DCH	Calculations were conducted using the Nordic prediction method implemented in SoundPLAN (version 8.0). Various input variables were used in the model, most importantly geocode and height (floor) for each address, information on travel speed, light/heavy vehicle distributions, road type, annual average daily traffic for all Danish road links (Jensen et al 2019) and 3D information on all Danish buildings. Screening effects from buildings, terrain, and noise barriers were included. All road traffic sources within 1500 m from the receivers were included. The parameters were set to allow 2 reflections.	1995, 2000, 2005, 2010, 2015	Thacher JD, Poulsen AH, Raaschou- Nielsen O, et al. High-resolution assessment of road traffic noise exposure in Denmark. Environ Res 2019; 182:109051. Jensen SS, Plejdrup MS, Hillig K. GIS- based National Road and Traffic Database 1960-2020. Aarhus University, Danish Centre for Environment and Energy 2019; Report 151.
DNC	Same method as for DCH.		
MDC	Estimated using the Nordic Prediction Method implemented in SoundPLAN (version 8.0, SoundPLAN Nord ApS). Input variables included geocode, information on annual average daily traffic for all road links in Malmö municipality, distribution of light/heavy traffic, signposted travel speed and road type and polygons for all buildings in Malmö. All road traffic sources within 1000 m from the receivers were included. Traffic data were retrieved from a regional emission database (Rittner et al. 2020). The screening effects from buildings were included and ground softness considered. The parameters in the models were set to allow 2 reflections and receivers placed at 2 m height. Estimation of road traffic noise exposure between years with models was based on the model closest in time or the year of major changes in infrastructure, i. e. the model from 1990 was used for residential coordinates 1985-1999, the model from 2000 used for coordinates 2000-2005 and the model from 2010 for coordinates between 2006 and 2016.	1990, 2000, 2010	Rittner R, Gustafsson S, Spanne M, Malmqvist E. Particle concentrations, dispersion modelling and evaluation in southern Sweden, SN Applied Sciences 2020;2:1013.
PPS, GOT- MONICA	Yearly average road traffic flows, speed and percentage of heavy vehicles were obtained from the environmental office of the municipality of Gothenburg and the traffic office of the municipality of Mölndal. The traffic flow estimations were based on measurements for all major and medium links but used a standard default flow for very small streets. Terrain data and building footprints were obtained from Lantmäteriet and road links from the Swedish	1975-2010, yearly	Ögren M, Barregard L. Road traffic noise exposure in Gothenburg1975- 2010. PLoS One 2016;11:e015532.

Table S2 Detailed information on estimation of road, railway and aircraft noise for the cohorts included in the study.

Cohort	Description	Calculation years	Key references
	National Traffic Administration. Noise barriers of at least 2 m height and 100 m length were also included, and earth berms were included in the terrain model. To save calculation time and reduce demands on detailed input data a simplified methodology was used for multiple reflections in dense urban areas.		
SDPP, SIXTY, SNAC-K, SALT	To assess long-term individual transportation noise exposure a noise database for Stockholm County was developed representing the period from 1990 and onwards, with detailed estimation every fifth year. The database includes 3D terrain data as well as information on ground surface, road net, daily traffic flows, speed limits and percentage of heavy vehicles. To calculate noise levels for road traffic a modification of the Nordic prediction method was used, where possible reflection and shielding were taken into account by a Ground Space Index based on building density. The methodology has been further developed from the one described by Ögren and Barregard (2016), which was validated against the full Nordic prediction method modelled with SoundPlan and showed coherent estimates.	1990, 1995, 2000, 2005, 2010, 2015	Ögren M, Barregard L. Road traffic noise exposure in Gothenburg1975- 2010. PLoS One 2016;11:e015532.
	Railway noise estimation		
DCH	Calculations were conducted using the Nord 2000 method implemented in SoundPLAN (version 8.0). Various input variables were used in the model, most importantly geocode and height (floor) for each address, information on train speed and type, annual average trains for the day, evening and night and 3D information on all Danish buildings within 1000 m of the railway. Screening effects from buildings, terrain, and noise barriers were included. All rail traffic sources within 1500 m from the receivers were included. The parameters were set to allow 2 reflections.	1997, 2012	Kristine Hillig. Health effects of air pollution components, noise and socio- economic status. Rambøll MEMO 1100039156, 2019.
DNC	Same method as for DCH.		
MDC	Estimated using the Nordic Prediction Method implemented in SoundPLAN (version 8.0, SoundPLAN Nord ApS). Input variables included geocode, information on annual average daily traffic and speed for all railways, train types and polygons for all buildings in Malmö. All railway traffic sources within 1000 m from the receivers were included. Screening effects from buildings were included and ground softness was considered. The parameters in the models were set to allow 2 reflections and receivers placed at 2 m height. Estimation of railway noise exposure between years with models was based on the model closest in time or	1990, 2000, 2010	Liasjø, K. H., & Granøien, I. L. N. (1993). Sammenligning av flystøyberegningsprogrammerne INM- 2/6. INM-3/9, INM-3/10, DANSIM og NOISEMAP (Beregninger og målinger vedr. Fomebu

