Promoting and orienting axon extension using scaffold-free dental pulp stem cell sheets

Michelle D. Drewry¹, Matthew T. Dailey², Kristi Rothermund³, Charles Backman⁴, Kris N. Dahl^{4,5},

Fatima N. Syed-Picard^{1,3,6}

¹ Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh,

Pittsburgh, PA

² Department of Oral and Maxillofacial Surgery, School of Dental Medicine, University of

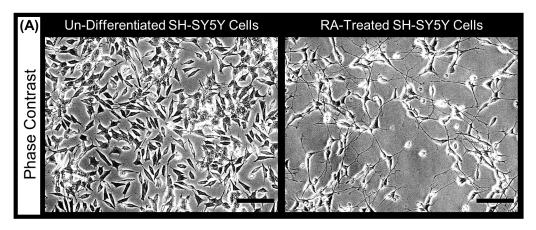
Pittsburgh

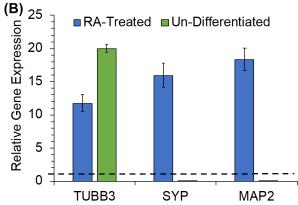
³ Department of Oral Biology and Center for Craniofacial Regeneration, School of Dental

Medicine, University of Pittsburgh, Pittsburgh, PA

⁴ Department of Chemical Engineering, College of Engineering, Carnegie Mellon University

⁵ Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University


⁶ McGowan Institute for Regenerative Medicine, Pittsburgh, PA


Number of Pages: 2

Number of Figures: 1

Number of Tables: 0

S1

Figure S1-Sn. Validation of the differentiation of neuroblastoma SH-SY5Y cells into neuron-like cells using retinoic acid (RA). (A) Phase contrast imaging indicated that differentiation of the SH-SY5Y cells induced changes in cell morphology and the formation of neurites. (B) Differentiated SH-SY5Y cells expressed neural markers β -tubulin (TUBB3) synaptophysin (SYP), and microtubule associated protein 2 (MAP2), measured using quantitative real-time PCR. Scale bars: (A) 100 μm.