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Supplementary Figures, Data and Methods

The supplementary data for this article include the in-depth characterization of in vitro 3D
engineered CRC-PDX (3D-eCRC-PDX) and the 2D-CRC-PDX cell culture characterization for
comparison with 3D-eCRC-PDX tissues and the originating CRC-PDX tumors. Supplementary
Figure 1 shows a schematic of excision of CRC-PDX tumor pieces for mechanical stiffness
measurement. Supplementary Figure 2 demonstrates the viability of cells in 2D-CRC-PDX cell
cultures and 3D-eCRC-PDX tissues. Supplementary Figure 3 and 4 show temporal changes in
cell numbers for 2D-CRC-PDX cultures and 3D-eCRC-PDX tissues, respectively.
Supplementary Figures 5-8 provide flow cytometry data examining temporal changes in the
multiple PDX CRC-derived cell subpopulations for the CRC-PDX tumors, 3D-eCRC-PDX
tissues, and 2D-CRC-PDX cultures. Supplementary Figures 9 and 10 present confocal
microscopy images of the labeled cells in the 3D-eCRC-PDX tissues and 2D-CRC-PDX cultures,
respectively. Supplementary Figures 11 and 12 provide the size and shape and machinal stiffness
data for acellular poly(ethylene glycol)-fibrinogen (PEG-Fb) hydrogels. Supplementary Figures

13-15 present the proteomics data. Supplementary Figures 16-18 provide comparison data



obtained through analysis of the RNA seq results. Full descriptions of each figure are provided in
the relevant figure legend.

All supporting flow cytometry data are provided following the supplementary figures.
RNA seq data (GSE151069) for the CRC-PDX tumors and 3D-eCRC-PDX tissues are available
from the NCBI Gene Expression Omnibus database (www.ncbi.nlm.nih.gov/geo). Proteomics data
for the CRC-PDX tumors and 3D-eCRC-PDX tissues will be uploaded to the PRIDE - Proteomics

Identification Database - EMBL-EBI upon acceptance of the manuscript.
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Supplementary Figure 1. Excision of CRC-PDX tumor pieces for mechanical stiffness
measurement. The geometric core, midpoint, and periphery of CRC-PDX tumors were cut into
disk-shaped slices using a sterile scalpel (Bard-Parker®). Subsequently, pieces with a diameter of
approximately 3 mm and a thickness of approximately 1 mm (thus resembling the 3D-eCRC-PDX
tissue geometry) were excised using a surgical punch (Sklar) for parallel compression testing.
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Supplementary Figure 2. Live/Dead assay quantification of cell viability. (A) Representative
confocal microscopy images of live (green) and dead (red) cells in 2D-CRC-PDX cultures on
Day 1 (Scale bar=200 um). (B) Representative confocal microscopy images of cell nuclei (blue)
counterstained with Hoechst 33342 and dead cells (red) within the 3D-eCRC-PDX tissues
employed for cell viability quantification purposes (Scale bar=200 pm). (C) Approximately, 67 +
4 percent of the 2D-CRC-PDX cells and 66 * 6 percent of the cells within the 3D-eCRC-PDX
tissues were viable on Day 1; there was no significant difference between conditions. Bars are
mean = SD (p < 0.05, n = 3 tissues or 2D-CRC-PDX cultures).
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Supplementary Figure 3. CRC-PDX cell growth rate in 2D-CRC-PDX cultures without cell
passaging. The total number of viable CRC-PDX cells, cultured in T25 flasks, increased from Day
1 to Day 8, at which point confluency was reached. A decrease in cell number was observed
thereafter. Therefore, the 2D-CRC-PDX cells were passaged every 7 days for experiments
comparing them to the 3D-eCRC-PDX tissues. Data are mean = SD (n= 3 separate batches of cell
cultures).
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Supplementary Figure 4. Viable CRC-PDX cell numbers within the 3D-eCRC-PDX tissues.
Following 3D-eCRC-PDX tissue dissociation and trypan blue staining, the viable cells were
counted using a hemocytometer. The numbers of viable cells within the 3D-eCRC-PDX tissues
increased from Day 1 to Day 29 for all 3 batches of cell culture. No significant difference was
observed between the rates of increase (slopes) based on linear regression analysis (p < 0.05, n =
3 separately prepared batches).
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Supplementary Figure 5. Examination of human (B2M™), mouse (H2Db"), and CK20* cell
subpopulations. One sample containing CRC-PDX cells was divided equally into two samples
and the cells were labeled with -2 microglobulin (B2M) and cytokeratin 20 (CK20) or H2Db and
CK20. The percentage of (A) B2M™ cells in sample 1 was approximately equal to that of (B)
H2Db" cells in sample 2. Furthermore, all CK20" cells were also positive for (C) B2M and negative