Cohort	Description	Calculation	Key references
	the year of major changes in infrastructure. Level day-evening-night was estimated from the equivalent level using an adjustment of 6 dB.	years	
PPS, GOT- MONICA	Yearly traffic counts (separate for day, evening and night), train speed and composition of different train types were obtained from the environmental office of the municipality of Gothenburg and the traffic office of the municipality of Mölndal for trams. For standard rail traffic, the same information was obtained from the Swedish traffic administration. Before 1997 regional and national rail transport statistics and published timetables were used to estimate traffic counts. Noise barriers of at least 2 m height and 100 m length were also included, as well as earth berms in the terrain model. To save calculation time and reduce demands on detailed input data a simplified methodology was used for multiple reflections in dense urban areas. All receivers were assumed to be at 2 m height above ground at the address coordinate.	1975-2010, yearly	Ögren M, Barregard L. Road traffic noise exposure in Gothenburg1975- 2010. PLoS One 2016;11:e015532.
SDPP, SIXTY, SNAC-K, SALT	Estimations were based on a noise database for Stockholm County which represented the period from 2010 and retrospectively until 1997, with detailed annual estimates. The database includes 3D terrain data as well as information on ground surface, railway net, speed limits and annual average daily train flows separately for light and heavy trains. To calculate noise levels for railway traffic a modification of the Nordic prediction method was used, where possible reflection and shielding were taken into account by a Ground Space Index based on building density. The methodology has been adopted and further developed from the one for road traffic noise described by Ögren and Barregard (2016), which was validated against the full Nordic prediction method modelled with SoundPlan and showed coherent estimates. Level day-evening-night was estimated from the equivalent level using an adjustment of 6 dB.	1997-2010	Ögren M, Barregard L. Road traffic noise exposure in Gothenburg1975- 2010. PLoS One 2016;11:e015532.
	Aircraft noise estimation		
DCH	The noise impact from all Danish airports and airfields was calculated by local authorities using the programs DANSIM (Danish Airport Noise Simulation Model) and INM3 (Integrated Noise Model), which meet joint Nordic criteria for air traffic noise calculations.	1986-2009	Liasjø, K. H., & Granøien, I. L. N. Sammenligning av flystøyberegningsprogrammerne INM- 2/6, INM-3/9, INM-3/10, DANSIM og NOISEMAP (Beregninger og målinger vedr. Fomebu) [in Norwegian]. 1993.

Cohort	Description	Calculation	Key references
		years	
DNC	Same method as for DCH.		
SDPP, SIXTY, SNAC-K, SALT	Noise contours for years the 1995 to 2013 for both Stockholm airports have been estimated by Swedavia in accordance with Swedish and international methods using the aircraft noise modelling software INM. Although local conditions such as arrival and departure procedures have been taken into account, it is particularly difficult to calculate accurate levels as low as 45 dB (A). Results show that the changes of noise footprints throughout the years are principally due to changes in aircraft fleet or flight paths.	1995, 2000, 2005, 2010, 2013	Swedavia technical report D 2015- 003915 Integrated noise model (INM) version 7.0 technical manual, Report Number : FAA-AEE-08-01 https://rosap.ntl.bts.gov/view/dot/12188

<u>Table S3</u> Detailed information on estimation of air pollution for the cohorts included in the study.

