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S1. Modeling the mutation spectrum as a function of parental age 

 

S1.1. Data from Icelandic trios 

We developed a parental age model for the mutation spectrum based on data from a large 

study of de novo mutations in an Icelandic population (14). We briefly summarize the findings 

from this study here as background for the development of our model. The study detected 

101,377 single-nucleotide de novo mutations from 1,548 trios with known parental ages at 

conception. In general, they found an increasing number of mutations with both paternal and 

maternal age, with different rates of increase for different mutation classes. The parent-of-origin 

was determined for a subset of these mutations (n = 41,899), allowing inferences for the 

mutation spectrum to be made separately for mothers and fathers. Figure S1 summarizes these 

findings for each of the six different classes of single-nucleotide mutations (A→C, A→G, A→T, 

C→A, C→G, C→T; each class includes counts from their complements). 

 

 

S1.2. Description of the Dirichlet-multinomial regression 

The mutation spectrum is a form of compositional data: comparisons between spectra focus 

on differences in the relative abundance of each mutation class. Because of the small number of 

mutations produced by any one set of parents, observations from a single trio are insufficient to 

reliably determine the spectrum. A model for the mutation spectrum must therefore incorporate 

the probabilistic nature of mutation counts from a given trio while inferring the relationship 

between the underlying spectrum and given covariates. We apply a Dirichlet-multinomial 

regression to mutation count data to capture the relationship between the underlying mutation 

spectrum and parental ages, which are treated as covariates in the analysis. 

 

Let 𝐲𝑖 = (𝑦𝑖,A→C, 𝑦𝑖,A→G, 𝑦𝑖,A→T, 𝑦𝑖,C→A, 𝑦𝑖,C→G, 𝑦𝑖,C→T) be the vector of mutation counts for 

each of the six respective mutation classes from trio i. The distribution for m mutation counts 

from a trio, yi, is modeled as a multinomial, conditional on the probability vector pi, 

 

𝐲𝑖 | 𝐩𝑖  ~ Multinomial(𝑚, 𝐩𝑖) 

 

where pi is defined on the 6-dimensional simplex, 𝑆 = {(𝑝A→C, 𝑝A→G, 𝑝A→T, 𝑝C→A, 𝑝C→G, 𝑝C→T) ∶

𝑝𝑗 ≥ 0, ∑ 𝑝𝑗 = 1𝑗 }. 

 

We then impose a conjugate Dirichlet prior on p, such that 𝐩 ~ Dirichlet(𝛂), and  

𝛂 = (αA→C, αA→G, αA→T, αC→A, αC→G, αC→T), αj > 0. The probability mass function for the count 

vector y over 𝑚 = ∑ 𝐲𝑖𝑖  trials under this Dirichlet-multinomial model can be represented as 

 

𝑓(𝐲 | 𝛂) = (
𝑚

𝐲
)

∏ (α𝑗)𝑦𝑗𝑗

(∑ α𝑗𝑗 )𝑚
 

 

(see ref. (28)).  
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The parental ages for each trio are incorporated as covariates for the Dirichlet-multinomial 

regression, 𝐱 = (𝐱paternal, 𝐱maternal), an n × 2 matrix of parental ages. They are related to the 

Dirichlet parameter 𝛂 by the inverse link function, 

 

α𝑗 = 𝑒𝐱T𝛃𝑗  

 

where 𝛃𝑗 = (𝛽𝑗,paternal, 𝛽𝑗,maternal) is the vector of regression coefficients for each mutation 

class. 

 

 

S1.3. Subset of mutations and trios for model fitting 

For our main analysis we used a subset of mutations from the Icelandic dataset to model the 

mutation spectrum with parental age: we used only the set of phased mutations for which the 

parent-of-origin was determined by either read-tracing or transmission to a third generation. 

Further restrictions on the mutations used for modeling were made to mirror the filters placed on 

dated variants from the 1000 Genomes Project dataset. These include removing mutations at 

CpG sites and C→T transitions with a trinucleotide context associated with a putative mutation 

pulse (see section S2.2). We also restricted trios to those that had a minimum of at least 10 

mutations. This was done to avoid matrix degeneracy when fitting the maximum likelihood 

mutation spectrum model (see below). After all filters, we fit the model on 27,902 mutations 

from 1,247 trios. 

