Science Advances

Supplementary Materials for

Single-cell profiling identifies ACE⁺ granuloma macrophages as a nonpermissive niche for intracellular bacteria during persistent Salmonella infection

Trung H. M. Pham et al.

Corresponding author: Denise M. Monack, dmonack@stanford.edu; Trung H. M. Pham, tpham8@stanford.edu; Stephen R. Quake, steve@quake-lab.org

Sci. Adv. **9**, eadd4333 (2023) DOI: 10.1126/sciadv.add4333

This PDF file includes:

Figs. S1 to S6 Table S1

Fig. S1.

Related to Figure 1 (A) schematic outline of the droplet-based scRNA-seq of splenocytes from mice infected either with WT STm or *AsteE* STm. (B-C) FACS gating scheme for CD11b⁺CD11c⁺Ly6C⁺CD64⁺MHC^{hi} granuloma macrophages, which also have high F4/80 expression. Samples were gated for size/scatter, singlet, living CD11b⁺ population then further gated as displayed. Plots shown are results from WT-STm infected. For permissive FACS enrichment of CD11b⁺CD11c⁺Ly6C⁺ granuloma macrophages, sorting gates were set tightly for size/scatter, singlet, and living cells but more loosely for CD11b, Ly6G, Ly6C, and CD11c markers. This enrichment strategy enables significant enrichment of granuloma-associated macrophages while simultaneously capturing the full spectrum of immune cells in the infected spleens. Red arrow indicates the CD11b⁺CD11c⁺Ly6C⁺ mononuclear phagocyte (MNP) population targeted for enrichment for scRNA-seq library preparation. (D) Number of analyzed cells that passed the quality controls from individual mice. Cells that had < 1000 unique molecular identifier (UMI) counts, < 500 detected genes, and > 5% reads with mitochondrial origin (indicate stressed or dying cells) were filtered. A total of 22,512 cells from WT and *AsteE*-STm infected mice passed quality controls. (E) Distribution of UMI counts in analyzed cells. (F) Distribution of the number of detected genes in analyzed cells. (G) Distribution of the percent reads that are mapped to mitochondrial genes in analyzed cells.

Fig. S2.

Related to Figure 1. (A) UMAP projection colored by Leiden clusters. **(B)** UMAP projections of cells from either WT STm or $\Delta steE$ STm-infected mice. Cells are well mixed in each part of the manifold, indicating a lack of technical batch effect.

Fig. S3.

Related to Figure 3. (A) UMAP projection of myeloid populations colored by predicted cell cycle states. **(B)** Cell cycle phase frequency for each MNP cluster. **(C)** Heatmap of standardized expression of genes in selected pathways in Figure **3H**.

Fig. S4.

Related to Figure 4. Mice were infected intraperitoneally with 2×10^3 CFU WT-STm and analyzed at 1 month post-inoculation. Flow cytometry gating for ACE⁺ granuloma macrophages. Splenocytes were gated for singlet, living CD11b⁺CD11c⁺Ly6C⁺ population, then gated as displayed. Percentages indicate frequencies of gated cells among total splenocytes. Plots shown are results from infected mice (**A**), uninfected mice (**B**), or infected mice but without ACE antibody stain as a control (**C**). (**D**) The number of ACE⁺ granuloma macrophages (GM Φ) isolated from the spleens of uninfected mice or mice that had been infected with WT STm for 2, 3, or 5 weeks. At least 6 mice were included in each group. Dots: individual mice. (**E**) The number of

ACE⁺ GM Φ or total GM Φ isolated from the spleen of mice that had been inoculated with WT or Δ steE STm for 1-month. Thirteen mice were included in each group. Dots: individual mice. Numbers below the significance bar indicate the fold-change between WT STm and Δ steE STm infection groups. (D-E) Significance calculated using a two-tailed Mann-Whitney test. ** p < 0.01, *** p < 0.001.

Fig. S5.

Related to Figure 5. (A-C) Mice were infected *intraperitoneally* (*i.p.*) with 2 x 10³ CFU WT-STm and analyzed at 1 month post-inoculation. Flow cytometry showing STm-containing cells among iNOS⁺ and ACE⁺ granuloma macrophages. CD11b⁺CD11c⁺Ly6C⁺CD64⁺MHC^{hi} granuloma macrophages were gated as in Figure S1B, then plotted for FSC, iNOS, or ACE as shown. Red events: all granuloma macrophages, blue events: granuloma macrophages harboring intracellular STm. **(D)** *Ex vivo* measurements of STm entry into splenocytes from mice that had been infected for 1-month. Gated frequencies indicate entry of Tomato⁺ STm added exogenously *ex vivo* into different cell populations by FACS analysis. Abbreviations: granuloma macrophage, GΦ; CD11b⁺CD11c⁺ mononuclear phagocyte, CD11b⁺ CD11c⁺ MNP.

Fig. S5 continued.

Related to Figure 5. (E) *Ace* was expressed in RAW264.7 macrophages using lentiviral transduction. WT and ACE-overexpressing RAW264.7 macrophages were infected with STm and analyzed by flow cytometry 20 hours later. The percent frequencies of STm⁺ cells were similar between ACE⁻ and ACE⁺ cells. **(F)** Breeding scheme to generate [ACE 10/10 x 129x1/SvJ] F1 mice and [C57BL/6 x 129x1/SvJ] F1 control mice for infection. **(G-H)** Mice were infected with 1-2 x 10³ CFU WT-*S*Tm *i.p.* and analyzed at two weeks post-inoculation. **(G)** Flow cytometry analysis shows splenic CD11b⁺CD11c⁺Ly6C⁺CD64⁺MHC^{hi} granuloma macrophages from infected ACE 10 heterozygous F1 mice expressing significantly higher ACE levels compared to

granuloma macrophages from control F1 mice. (H) CFU measurements show similar STm bacterial levels in the spleens of ACE 10 heterozygous F1 mice and control mice. (I) Inhibition of ACE enzymatic activity *in vivo* had no significant impact on STm levels in infected spleens. Mice were infected for 1 month then treated with either saline control or 150 mg/kg of the ACE inhibitor captopril *i.p.* daily for 7 days before analysis. (H-I). Dots: individual mice. Significance calculated using a two-tailed Mann-Whitney test. NS p > 0.05.