Cohort	Air pollution estimation	Key references
DCH	In the DCH cohort, we used the DEHM-UBM-AirGIS modelling system to calculate	Khan J, Kakosimos K, Raaschou-Nielsen O, et al.
	$PM_{2.5}$ and NO_2 at all Danish addresses for the years 2000, 2010 and 2015, which was	Development and performance evaluation of new AirGIS – A
	then extrapolated to yearly means for each address, based on changes in yearly urban	GIS based air pollution and human exposure modelling
	background levels. This multi-scale dispersion modelling system calculates air	system. Atmos Environ 2019;198:102-121.
	pollutants at each address as the sum of: a) $PM_{2.5}/NO_2$ from the nearest street,	Ketzel M, Berkowicz R, Hvidberg M, Jensen SS and
	calculated based on traffic, car fleet emission factors, streets and building geometry,	Raaschou-Nielsen O. Evaluation of AirGIS - a GIS-based air
	and meteorology; b) urban background, calculated based on city dimensions, emission	pollution and human exposure modelling system. Int J
	density, and heights of buildings; and c) regional background, calculated based on all	Environ Pollution 2011;47:226–238.
	emissions in the northern hemisphere.	Brandt, J, Christensen JH, Frohn LM and Berkowicz R, Air
		pollution forecasting from regional to urban street scale –
		Implementation and validation for two cities in Denmark.
DNC		Physics and Chemistry of the Earth, 2003.;28:335-344.
DNC	Same method as for DCH.	
MDC	Air pollutants ($PM_{2.5}$, and nitrogen oxides converted to NO_2) were modelled using	Hassiof H, Moinar P, Andersson EM, et al. Long-term
	Environmental Department, City of Malmo,	exposure to air pollution and atheroscierosis in the carotid
	for the county of Sconic in Sweden. The 18 × 18 km modelling area covered the city of	2020.110005
	Malmä and the alogest surroundings. Separate emission databases were compiled for	2020.110095
	1992 2000 and 2011 using existing local and regional bottom up inventories provided	
	by the municipality and then supplemented to be consistent for the whole area and	
	time-period Vearly mean concentrations were stored as grids with a spatial resolution	
	of 50 m \times 50 m. The years in between the modelled years were interpolated linearly	
	with adjustment for year-to-year variations in the local meteorology using a ventilation	
	factor estimated from calculations over the whole time-period, and exposure for the	
	years 1990 and 1991 extrapolated. Exposure data was combined with geocoded	
	addresses to assign each participant annual residential exposures.	
PPS	The exposure assessment was performed similarly for Gothenburg and Stockholm as	Segersson D, Eneroth K, Gidhagen L et al. Health impact of
	part of the Swedish Clean air and Climate Research program (SCAC). For	PM ₁₀ , PM _{2.5} and black carbon exposure due to different
	Gothenburg, high-resolution dispersion modelling of source-specific particulate matter	source sectors in Stockholm, Gothenburg and Umea, Sweden.
	$<2.5 \ \mu m \ (PM_{2.5})$, and nitrogen oxides converted to NO ₂ was performed over an area of	Int J Environ Res Public Health, 2017;14:E742.
	93×112 km for the years 1990, 2000 and 2011. Emission inventories were compiled	Stockfelt L, Andersson EM, Molnár P, et al. Long-term
	using local and regional bottom-up inventories provided by the municipality, and	effects of total and source-specific particulate air pollution on