 

 

S1.4. Fitting the model to mutation data 

We used the R package MGLM (28) to fit the Dirichlet-multinomial regression model to the 

filtered mutation dataset. MGLM implements several methods for multivariate generalized linear 

models, including the Dirichlet-multinomial. We used it to fit the regression coefficients for our 

covariates (parental age) that maximize the log-likelihood of our model. The result is a predictive 

model that gives the expected mutation spectrum for a set of parental ages. Figure S2 

demonstrates a set of simple predictions from the fit model, showing the expected changes to the 

mutation spectrum when paternal and maternal age are individually adjusted. 

 

To assess the accuracy of our model, we simulated mutations drawn from the previously fit 

Dirichlet-multinomial model with known parental ages. In general, our model assumes that the 

distribution of parental ages in the population is much less important to the mutation spectrum 

than the mean age. To further explore the fit of our model when we consider population variation 

in parental age, we drew a stochastic set of parental ages from a multivariate normal distribution. 

We parameterized this distribution with mean ages from the Icelandic dataset and a scalar 

product of the covariance matrix that we allowed to vary. Figure S9 shows increasing sum of 

squared error (SSE) from the underlying simulated spectrum with increasing population 

variance. Overall, there is very low error, but it increases steadily with variation in parental ages. 
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S2. Variants from the 1000 Genomes Project dated by GEVA 

 

S2.1. GEVA and the Atlas of Variant Age 

Human variants dated by the Genealogical Estimation of Variant Age (GEVA) approach are 

publicly available in the Atlas of Variant Age, an online database 

(https://human.genome.dating/). In order to jointly estimate the age of each derived allele, GEVA 

assumes a constant per-generation mutation rate through time (1.2 × 10-8 per base pair) and a 

constant per-generation recombination rate through time (varying by locus). Importantly, these 

age estimates are expressed as generations since the present, and consequently do not require the 

assumption of any particular generation time. We used dated variants in this database collected 

from the 1000 Genomes Project (Phase 3; GRCh37). This set includes autosomal variants 

sampled from 2,504 individuals in 26 worldwide subpopulations within 5 continental 

populations. Ancestral and derived states were determined in the Atlas of Variant Age through 

multispecies alignments from the Ensembl database (see ref. (15)). Throughout our main 

analysis, we use the median estimated allele age from the database as a point estimate of each 

variant’s age. See section S4.3 for an analysis that relaxes this assumption. 

 

 

S2.2. Filtering dated variants 

We took several additional filtering steps to ensure variants were appropriate for estimating 

generation time. We considered only biallelic single-nucleotide sites that were not singletons—

variants that exist on only a single chromosome across samples. We also discarded variants with 

a derived allele frequency higher than 98% to reduce the possibility of ancestral state 

misidentification. 

 

As mentioned above, CpG sites are more likely to have arisen more than once, and therefore 

to have been multiply mapped on genealogies; their frequency is much less consistent across 

time periods as a result (Fig. S15). As in the model for mutation spectrum with parental age, all 

variants at CpG sites were discarded from consideration. 

 

Several C→T transitions have been inferred to be part of a recent mutation pulse, 

particularly in European populations (19, 20). To reduce the potential effect of this mutation 

pulse on estimates of generation time, we discarded all triplet C→T transitions that have been 

found to be associated with this pulse. These include ACC→ATC, CCC→CTC, TCC→TTC, 

TCT→TTT, and their respective reverse complements. 

 

 

S2.3. Binning data into time periods 

After all filtering, there were 25.3 million variants from the Atlas of Variant Age for which 

there were estimates of allele age. Of these, 20.9 million were estimated to have arisen in the last 

10,000 generations. Because there are very few young variants and a long tail for the number of 

older variants (Fig. S8), we estimated spectra in bins that were supported by equal numbers of 

variants rather than in equally spaced time periods. We divided the 20.9 million variants equally 

https://human.genome.dating/
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among 100 bins based on their estimated age. Bins were filled starting with the youngest 

variants, leaving a small number of the remainder of oldest variants unplaced.  

 

The estimated spectrum for each bin was calculated as the count of variants in each of the 

six mutation classes divided by the total number of variants in the bin. The age of each bin was 

calculated as the mean of estimated ages from all variants in the bin. Figure S15 shows the 

spectra, as a frequency of each mutation class, across 100 bins from the past 10,000 generations. 