for (D) H2Db.
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Supplementary Figure 6. Quantification of CRC PDX cell subpopulations through flow
cytometry. (A) The total percentages of Ki-67" cells (B2M" and B2M") in the 3D-eCRC-PDX
tissues and 2D-CRC-PDX cultures were similar to that in the CRC-PDX tumors, except for 2D-
CRC-PDX cells on Day 29, which had a significantly higher percentage of proliferating cells (Ki-
67") than the original CRC-PDX tumors. For 3D-eCRC-PDX tissues the rates of increase in (B)
human proliferative (B2M" Ki67") and mouse proliferative (B2M~ Ki-67") cell numbers were
similar, maintaining a ratio equivalent to the original tumor. In sharp contrast, (C) for 2D-CRC-
PDX cultures, mouse cells were the major contributor to the total proliferative cell number
increase, whereas human proliferative cell number increased at significantly lower rates
(0.534+0.07 fold). Similarly, the (D) human non-proliferative (B2M"* Ki-67") and mouse non-
proliferative (B2M™ Ki-67") cell numbers increased with similar rates in the 3D-eCRC-PDX
tissues, whereas (E) in 2D-CRC-PDX cultures, human non-proliferative cell number increased at
significantly lower rates compared to mouse non-proliferative cells (0.12+0.01 fold). (F, G) The
3D-eCRC-PDX tissues maintained B2M" CK20" and B2M"* CK20"~ cell subpopulations over time,
whereas in 2D-CRC-PDX cultures, these cell subpopulations decreased significantly after 8 days
of culture and remained unchanged thereafter. (H, I) B2M" CK20" and B2M" CK20~ cell
subpopulations increased ratiometrically in the 3D-eCRC-PDX tissues whereas the rates of
increase in 2D-CRC-PDX cultures were lower during initial days of culture compared to later time
points. Data are mean = SD. Means that do not share a letter are significantly different (p < 0.05,
n=3 separate batches of cell culture). # indicates that the 2D-CRC-PDX cells were passaged at the
previous time point.
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Supplementary Figure 7. Cell subpopulations within the CRC-PDX tumors, 3D-eCRC-PDX
tissues, and 2D-CRC-PDX cultures. Flow cytometry analysis using B2M, CK20, and Ki-67
markers showed that different CRC-PDX cell subpopulations within 3D-eCRC-PDX tissues were
similar to the CRC-PDX tumors over time, whereas the 2D-CRC-PDX cell subpopulations
displayed a significant deviation from the CRC-PDX tumors. # indicates that the 2D-CRC-PDX
cells were passaged at the previous time point.
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Supplementary Figure 8. Cluster analysis of the cell subpopulations obtained from flow
cytometry results. For three separate batches of cell culture, the 3D-eCRC-PDX tissues clustered
with the CRC-PDX tumors whereas the 2D-CRC-PDX cells clustered separately from both the
3D-eCRC-PDX tissues and CRC-PDX tumors. # indicates that the 2D-CRC-PDX cells were
passaged at the previous time point.
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Supplementary Figure 9. Staining of cells within the 3D-eCRC-PDX tissues. Cells within the
3D-eCRC-PDX tissues were labeled with Hoechst 33342 (blue), B2M (green), phalloidin (red),
and CK20 (magenta). Human (B2M") and CK20" formed colonies whereas mouse (B2M") cells
exhibited elongation. The size of cell colonies and the density of elongated cells increased from
Day 1 to Day 29 (scale bar =200 um).
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Supplementary Figure 10. Staining of 2D-CRC-PDX cells. The 2D-CRC-PDX cells were
labeled with Hoechst 33342 (blue), B2M (green), phalloidin (red), and CK20 (magenta). Human
(B2M") and CK20" cells formed colonies whereas mouse (B2M") cells exhibited elongation (scale
bar =200 um). # indicates that the 2D-CRC-PDX cells were passaged at the previous time point.
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Supplementary Figure 11. Size and shape of acellular PEG-Fb hydrogels over time. The
volume of acellular hydrogels increased slightly from Day 1 to Day 8 and remained constant
thereafter. The diameter and circularity of the acellular hydrogels remained constant over time.
The aspect ratio of the acellular hydrogels decreased from Day 1 to Day 8 and remained constant
thereafter. Data are mean + SD (n=3 acellular hydrogels).
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Supplementary Figure 12. Mechanical stiffness of the acellular hydrogels. The stiffness of
acellular hydrogels was found to decrease from Day 1 to Day 8 and remained constant thereafter.