	supplemented to be consistent for the whole time-period. Intervening years were	incident cardiovascular disease in Gothenburg,
	interpolated so that each participant could be assigned annual residential air pollutant	Sweden. Environ Res 2017;158:61-71.
	exposures.	
GOT-	Same method as for PPS.	
MONICA		
SDPP,	In the Stockholm County cohorts, a high-resolution Gaussian dispersion model was	Segersson D, Eneroth K, Gidhagen L, et al. Health impact of
SIXTY,	used to estimate individual residential levels of PM2.5 and NOx/NO2 using local	PM_{10} , $PM_{2.5}$ and black carbon exposure due to different
SNAC-K,	emission inventories every fifth year from 1990 and onwards. The emission inventory	source sectors in Stockholm, Gothenburg and Umea, Sweden.
SALT	contains detailed information on local emissions from road and ferry traffic, industrial	Int J Environ Res Public Health 2017;14:E742.
	areas and households. Meteorological input to the modelling includes measurements of	Ljungman PLS, Andersson N, Stockfelt L, et al. Long-term
	wind velocity and direction, solar radiation and temperature. Further, a street canyon	exposure to particulate air pollution, black carbon, and their
	contribution is added for addresses in the most polluted street segments of the inner	source components in relation to ischemic heart disease and
	city of Stockholm with multi-storey houses on both sides. Annual averaged long-range	stroke. Environ Health Perspect 2019;127:107012
	contributions were added to the locally modelled concentrations based on continuous	
	measurements at regional background monitoring stations.	

<u>Table S4.</u> Results from testing the proportional hazard assumption by a correlation test between scaled Schoenfeld residuals and the rank order of event time

Variable	Chi2	p-value
Road traffic noise indicator	0.14	0.7043
Railway traffic noise indicator	0.16	0.6890
Aircraft noise indicator	0.43	0.5117
Sex	98.02	< 0.0001
Calendar year	73.91	< 0.0001
Educational level	15.23	0.0004
Marital status	4.12	0.0423
Area-income	10.59	0.0011
Smoking status	51.57	< 0.0001
Physical activity	22.21	< 0.0001

	Road traffic noise	Railway noise	Aircraft noise	PM _{2.5}	NO ₂
Road traffic noise	-				
Railway noise	0.15	-			
Aircraft noise ^b	-0.09	0.10	-		
PM _{2.5} °	0.41	-0.07	-0.32	-	
NO ₂ °	0.62	0.22	-0.02	0.31	-

Table S5 Correlation matrix between exposure to traffic noise and air pollution indicators during five years preceding the study baseline.^a

Note: MDC, the Malmö Diet and Cancer, Sweden; PPS, the Primary Prevention Study cohort, Gothenburg, Sweden; GOT-MONICA, the Gothenburg cohort of "Multinational Monitoring of Trends and Determinants in Cardiovascular Diseases" (MONICA) project, Sweden; dB, decibel; L_{den} , Day-evening-night noise level based on energy equivalent noise level over a whole day with a penalty of 10 dB for night-time noise (23.00-7.00) and a penalty of 5 dB for evening noise (i.e. 19.00-23.00); PM_{2.5}, particulate matter with an aerodynamic diameter of $\leq 2.5 \mu m$ (fine particulate matter); NO₂, nitrogen dioxide.

^a Spearman's correlation coefficients.

^b Only in cohorts with aircraft noise (thus excluding MDC, PPS, and GOT-MONICA), N=98,658.

° Only among subjects with PM2.5 and NO2 data (N=130,344 and 125,311, respectively).

<u>Table S6</u> Hazard Ratio (HR) for IHD, IHD excluding angina pectoris, and myocardial infarction in relation to transportation noise exposure during one year prior to the event in pooled data of nine Scandinavian cohorts (N= 132,801).