The same procedure was used to estimate historical spectra for each of the continental population 

groups, for which there were 11.0 (AFR), 4.3 (EAS), 4.4 (EUR), and 5.4 (SAS) million variants 

included after filtering (see section S3.4). 

 

S3. Estimating generation times 

 

S3.1. Fitting variant data to the Dirichlet-multinomial regression model 

We jointly estimate separate male and female generation times from the historical mutation 

spectra calculated from the counts of variants in each time period. To do this, the parental ages in 

the Dirichlet-multinomial model were treated as parameters in a search for a predicted mutation 

spectrum that best fit the observed historical spectrum. We minimized the distance between each 

predicted spectrum and each observed historical spectrum. 

 

Because a mutation spectrum is a composition underlain by count data, comparisons 

between spectra using simple Euclidean distance can be misleading. Like all compositional data, 

mutation spectra are mathematically constrained by the possible values for the frequency of each 

count class, distorting the simple Euclidean distance between compositions. To deal with this, we 

perform a centered log-ratio transformation (clr) on each spectrum before calculating the 

distance between them (29). The transformation can be obtained as 

 

clr(𝐱) = [log
𝑥1

g(𝐱)
, … , log

𝑥D

g(𝐱)
] 

 

for a composition vector x with D elements, where g(x) is the geometric mean of the 

composition. The Aitchison distance between two given spectra, x1 and x2, can then be 

calculated as 𝑑 = ‖clr(𝐱1) − clr(𝐱2)‖. 

 

The generation time was then estimated from each historical mutation spectra by distance 

minimization as 

 

argmin 
𝑡p,𝑡m

‖ clr(𝑭(𝑡p, 𝑡m)) − clr(𝐱𝑗 − Δ) ‖ 

 

where F gives the predicted spectrum from the Dirichlet-multinomial model for a set of paternal 

and maternal ages, tp and tm, xj is the historical mutation spectrum from a given time period, and 

Δ is the centering difference, the difference between the most recent bin and the average 

mutation spectrum, as described in the main text. The parental ages that minimized this distance 
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were found by applying the L-BFGS-B optimization algorithm as implemented in the R stats 

package (30). We used the default convergence tolerance, default limit on number of iterations, 

and set bounds for both parental ages to be: [0, 100]. None of the searches returned a minimum 

distance at these bounds. The maternal and paternal ages that minimized the distance from each 

time period were taken to be the respective estimates of the generation time. These ages, as well 

as the sex-averaged generation time, for all time periods are provided in Supplementary Data S1. 

 

 

S3.2. Calculating confidence intervals by double-bootstrap 

There are two major sources of uncertainty in our estimates of the generation time: (1) the 

mutation data that specifies the Dirichlet-multinomial regression model, and (2) the dated 

variants that are used to calculate the variant spectrum in each time period. This led us to 

construct confidence intervals around the generation time estimates with a double-bootstrap 

resampling strategy. 

 

The 1,247 trios from the Icelandic dataset were resampled with replacement and fit to the 

Dirichlet-multinomial regression model. We discarded cases where the likelihood search for the 

regression model failed to converge, but restricting the dataset to include only trios that had at 

least 10 mutations greatly reduced instances of failure to converge due to matrix singularity. The 

variants in each time period of the analysis were also resampled with replacement and the 

spectrum was recalculated for each bin. Finally, generation times were estimated by fitting the 

bootstrapped spectrum to the bootstrapped model by distance minimization as described above. 

The resampling steps were each repeated 100 times, resulting in a total 100 × 100 = 10,000 

bootstrap estimates of generation time for each time period included in the analysis. 

 

 

S3.3. Calculating averages and absolute generation times 

The sex-averaged generation time was calculated as the mean of the maternal and paternal 

ages estimated for each time period. In figures plotting this sex-averaged estimate, we performed 

local polynomial regression (loess) to produce a smoothed curve across the past. We used the 

default smoothing parameter, α = 0.75, in the R stats implementation of loess to smooth both 

sex-averaged estimates and their confidence intervals.  

 

We calculated the absolute time scale (Fig 2A in main text) on which generation times 

change by integrating the estimated sex-averaged generation time across the age of mutations. 

We employed a Riemann sum, calculating the cumulative sum of estimated generation times in 

single generation steps from the smoothed sex-averaged curve. We added a small constant to this 

integration to account for the time between the present and the first estimate by assuming there 

has been no change to generation times in this short period. 