Fig. S6.

Related to Figure 6. (A) UMAP projections of mononuclear phagocytes, excluding dendritic cells, isolated from WT STm, $\Delta steE$ STm-infected mice, or WT STm-infected mice treated with isotype control or anti-TNF. Color reflects cell density in each part of the manifold. **(B)** The number of ACE⁺ and iNOS⁺ GM Φ cells isolated from the spleen of mice that had been inoculated with WT STm for 1-month and treated with isotype control (Ctrl-Ab) or anti-TNF antibody (Anti-TNF). Nine mice were included in each group. Numbers below the significance bar indicate the fold-change between Ctrl-Ab treated and Anti-TNF treated groups. **(B)**. Dots: individual mice. Significance calculated using a two-tailed Mann-Whitney test. * p < 0.05, **** p < 0.0001.

Table S1: List of antibodies used in this study

Antibody	SOURCE	IDENTIFIER
Anti-Salmonella CSA-1	KPL	Cat# 02-91-99
CD106 (VCAM-1) biotin	Biolegend	Cat# 105704 RRID:AB_313205
CD106 (VCAM-1) biotin	Biolegend	Cat# 105704 RRID:AB_313205
CD106 (VCAM-1) PE-Cy7	Biolegend	Cat# 105720 RRID:AB_2214046
CD11b Alexa Fluor 647	Biolegend	Cat# 101218 RRID:AB_389327
CD11b Brilliant Violet 785	Biolegend	Cat# 101243 RRID:AB_2561373
CD11c Alexa Fluor 700	eBioscience	Cat# 56-0114-80 RRID:AB_493993
CD11c FITC	eBioscience	Cat# 11-0114-82 RRID:AB_464940
CD11c PE-Cy7	BD Pharmingen	Cat# 558079 RRID:AB_647251
CD115 Brilliant Violet 605™	Biolegend	Cat# 135517 RRID:AB_2562760
CD143/ACE unconjugated goat antibody	R&D Systems	Cat# AF1513 RRID:AB_354832
CD19 APC eFluor 780	eBioscience	Cat# 47-0193-82 RRID:AB_10853189

CD19 BUV 395	BD Biosciences	Cat# 563557 RRID:AB_2722495
CD3e APC eFluor 780	eBioscience	Cat# 47-0031-82 RRID:AB_11149861
CD301 Alexa Fluor 647	Bio-Rad	Cat# MCA2392A647 RRID:AB_872012
CD301 PE	Biolegend	Cat# 145704 RRID:AB_2561961
CD45.1 APC	Biolegend	Cat# 110713 RRID:AB_313502
CD45.2 PerCP Cy5.5	eBioscience	Cat# 45-0454-80 RRID:AB_953592
CD49b APC eFluor 780	eBioscience	Cat# 47-5971-82 RRID:AB_11218895
CD64 PE	Biolegend	Cat# 139304 RRID:AB_10612740
CD64 Brilliant Violet 605™	Biolegend	Cat# 139323 RRID:AB_2629778
CD86 Brilliant Violet 510™	Biolegend	Cat# 105040 RRID:AB_2315766
Donkey anti-goat IgG Alexa Fluor 488	ThermoFisher	Cat# A11055 RRID:AB_2534102
Donkey anti-goat IgG Alexa Fluor 647	ThermoFisher	Cat# A21447 RRID:AB_2535864
F4/80 PE	eBioscience	Cat# 12-4801-82 RRID:AB_465923

F4/80 Brilliant Violet 650™	Biolegend	Cat# 123149 RRID:AB_2564589
IL-4Ra PE-Cy7	Biolegend	Cat# 144806 RRID:AB_2565599
IL-4Ra BV421	BD Biosciences	Cat# 564086 RRID:AB_2738584
iNOS Alexa Fluor 488	eBioscience	Cat# 53-5920-82 RRID:AB_2574423
INOS APC	eBioscience	Cat# 17-5920-80 RRID:AB_2573243
iNOS e450	eBioscience	Cat# 48-5920-82 RRID:AB_2802293
Ly-6C APC	eBioscience	Cat# 17-5932-82 RRID:AB_1724153
Ly-6C PerCP/Cy5.5	eBioscience	Cat# 45-5932-82 RRID:AB_2723343
Ly-6G FITC	BD Biosciences	Cat# 551460 RRID:AB_394207
Ly-6G BUV395	BD Biosciences	Cat# 563978 RRID:AB_2716852
MerTK APC eFluor 780	eBioscience	Cat# 47-5751-82 RRID:AB_2848373
MHC class II APC eFluor 780	eBioscience	Cat# 47-5321-80 RRID:AB_1548792
MHC class II Alexa Fluor 700	eBioscience	Cat# 56-5321-82 RRID:AB_494009

Ultra-LEAF™ Purified Rat IgG1, κ Isotype	Biolegend	Cat# 400458
Ultra-LEAF™ Purified anti-mouse TNF	Biolegend	Cat# 506348 RRID:AB_2616672