	Cases	Person-years	Model 1 ^a	Model 2 ^b	Model 3 ^c	Model 4 ^d
			HR (95% CI)	HR (95% CI)	HR (95% CI)	HR (95% CI)
Road traffic noise, per 10 dB Lden						
IHD	22,459	2,263,290	1.04 (1.03, 1.06)	1.03 (1.01, 1.05)	1.02 (1.00-1.04)	1.03 (1.01, 1.05)
IHD excluding angina pectoris	12,399	2,263,290	1.08 (1.06, 1.11)	1.06 (1.03, 1.08)	1.05 (1.02-1.07)	1.05 (1.02, 1.07)
Myocardial infarction	7,682	2,263,290	1.04 (1.01, 1.07)	1.02 (0.99, 1.05)	1.01 (0.98-1.04)	1.01 (0.98, 1.05)
Railway noise, per 10 dB L _{den}						
IHD	22,459	2,263,290	1.05 (1.02, 1.07)	1.03 (1.01, 1.05)	1.02 (1.00-1.04)	1.03 (1.01, 1.05)
IHD excluding angina pectoris	12,399	2,263,290	1.07 (1.04, 1.10)	1.05 (1.02, 1.08)	1.04 (1.01-1.07)	1.05 (1.01, 1.08)
Myocardial infarction	7,682	2,263,290	1.06 (1.02, 1.10)	1.04 (1.00, 1.08)	1.03 (0.99-1.07)	1.04 (1.00, 1.08)
Aircraft noise, L _{den} °						
IHD						
$\leq 40 \text{ dB } L_{den}$	14,714	1,614,380	1 ref.	1 ref.	1 ref.	1 ref.
40.1–50 dB L _{den}	501	60,863	1.03 (0.93, 1.15)	1.05 (0.95, 1.17)	1.06 (0.95-1.18)	1.06 (0.95, 1.18)
>50 dB L _{den}	234	32,856	0.90 (0.79, 1.03)	0.93 (0.81, 1.06)	0.92 (0.81-1.06)	0.93 (0.81, 1.07)
IHD without angina pectoris						
$\leq 40 \text{ dB } L_{den}$	7,344	1,614,380	1 ref.	1 ref.	1 ref.	1 ref.
40.1–50 dB L _{den}	326	60,863	1.15 (1.01, 1.32)	1.18 (1.04, 1.35)	1.20 (1.05-1.37)	1.19 (1.04, 1.36)
>50 dB L _{den}	151	32,856	1.02 (0.86, 1.21)	1.06 (0.90, 1.27)	1.06 (0.89-1.26)	1.07 (0.90, 1.28)
Myocardial infarction						
$\leq 40 \text{ dB } L_{den}$	3,843	1,614,380	1 ref.	1 ref.	1 ref.	1 ref.
40.1–50 dB L _{den}	192	60,863	1.10 (0.93, 1.31)	1.13 (0.95, 1.35)	1.14 (0.96-1.36)	1.14 (0.96, 1.36)
>50 dB L _{den}	90	32,856	0.99 (0.79, 1.24)	1.03 (0.82, 1.30)	1.02 (0.82-1.28)	1.04 (0.83, 1.30)

Note: The HRs are estimated using Cox proportional hazards models with age as underlying timescale. IHD, ischemic heart disease; BMI, body mass index; CI, confidence interval; HR, hazard ratio; $PM_{2.5}$, particulate matter with an aerodynamic diameter of $\leq 2.5 \mu m$ (fine particulate matter); dB, decibel; L_{den} , Day-evening-night noise level based on energy equivalent noise level over a whole day with a penalty of 10 dB(A) for night time noise (23.00-7.00) and a penalty of 5 dB(A) for evening noise (i.e. 19.00-23.00). ^a Adjusted for age (by design), cohort (strata), sex (men/women), and calendar year (in 5-y periods). ^b Model 1 plus adjustment for educational level (low/medium/high), marital status (single/married), area-income (quartiles), and other noise sources (yes/no: road, railway, and aircraft noise indicators; for the three cohorts without aircraft noise information, all cohort members were assigned as no exposure).

^c Model 2 plus adjustment for smoking status (current/former/never), physical activity (low/medium/high).

^d Model 2 plus adjustment for time-weighted PM_{2.5} exposure; 20,825 IHD, 11,245 IHD excluding angina pectoris and 6,846 myocardial infarction cases during 2,120,816 person-years. Since the first year of PM_{2.5} modelling was 1990, while it was 1975 for noise, relevant air pollution data for the model including both noise and PM_{2.5} were missing at baseline for most of the PPS cohort.