 

A related strategy was used to calculate the average generation times across the period of 

our analysis. Because ranges for each time period were based on an equal number of variants, 

older bins span a greater amount of time. We weighted the estimate from each time period by the 

span of the bin when calculating the average generation times reported in the main text.  
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S3.4. Estimating population-specific generation times 

We separated variants as belonging to one of four continental populations (AFR: Africa, 

EAS: East Asia, EUR: Europe, and SAS: Southeast Asia) based on their geographic sampling in 

the 1000 Genomes Project. Variants were placed into continental populations using an inclusive 

criterion: as long as more than one copy exists among samples from a population, it is included 

in that population. We analyzed each set of variants separately to arrive at population-specific 

estimates of generation times (Fig. S4). That is, we repeated each step of the previously 

described analysis with only the subset of variants included in each population. 

 

In contrast to the broadly inclusive criteria, we also separated variants into each continental 

population by including only the private alleles exclusive to each population. The proportion of 

variants that are private to each continental population drops rapidly going back in time, and they 

make up a very small proportion of variants by 2,000 generations ago (Fig. S5B). Nevertheless, 

we estimated generation times after creating a subset of variants for each population using only 

the private alleles. Figure S5A shows the results of this analysis for the first 1,000 generations, 

before private variants for most populations disappear. These results are very similar to those 

found using the more inclusive criteria for variants (Fig. 3 in the main text). 

 

 

S3.5. Goodness-of-fit through time 

We took two approaches to quantify how well our generation time estimates fit with 

mutation spectra across human history. First, we calculated the sum of squared error (SSE) 

between the spectrum estimated in each bin and the spectrum predicted by the male and female 

generation times as estimated from our model. Lower SSE values indicate that our model better 

explains variation in the mutation spectrum. Figure S6A shows the SSE of the best-fit model for 

the full dataset and the range of SSE values across the double-bootstrap resampled datasets.  

Our second approach was to calculate a composite likelihood for the predicted spectrum 

under a model that treats each mutation class as an independent Poisson regression (Fig. S6B). 

We previously used this simpler model to describe the mutation spectrum as a function of 

parental age (23). Here we calculate the likelihood for the predicted spectra in each time period 

under this alternative model to evaluate goodness-of-fit in a way that may better control for 

sparse data. The likelihood for each time period is calculated as, 

log 𝐿 = ∑
𝜆𝑐

𝑥𝑐𝑒−𝜆𝑐

𝑥𝑐!
𝑐

 

where xc is the number of observed variants in mutation class c, and λc is number of predicted 

counts for mutation class c. Here, λc is normalized to the total number of variants binned to each 

time period, that is, 

𝜆𝑐 =
𝑁𝑐(𝑡p, 𝑡m)

∑ 𝑁𝑐(𝑡p, 𝑡m)𝑐
∑ 𝑥𝑐

𝑐
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where Nc(tp, tm) is the number of mutations in class c predicted by the independent Poisson 

regression for tp and tm, the paternal and maternal generation intervals estimated under the 

Dirichlet-multinomial model (section S3.1). 

 

Figure S7 shows both goodness-of-fit analyses run on each continental population 

separately. The SSE among these populations (Fig. S7A) is associated with the number of 

polymorphisms in each dataset, with lower error in datasets with more polymorphisms. Though 

the error in our model varies across time, it is notably not monotonic with time into the past, and 

the worst fit across populations is roughly coincident with the period with the greatest estimated 

difference in male-female generation time (Fig. 2B). Figure S7B also shows a relatively stable 

composite likelihood for predictions across the past 10,000 generations. Note that these 

likelihoods cannot be meaningfully compared across populations because they describe the fit to 

different data. Regardless, the composite likelihood of all populations does not increase 

monotonically with time into the past. 

 

To help interpret SSE values over time, we also performed a cross-validation analysis using 

the original mutation dataset. We calculated the SSE between spectra estimated from a random 

subset of 20% of trios from the Icelandic dataset and the remaining 80%. The mean SSE from 

100 cross-validation draws was 1.7 × 10-4. The mean SSE in bins from the past 10,000 

generations, 2.0 × 10-4, is only slightly higher, demonstrating that there is little additional error in 

our fit model that is not attributable to sampling variance. 