Data are mean + SD (p < 0.05, n=3 acellular hydrogels).
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Supplementary Figure 13. Comparison of identified extracellular matrix (ECM) proteins in
CRC-PDX tumors and 3D-eCRC-PDX tissues. The numbers of shared, CRC-PDX tumor-
specific and 3D-eCRC-PDX tissue-specific proteins for Batch 1, 2, and 3 are shown. (A) In batch
1, approximately 61% of identified ECM proteins were observed in both CRC-PDX tumors and
3D-eCRC-PDX tissues. Similarly, (B) in batch 2 approximately 54% of identified ECM proteins
were observed in both the CRC-PDX tumor and the 3D-eCRC-PDX tissues, while (C) in batch 3,
approximately 47% of proteins were found in both CRC-PDX tumors and 3D-eCRC-PDX tissues.
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Supplementary Figure 14. Protein batch-to-batch consistency between CRC-PDX tumors or
3D-eCRC-PDX tissues. (A) Approximately 60% of ECM proteins within CRC-PDX tumors were
the same for all three batches, 28% of the ECM proteins were present in at least two batches, and
12% of the ECM proteins were specific to each batch. (B) For 3D-eCRC-PDX tissues, 60% of
ECM proteins were found to be the same for all batches, 25% were present in at least two batches,
and 15% were batch-specific.
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Supplementary Figure 15. Comparison between the identified ECM proteins in CRC-PDX
tumors and 3D-eCRC-PDX tissues from Batch 1 (B1), Batch 2 (B2), and Batch 3 (B3). The
ECM proteins identified in only one out of six samples (CRC-PDX tumors and 3D-eCRC-PDX
tissues) were removed from the analysis. A protein was indicated as present (gray cell) when the
protein was detected in at least two out three samples and as absent (cell with a minus sign) when
the protein was detected in only one sample or was not detected at all. Proteins presented in
uppercase and lowercase letters are from human and mouse databases, respectively.
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Supplementary Figure 16. Gene ontology analysis of molecular functions enriched in CRC-
PDX tumor and 3D-eCRC-PDX tissue samples. Enriched gene molecular function ontologies
between CRC-PDX tumor (n=3) and 3D-eCRC-PDX tissue samples (n=3) and tumor-adjacent
(normal) colon tissue (n=41) from The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-
COAD) determined using the Gorilla application were analyzed for redundancy using REVIGO
[1]. The ‘superclusters’ of similar gene ontology (GO) terms are visualized with similar colors.
The size of individual rectangles reflects false discovery rate (FDR) p-values: large rectangles
represent low logl10 FDR p values. Shown are GO term ID, description, and log10 FDR p value.
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Supplementary Figure 17. Gene Set Enrichment Analysis (GSEA). The top 10 enriched gene
set in the Molecular Signature Database (MSigDB) Hallmarks v7.0 gene sets in CRC-PDX tumor
(n=3) (upper left panel), 3D-eCRC-PDX tissue (n=3) (middle left panel) and patient CRC tumor
TCGA-COAD samples (n=84) (lower left panel) compared to tumor-adjacent (normal) colon
tissue (n=41) from the TCGA-COAD. Enrichment plots with the normalized enrichment score
(NES) and the FDR g-value are shown.
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Supplementary Figure 18. Prognostic Kaplan—Meier survival analysis. Expression of the top
16 significantly upregulated genes between CRC-PDX tumors (n=3) and 3D-eCRC-PDX tissues
(n=3) in the precomputed GEO dataset GSE17536 (n=174), GSE17537 (n=54), TCGA-COAD
(n=121), GSE14333 (n=187) adjusted for age, stage, and gender covariates and bifurcated based
on median expression was examined for overall survival (A) and relapse free survival (B). The
hazard ratios, 95% confidence intervals, and p-values were shown.
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Supplementary Table 1. Summary of the sequencing reads alignment to the reference
genomes for the CRC-PDX

Human Mouse
3Df CRC-PDX* 3Df CRC-PDX*
All reads 180,572,171 189,200,637 180,572,171 189,200,637
All mapped reads 132,850,961 151,403,899 44,521,654 29,455,993
All mapped rate 73.6% 80.0% 24.7% 15.6%
Uniquely mapped reads 112,081,097 122,236,260 37,690,851 21,975,889
Uniquely mapped rate 62.1% 64.6% 20.9% 11.6%
t3D-eCRC-PDX tissues
{CRC-PDX tumors
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