^e Only among cohorts with aircraft noise exposure (thus excluding MDC, PPS, and GOT-MONICA) with remaining 15,499 IHD cases, 7821 IHD without angina pectoris cases, 4,125 myocardial infarction cases.

Median of recruitment age and median follow-up time

Figure S1. Median recruitment age and median length of follow-up in nine cohorts from Scandinavia included in the study.

Note: Corresponding numeric data are available in the supplementary excel file "Numeric data for Figures EHP10745" and correspond to Table 1. DCH, the Danish Diet Cancer and Health cohort; DNC, the Danish Nurse Cohort; MDC, the Malmö Diet and Cancer cohort, Sweden; PPS, the Primary Prevention Study cohort, Gothenburg, Sweden; GOT-MONICA, the Gothenburg cohort of "Multinational Monitoring of Trends and Determinants in Cardiovascular Diseases" (MONICA) project, Sweden; SDPP, the Stockholm Diabetes Preventive Programme, Sweden; SIXTY, the 60-years cohort, Stockholm, Sweden; SNAC-K, the Swedish National Study of Aging and Care in Kungsholmen, Stockholm, Sweden.

Figure S2 Distribution of road traffic and railway noise exposure during five years prior to the baseline in the study cohorts and overall (only levels of 40 dB L_{den} and above are displayed; X-axis – dB L_{den}, Y-asix – % of the population with noise exposure level 40 dB L_{den} and above). Note: Corresponding numeric data are available in the supplementary excel file "Numeric data for Figures EHP10745". DCH, the Danish Diet Cancer and Health cohort; DNC, the Danish Nurse Cohort; MDC, the Malmö Diet and Cancer cohort, Sweden; PPS, the Primary Prevention Study cohort, Gothenburg, Sweden; GOT-MONICA, the Gothenburg cohort of "Multinational Monitoring of Trends and Determinants in Cardiovascular Diseases" (MONICA) project, Sweden; SDPP, the Stockholm Diabetes Preventive Programme, Sweden; SIXTY, the 60-years cohort, Stockholm, Sweden; SNAC-K, the Swedish National Study of Aging and Care in Kungsholmen, Stockholm, Sweden; dB, decibel; L_{den}, Day-evening-night noise level based on energy equivalent noise level over a whole day with a penalty of 10 dB(A) for night time noise (23.00-7.00) and a penalty of 5 dB(A) for evening noise (i.e. 19.00-23.00).

<u>Figure S3</u> Hazard ratios and 95 % confidence intervals for IHD excluding angina pectoris in relation to exposure to road traffic (A) and railway noise (B) per 10 dB L_{den} five years prior to the event in each of the included cohorts. Results are presented per cohort, adjusted for age (by design), sex (men/women), calendar year (in 5-y periods), educational level (low/medium/high), marital status (single/married), area-income (quartiles), and other noise sources indicator (yes/no: road, railway, and aircraft noise; for the three cohorts without aircraft noise information, all cohort members were assigned as no exposure).

Note: Corresponding numeric data are available in the supplementary excel file "Numeric data for Figures EHP10745". DCH, the Danish Diet Cancer and Health cohort; DNC, the Danish Nurse Cohort; MDC, the Malmö Diet and Cancer cohort, Sweden; PPS, the Primary Prevention Study cohort, Gothenburg, Sweden; GOT-MONICA, the Gothenburg cohort of "Multinational Monitoring of Trends and Determinants in Cardiovascular Diseases" (MONICA) project, Sweden; SDPP, the Stockholm Diabetes Preventive Programme, Sweden; SIXTY, the 60-years cohort, Stockholm, Sweden; SNAC-K, the Swedish National Study of Aging and Care in Kungsholmen, Stockholm, Sweden; IHD, ischemic heart disease; BMI, body mass index; CI, confidence interval; HR, hazard ratio; L_{den}, Day-evening-night noise level based on energy equivalent noise level over a whole day with a penalty of 10 dB(A) for night-time noise (23.00-7.00) and a penalty of 5 dB(A) for evening noise (i.e. 19.00-23.00); PM_{2.5}, particulate matter with an aerodynamic diameter of $\leq 2.5\mu$ m (fine particulate matter); NO₂, nitrogen dioxide.