 

S4. Effects from relaxing filters and assumptions 

 
S4.1. Effects of recombination rate on generation time estimates 

Recombination could distort our generation time estimates if linked selection or biased gene 

conversion affect the inferred date of origin of variants in a way that nonuniformly changes 

historical spectra. Linked selection will change the shape of genealogies (31), especially in 

regions of low recombination. GC-biased gene conversion will change the population frequency 

of specific variants, but has a greater effect in regions of high recombination (32, 33). We carried 

out additional analyses to ensure the robustness of our results to the effects these processes may 

have had on the dating of variants within genealogies. 

 

We first considered how differences in recombination rates may have affected 

parameterization of the model. Mutations identified in the Icelandic trios (GRCh38 positions) 

were divided into quintiles based on the recombination rate of their surrounding regions 

(GRCh38 map from https://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/, published 

2018-09-25). The mutation spectra was then calculated separately for each quintile (Fig. S10A). 

We calculated the sum squared difference between the spectra in the first and last quintiles, and 

found them to be significantly different (P < 0.005, empirical CDF determined from cross-

validation; see section S3.5). These data indicate a different mutation rate, and a slightly different 

mutation spectrum, associated with variation in recombination. When we estimated generation 

times based on the mutation spectra from each quintile, they produced a pattern of consistently 

increasing female generation time with increasing recombination rate (Q1: 24.5 y, Q5: 33.7 y). 

https://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/
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That is, when stratified by recombination rate, the mutation data that originally parameterize the 

model predict longer generation times in strata with higher recombination rates. 

 

Estimates of generation time based on polymorphisms from genomic regions stratified by 

recombination rate reveal the same patterns. We split variants (GRCh37 positions) into quintiles 

based on the interpolated human map of recombination (GRCh37 map from 

https://github.com/joepickrell/1000-genomes-genetic-maps, commit 73cbe92). While our 

estimates of generation time appear to show an increase with recombination rates (Fig. S10C), 

the pattern across history remains the same. The longer generation times seen in estimates from 

regions of higher recombination did not correspond with any bias toward, or accumulation of, G 

or C alleles in the inferred mutation spectra from high recombination quintiles (Fig. S11). Thus, 

while the mutation spectrum is affected by local recombination rates, this pattern is equally 

present in both the mutation data used to fit the model as well as the variants used to estimate 

historical spectra. 

 

Since our estimates of the generation time are based on a model of the mutation spectrum fit 

to the whole genome, intra-genomic variation in recombination rate undoubtedly contributes to a 

proportion of unaccounted variance and error to our model. We considered whether our estimates 

of generation time may be affected by differences between the proportion of mutations identified 

as arising in regions with a given recombination rate and the proportion of variants identified in 

those same regions. We divided mutations and variants across the genome into quintiles based on 

recombination rate and found a significant difference between the proportion belonging to each 

bin (2 test, P < 1 × 10-10; Fig S10E). Concerned about the effect this may have on our 

generation time estimates, we performed a jackknife resampling analysis that matched the 

proportion of variants in each recombination quintile to the proportion found among mutations. 

We sampled one-third of all variants in each of 100 replicates, exactly matching the proportion 

from each mutation quintile, and then re-estimated generation times across the past 10,000 

generations. Figure S10G shows that despite significant differences in the recombination rate 

surrounding mutations versus variants, our estimates of historical generation times were not 

affected. 

 

 

S4.2. Effects of replication time on generation time estimates 

Another genomic property that has been shown to affect mutation rate and spectra is the 

timing of replication. Both early and late-replicating regions of the genome are associated with a 

higher mutation rate; late-replicating regions are also enriched for transversion mutations (27; 

Fig. S10B, S10F). We considered the effects that differences in genomic replication time may 

have on our generation time estimates with an analysis similar to the one performed for 

recombination rate variation (section S4.1). Dated variants were split into quintiles based on the 

genomic region’s replication time (27). We found that estimates of the generation time were 

progressively longer with variants from increasingly early replication time (Fig. S10D). 

Generation times estimated separately from each quintile of replication time are more distinct 

than estimates from separate quintiles of recombination rate (Fig. S10C), showing the stronger 

effects of replication time on the mutation spectrum across the genome. 

 

https://github.com/joepickrell/1000-genomes-genetic-maps
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As with variation in recombination rate, we were concerned that the mutations used to fit 

our model may not have arisen in regions with the same replication time as the variants used to 

estimate historical mutation spectra. We found that the proportions of mutations in quintiles of 

replication time were significantly different from the proportions among variants (2 test, P < 1 × 

10-10; Fig S10F). To estimate the effect this may have had on our estimates, we once again 

performed a jackknife resampling. We matched the proportions from each quintile of replication 

time by sampling one-third of all variants in proportion to quintiles among mutations and re-

estimating generation times from each of 100 replicates. Figure S10H shows that our estimates 

of generation times across the past 10,000 generations were not affected by differences in the 

proportion of replication time between mutations and variants in the genome. 

 

 

S4.3. No significant effect on estimates from Neanderthal introgression 

We considered the possible effects of Neanderthal introgression by repeating our analysis 

while masking all regions with evidence for introgression in any individual (34). This 

conservative approach, which removed sites regardless of allelic status, masked approximately 

38% of the data. Figure S13 shows the results of our analysis with these regions removed. We 

find little effect on overall generation time estimates (Fig. S13A) or on estimates for non-African 

populations, the candidates for any effect from Neanderthal introgression (Fig. S13B). 

 

 

S4.4. Additional effects of relaxing filters and assumptions 

We examined several ways in which data or modeling choices might have affected our 

results. Rather than using only the set of high-quality phased mutations, we fit the Dirichlet-

multinomial regression model to a much larger dataset that included unphased mutations from 

the Icelandic trios (n = 72,573 de novo mutations from 1,548 trios). The average age of parents in 

this dataset (males: 32.0, females: 28.2) is lower than in the smaller phased dataset (males: 33.4, 

females: 29.1). The results from using this model for analysis are shown in Figure S12A. The 

male-female difference is slightly accentuated, but the overall pattern for generation times 

remains the same. We also considered whether our estimates may have been affected by batch 

effects in the 1000 Genomes Project data, as identified by (35). To be conservative, we removed 

from this analysis all seven nucleotide-triplet mutation patterns identified as being associated 

with low quality scores. This includes *AC→*CC, TAT→TTT, TCT→TTT, TGT→TTT, and 

their reverse complements; C→T triplets that we had previously removed continued to be absent 

in this analysis. Figure S12B shows that the omission of these mutation patterns leads to slightly 

lower estimates for male generation times, but an overall pattern that remains very similar to our 

main findings. 

 

As mentioned in the main text, our results were anchored by absolute generation time 

estimates from the most recent time period. We relaxed this assumption by anchoring to the 

mean spectrum across all dated variants. This effectively asserts that the Icelandic dataset has a 

generation time equivalent to the mean generation time across thousands of generations. While 

estimates of absolute parental age were slightly lower under this assumption, the patterns across 

human history were unaffected (Fig. S12C). Without any anchoring, estimates of the absolute 



 

 

12 

 

generation time were much lower; across 10,000 generations, the mean (std. dev.) estimates 

were: males, 12.4 (2.8); females, 21.4 (1.1); sex-averaged, 16.9 (1.9). 

 

We further investigated whether the difference between the mean spectrum of mutations 

from the Icelandic trios and the polymorphism data was specific to variants from the 1000 

Genomes Project. We compared the spectrum to polymorphism data from a large set of 

extremely rare variants (ERVs; 22). This stringently filtered high-quality set of over 35 million 

variants from 3560 whole-genome sequences is expected to closely resemble de novo mutations. 

Despite this, we find a subtle but significant difference in the mutation spectra (P < 2 × 10-16): 

the magnitude of this difference is comparable to what we found between the youngest bin and 

the average spectrum (sum of squared differences: 1.47 × 10-3 vs. 1.50 × 10-3). Table S1 shows 

the count, spectrum, and difference between de novo mutations from the Icelandic trios and the 

extremely rare variants from ref. (22). 

 

Table S1. Mutation spectrum from extremely rare variants (ERVs) versus de novo mutations 

 A→C A→G A→T C→A C→G C→T 

ERVs 2596232 9686710 2483389 3625994 3135036 14047056 

% 7.30 27.23 6.98 10.19 8.81 39.49 

DNMs 7141 27178 6898 7697 9734 42729 

% 7.04 26.81 6.80 7.59 9.60 42.15 

Diff. (%) -0.254 +0.421 +0.177 +2.600 -0.789 -2.662 

 

 

Mutations from the Atlas of Variant Age included in our analysis were dated based on the 

median estimated allele age. To explore the effects of uncertainty in these estimates, we 

resampled allele ages based on the reported posterior distributions of age estimates. We drew 

new ages for each variant assuming a normal distribution around the reported 95% highest 

density interval (negative ages were set to zero). We then repeated the entire analysis, estimating 

generation times in the last 10,000 generations from 10 such resampled datasets (Fig. S14). 