Figure S4. Hazard Ratio (HR) and 95 % confidence interval for IHD excluding angina pectoris, in relation to aircraft noise during five years prior to the event. Cohort specific results are from separate analysis where a cohort indicator was included as an interaction term with the categorical aircraft noise variable (dB L_{den}), and adjusted for age (by design), cohort (strata), sex (men/women), calendar year (in 5-y periods), educational level (low/medium/high), marital status (single/married), area-income (quartiles), and other noise sources indicator (yes/no: road and railway noise). The analysis is conducted only among cohorts with aircraft noise exposure (thus excluding the MDC, PPS, and GOT-MONICA cohorts) with remaining 7821 cases of IHD without angina pectoris.

Note: Corresponding numeric data are available in the supplementary excel file "Numeric data for Figures EHP10745". DCH, the Danish Diet Cancer and Health cohort; DNC, the Danish Nurse Cohort; MDC, the Malmö Diet and Cancer cohort, Sweden; PPS, the Primary Prevention Study cohort, Gothenburg, Sweden; GOT-MONICA, the Gothenburg cohort of "Multinational Monitoring of Trends and Determinants in Cardiovascular Diseases" (MONICA) project, Sweden; SDPP, the Stockholm Diabetes Preventive Programme, Sweden; SIXTY, the 60-years cohort, Stockholm, Sweden; SNAC-K, the Swedish National Study of Aging and Care in Kungsholmen, Stockholm, Sweden; IHD, ischemic heart disease; HR, hazard ratio.

Figure S5 Hazard ratio and 95 % confidence interval for ischemic heart disease in relation to exposure to noise from road traffic (Left) and railways (Right) per 10 dB L_{den} during five years prior to the event according to covariates and air pollution exposure. P-values are Wald p_{Interaction} terms. Results are presented according to strata of potential effect modifiers based on separate models with interaction terms between transportation noise and each potential modifier, adjusted for age (by design), cohort (strata), sex (men/women), calendar year (in 5-y periods), educational level (low/medium/high), marital status (single/married), area-income (quartiles), and other noise sources indicator (yes/no: road, railway, and aircraft noise; for the three cohorts without aircraft noise information, all cohort members were assigned as no exposure).

Note: Corresponding numeric data are available in the supplementary excel file "Numeric data for Figures EHP10745". IHD, ischemic heart disease; BMI, body mass index; CI, confidence interval; HR, hazard ratio; L_{den}, Day-evening-night noise level based on energy equivalent noise level over a whole day with a penalty of 10 dB(A) for night-time noise (23.00-7.00) and a penalty of 5 dB(A) for evening noise (i.e. 19.00-23.00); PM_{2.5}, particulate matter with an aerodynamic diameter of $\leq 2.5 \mu m$ (fine particulate matter); NO₂, nitrogen dioxide.

<u>Figure S6</u> Hazard ratios and 95 % confidence interval for IHD excluding angina pectoris in relation to road traffic (Left) and railway (Right) noise exposure per 10 dB L_{den} during five years prior to the event for different adjustment models and leaving out of studies.

Note: Corresponding numeric data are available in the supplementary excel file "Numeric data for Figures EHP10745". DCH, the Danish Diet Cancer and Health cohort; DNC, the Danish Nurse Cohort; MDC, the Malmö Diet and Cancer cohort, Sweden; PPS, the Primary Prevention Study cohort, Gothenburg, Sweden; IHD, ischemic heart disease; BMI, body mass index; CI, confidence interval; HR, hazard ratio; L_{den}, Day-evening-night noise level based on energy equivalent noise level over a whole day with a penalty of 10 dB(A) for night-time noise (23.00-7.00) and a penalty of 5 dB(A) for evening noise (i.e. 19.00-23.00); NO₂, nitrogen dioxide.