Overall, the historical trajectory for human generation times estimated from resampled datasets 

is within our bootstrap confidence intervals. The exception to this pattern occurs in the earliest 

bins, where we estimate lower generation times in our resampled ages. This lower estimate is 

likely due to boundary effects: since we assume a normal distribution for allele ages, alleles close 

to the present have negative ages set to zero. 

 

We also considered whether the mutation process could be significantly different among 

populations. Since we know generation times among continental populations in the present are 

very similar, we reasoned that any evolved differences in the mutation process between 

populations should be reflected in recent variant spectra. Figure S3 shows there is little 

difference in the recent spectra between populations, suggesting there are no significant 

differences in mutation processes between them. These inferences are supported by studies of de 

novo mutations in diverse populations (36), which show no differences in the mutation spectrum 

among parents of similar ages. Similarly, Figure S7 shows no effect of either genetic or 
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geographic distance from Icelandic populations, as would be expected if differences in the 

mutation process among continental populations had a significant effect on model fit.  
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Supplementary Figures 

 

Figure S1. Frequency of mutation classes with parental age 

A summary of the number of de novo mutations as a function of age. Phased mutations can be 

assigned to either the paternal or maternal lineage, so are shown separately for the six different 

types of single nucleotide changes (and their complement). Data from ref. (14).  



 

 

15 

 

 

Figure S2. Predicted change in mutation frequency with paternal and maternal age 

Data from Icelandic trios (Fig. S1) were used to parameterize the Dirichlet-multinomial model. 

Figures are centered on the average paternal and maternal ages among the trios (males: 32.0, 

females: 28.2), and show predicted changes with differences to only paternal (left) and only 

maternal (right) age. Predicted changes in frequency for each type of mutation are visualized as 

the difference relative to their frequency at the mean age.  
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Figure S3. Variant spectrum of the most recent private alleles 

The variant spectrum of private alleles for the most recent time period (average variant age of 

~80 generations) are the same between continental populations. Error bars show 95% CI.  
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Figure S4. Population-specific estimates of male and female generation interval 

Generation intervals were estimated for four major continental populations. These results are the 

same as those shown in Figure 3 in the main text, but with separate maternal and paternal 

generation times plotted.  
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Figure S5. Population-specific estimates from private variants 

(A) Estimates of the generation interval for each of the four major continental populations using 

only variants private to each population. These results can be compared to Figure 3 in the main 

text, but note that here we only plot estimates up to 1000 generations ago. (B) The proportion of 

all variation that is private to one continental population, as a function of time in the past. Almost 

all variation private to one of the non-African samples has arisen in the most recent 1000 

generations.  
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Figure S6. Goodness-of-fit through time 

(A) Difference between spectra predicted by parental age estimates and spectra from 1000 

Genomes data is shown as the sum of squared error (SSE) for each bin going back 10,000 

generations (blue). Lower SSE values indicate that the model better explains variation in the 

mutation spectrum. (B) Composite likelihood of parental age estimates for spectra from each bin 

under an independent Poisson model for each mutation class (see Supplementary section S3.5). 

Boxplots show goodness-of-fit from analyses of the double-bootstrap datasets (bootstrap outliers 

not plotted).  
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Figure S7. Goodness-of-fit for different continental populations 

(A) Difference between spectra predicted by parental age estimates and spectra from analyzed 

1000 Genomes continental populations is shown as the sum of squared error (SSE). Lower SSE 

values indicate better model fit to the observed mutation spectrum. Error among populations 

appears lower among datasets with more polymorphisms. (B) The Poisson composite likelihood 

is stable for generation time estimates from different continental populations across the past 

10,000 generations. Note that, while shown on the same plot, likelihoods across populations 

cannot be meaningfully compared because they describe the fit to different underlying data.  
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Figure S8. Density of variants by age of origin 

Variants dated by GEVA (15) are plotted according to the time at which they are estimated to 

have arisen via mutation. The plot includes all data from the 1000 Genomes Project, regardless 

of which population(s) they are found in.  
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Figure S9. Effect of population variance in parental ages 

Model error increases with variation in parental ages. Mutations were simulated as being from 

parents with a stochastic set of ages. The difference between the predicted spectra based on 

estimated ages and the simulated mutations is shown as the sum of squared error (SSE). Parental 

ages were drawn from a multivariate normal with mean and variance from the Icelandic dataset. 