Model 2: adjusted for age (by design), cohort (strata), sex (men/women), and calendar year (in 5-y periods), educational level (low/medium/high), marital status (single/married), area-income (quartiles), and other noise sources (yes/no: road, railway, and aircraft noise indicators; for the three cohorts without aircraft noise information, all cohort members were assigned as no exposure).

Model 3: Model 2 with additional adjustment for smoking status, physical activity.

^a NO₂ data were available only for 131,219 subjects with corresponding 11,613 cases of IHD without angina pectoris originated during 2,170,978 person-years.

^b Both alcohol consumption and smoking intensity data were available only for 112,947 subjects with corresponding 10,160 cases of IHD without angina pectoris originating during 1,918,043 person-years.

References

- 1. Tjønneland, A., Olsen, A., Boll, K., Stripp, C., Christensen, J., Engholm, G., & Overvad, K. (2007). Study design, exposure variables, and socioeconomic determinants of participation in Diet, Cancer and Health: a population-based prospective cohort study of 57,053 men and women in Denmark. *Scandinavian Journal of Public Health*, *35*(4), 432–441.
- 2. Hundrup, Y. A., Simonsen, M. K., Jørgensen, T., & Obel, E. B. (2012). Cohort profile: the Danish nurse cohort. *International Journal of Epidemiology*, *41*(5), 1241–1247.
- 3. Berglund, G., Elmstahl, S., Janzon, L. & Larsson, S. A (1993). The Malmö Diet and Cancer study. Design and feasibility. *J Intern Med* 1993;233:45–51.
- Manjer, J., Carlsson, S., Elmståhl, S., Gullberg, B., Janzon, L., Lindström, M., Mattisson, I., & Berglund, G. (2001). The Malmö Diet and Cancer Study: representativity, cancer incidence and mortality in participants and non-participants. *European Journal of Cancer Prevention: The Official Journal of the European Cancer Prevention Organisation*, 10(6), 489–499.
- 5. Wilhelmsen, L., Tibblin, G., & Werkö, L. (1972). A primary preventive study of Gothenburg, Sweden. *Preventive Medicine*, 1(1), 153–160.
- 6. Wilhelmsen, L., Johansson, S., Rosengren, A., Wallin, I., Dotevall, A., & Lappas, G. (1997). Risk factors for cardiovascular disease during the period 1985-1995 in Göteborg, Sweden. The GOT-MONICA Project. *Journal of Internal Medicine*, *242*(3), 199–211.
- Gudjonsdottir H, Tynelius P, Fors S, et al. Cohort Profile: The Stockholm Diabetes Prevention Programme (SDPP). International Journal of Epidemiology. 2022. [Online ahead of print] DOI: 10.1093/ije/dyac147.
- Wändell, P.-E., Wajngot, A., de Faire, U., & Hellénius, M.-L. (2007). Increased prevalence of diabetes among immigrants from non-European countries in 60-year-old men and women in Sweden. *Diabetes* & *Metabolism*, 33(1), 30–36.
- Lagergren, M., Fratiglioni, L., Hallberg, I. R., Berglund, J., Elmståhl, S., Hagberg, B., Holst, G., Rennemark, M., Sjölund, B.-M., Thorslund, M., Wiberg, I., Winblad, B., & Wimo, A. (2004). A longitudinal study integrating population, care and social services data. The Swedish National study on Aging and Care (SNAC). Aging Clinical and Experimental Research, 16(2), 158–168.
- Lichtenstein, P., Sullivan, P. F., Cnattingius, S., Gatz, M., Johansson, S., Carlström, E., Björk, C., Svartengren, M., Wolk, A., Klareskog, L., de Faire, U., Schalling, M., Palmgren, J., & Pedersen, N. L. (2006). The Swedish Twin Registry in the third millennium: an update. *Twin Research and Human Genetics: The Official Journal of the International Society for Twin Studies*, 9(6), 875–882