Increasing variation in the distribution of parental ages was introduced by linear scaling of the 

covariance matrix. Each point represents the mean difference in SSE from 10,000 simulations.
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Figure S10. Stratification of genomic regions by recombination rate and replication time 

(A, B) Different mutation spectra in the Icelandic trio dataset are apparent when mutations are 

binned by the local genomic region’s (A) recombination rate and (B) replication time. Quintiles 

(1-5) are ordered by increasing recombination rate and earliness of replication time. 

(C, D) Different sex-averaged generation time trajectories are inferred when using only the dated 

variants from specific quintiles of (C) recombination rate or (D) replication time. Dashed line 

and shaded area show the estimate and confidence interval from the full dataset. 

(E, F) The proportion of mutations (solid) and variants (hatched) found in different genomic 

quintiles of recombination rate and replication time. (E) An increasing proportion of both 

mutations and variants are found in regions of higher recombination rate; quintiles ordered by 

increasing recombination rate. (F) The proportion of both mutations and variants are bimodally 

distributed by replication time across the genome (27); quintiles ordered by increasing earliness 

of replication. 

(G, H) Sex-averaged generation time estimates from 100 jackknife resamples where the 

proportion of variants from each quintile was matched to the proportion found among mutations 

(see Supplementary section S4.1, S4.2). These results indicate that there is little effect on 

estimates due to differences between the proportion of mutations and variants from each (G) 

recombination rate and (H) replication time quintile.  
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Figure S11. No accumulation of effects from biased gene conversion through time 

The frequency of mutations subject to biased gene conversion (to G and C) do not accumulate 

over time, even across regions with different recombination rates. Frequencies have been center 

log-ratio transformed (clr; see Supplementary section S3.1) to makes differences more visible.  
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Figure S12. Generation intervals estimated with relaxed assumptions 

(A) All de novo mutations from the Icelandic trio dataset (not just phased mutations, as in Fig. 2 

in main text) were used to re-parameterize the Dirichlet-multinomial model, and then to re-

estimate generation times. (B) All seven nucleotide-triplet mutation patterns associated with 

possible batch effects identified in (35) were removed from the analysis. (C) Generation times 

estimated by anchoring the Icelandic mutation frequency spectrum to the average frequency 

spectrum across all historical time periods.  
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Figure S13. Estimates after masking tracts with evidence for Neanderthal introgression 

(A) Estimates of the generation interval over the past 10,000 generations after omitting 

polymorphisms in tracts with any evidence for Neanderthal introgression. The sex-averaged 

generation interval with Neanderthal tracts masked (solid line) is little different from the estimate 

from the full dataset (dashed line, confidence interval shaded). (B) Estimates of the generation 

intervals between African (AFR) and non-African (non-AFR) continental populations were not 

significantly affected by masking Neanderthal tracts. Confidence intervals displayed are from 

bootstrap analyses using the full dataset (dashed lines). Inset shows results from including 

polymorphisms that date back to 78,000 generations ago.  
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Figure S14. Estimated generation interval from resampled allele ages 

Sex-averaged generation interval estimated from datasets using resampled allele ages (blue 

lines). New ages for each variant were drawn from a normal distribution parameterized by the 

reported posterior from the Atlas of Variant Age to create 10 resampled datasets. The trajectory 

of human generation intervals closely matches our estimates using median allele age (dashed 

line, bootstrap CI shaded), with the exception of the earliest bins where boundary effects 

dominate (see section S4.3).  

  



 

 

29 

 

 

 

Figure S15. Mutation frequency by age of origin 

For each of 100 time periods, the frequency of each type of mutation having been inferred to 

arise in that bin is plotted. Frequencies have been center log-ratio transformed (clr; see 

Supplementary section S3.1) to makes differences more visible. In addition to the six types of 

mutations used in the Dirichlet-multinomial model, we also show the behavior of CpG→CpT 

mutations for comparison (these were not used in the model). 

 

 

 

 

 

 

Data S1. 

Estimated male and female generation times for each time period and population. 
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