
Supplementary File A

The following data items were retrieved for all 5041 index cases and their
31837 exposed contacts from the SAI-COVID-19 database. This database is
a purposely built register to manage data on all SARS-COV-2 data on the
identified SARS-CoV-2 positive cases and their exposed contacts.

Index cases

Variable Explanation/remarks
Personal identification code Unique pseudonymised identity of the index case
Community of residence Used to select Helsinki residents
Symptoms at testing (yes/no) Used to exclude screening-based cases
Date of symptom onset Self-reported time (day) of symptom onset
Date of virus testing
Date of registration Day when the case was registered
Date of notification Day when the Epidemiological Operations Unit

was notified of the case
Date of isolation call Day when the case was first contacted by

the Epidemiological Operations Unit
Date of isolation Self-reported time (day) when the case

isolated himself/herself
Source of infection Identity of the infector;

used to link transmission pairs
Certainty of exposure Whether the source was known (i.e. identified with

high certainty), or likely known



Exposed contacts

Variable Explanation/remarks
Personal identification code Unique pseudonymised identity of

the exposed individual
Community of residence (postal code) Used to select Helsinki residents
Date of last exposure Used to define the upper bound of

the exposure window
Source of exposure The identity of whom the individual

had been exposed to
Date of quarantine onset The self-reported time (day) when the exposed

individual isolated himself/herself



Supplementary Figure 1. Time lags in case isolation. Based on 4622 SARS-
CoV-2 cases, the figure shows the distributions of the time lag in days from
symptoms to (a) testing; (b) registration; (c) notification; and (d) isolation
call. The data are the same as in Figure 2 of the main text but here presented
as cumulative distributions.



Supplementary File B

A total of N = 1016 transmission pairs were formed by linking index

cases through the indicated sources of infection. Let t
(s)
j1 and t

(s)
j2 denote the

observed symptom onset times of the primary and secondary cases in trans-
mission pair j. Supplementary Figure 2 shows the distribution of the observed

serial interval, i.e. of the differences t
(s)
j2 − t

(s)
j1 , i = 1, ..., N .

Let t
(i)
j2 , i = 1, . . . , N , denote the infection times of the secondary cases. We

treat these unobserved times as model unknowns, in addition to the parameters

θ of the distribution of TOST (time from symptom onset t
(s)
j1 to transmission

at t
(i)
j2 ). The complete-data likelihood contribution from transmission pair j is

then

L(θ, t
(i)
j2 ) = p(t

(s)
j2 , t

(i)
j2 |θ, t

(s)
j1 ) = p(t

(i)
j2 |θ, t

(s)
j1 )× p(t(s)j2 |t

(i)
j2 )

=
ptost(t

(i)
j2 − t

(s)
j1 |θ)∫ uj

−∞
ptost(u− t(s)j1 |θ)du

× pincub(t(s)j2 − t
(i)
j2 ).

The above expression takes into account right truncation, i.e. the fact that only
transmissions occurring before the isolation of the primary case are included
in the analysis data set.

Right truncation means that long TOST durations tend to be under-
represented in the sample of transmission pairs, because onward transmission
occurring during the later part of the primary case’s period of infectiousness
remain more likely unrealised due to isolation or quarantine of the primary
case. Therefore, the likelihood contribution of each transmission pair needs
to be conditioned on the event that infection occurred before the isolation
or quarantine of the primary case. This time, denoted by uj for pair j, was
obtained as the isolation or quarantine time of the primary case, which ever
occured earlier.

The density pincub(·) of the incubation time is assumed to be Weibull with
shape 2.453 and scale 6.258 [1]. The model unknowns then include the param-
eters θ of the TOST distribution (see below) and the unknown infection times.
Their joint Bayesian posterior density is proportional to

N∏
j=1

L(θ, t
(i)
j2 )× p(θ),

where p(θ)is the prior distribution of the parameters. The posterior of θ is

conditioned on the symptom onset times (t
(s)
j1 , t

(s)
j2 ), 1, ..., N . For simplicity of

analysis, we have here omitted potential dependencies between transmission
pairs, e.g. situations where two secondary cases may have shared the same
primary case.



We parameterised the TOST distribution as a shifted lognormal distribu-

tion with parameters d (shift), σ (scale) and m (median). Variable τ
(tost)
j =

t
(i)
j2 − t

(s)
j1 then has density

ptost(τ
(tost)
j |d, σ,m) = LogNormal(t

(tost)
j − d|d, σ,m)

= 1

(τ
(tost)
j −d)

√
2πσ

exp
(
−(log(τ

(tost)
j − d)− log(m− d))

2
/(2σ2)

)
.

We took the prior density of the three unknown parameters to be

p(θ) = p(d)p(σ)p(m)

= Exp(−(d+ 5)|rate = 1)×Gamma(σ|shape = 4, rate = 2)×

Normal(µ|mean = 0, var = 16), d ≤ −5, σ > 0.

Finally, we explored the posterior of the model unknowns, conditioning on

the observed symptom times (t
(s)
j1 , t

(s)
j2 ), j = 1, ..., N . Supplementary Figure 3

shows the marginal posterior distributions of parameters d, σ and µ, realised
using a Markov chain Monte Carlo sampling. The posterior means of the three
parameters were d̂ = −5.42, σ̂ = 0.53, and m̂ = −0.07.

Supplementary Figure 4 shows the posterior predictive distributions of the
mean of the empirical serial interval, i.e. the serial interval that is subject to
the pattern of truncation as in the actual data. In addition, the corresponding
predictive distribution of tail probability at 7 days is shown.

Supplementary Figure 5 shows the density of the estimated serial interval
in the absence of case isolation and quarantine. We obtained the distribution
as a convolution of the density of the incubation period and the density of
TOST duration as estimated in this study:

pserial(t) =
∫∞
0
pincub(u)ptost(t− u)du

=
∫∞
0

[Weibull(u|shape = 2.453, scale = 6.258)

×LogNormal(t− u− d|d = −5.42, σ = 0.53, d = −0.07)] du.

The distribution is used as a proxy of the distribution of generation time
interval in assessing the effectiveness (see Supplementary File C).



Supplementary Figure 2. Observed serial interval. The figure shows the
observed distribution of the symptom-to-symptom times in 1016 transmis-
sion pairs. The mean of this empirical distribution is 3.9 days (SD 3.1). The
proportion of negative serial intervals was 3.1%.

Supplementary Figure 3. Posterior distributions of parameters d (shift,
σ (scale) and m (median) of the shifted lognormal TOST distribution. The
marginal posteriors of the three parameters are based on 40,000 Markov
chain Monte Carlo samples from the joint posterior distribution of the
model unknowns, involving the latent transmission times and realised by a
Metropolis-Hastings algorithm.



Supplementary Figure 4. Posterior predictive distributions of (A) the
mean of the empirical (observed) serial interval, i.e. the serial interval that
is subject to the pattern of truncation as in the actual data; (B) the cumu-
lative proportion of individuals with duration of the observed serial ≤ 7.5
days. The actually observed values are shown by the red lines. The posterior
distributions are based on a sample of size 40,000 from the posterior of the
parameters of the TOST distribution.

Supplementary Figure 5. Serial interval. The figure shows the density of
the serial interval. This distribution pertains to a counterfactual situation in
the absence of case isolation or contact tracing. The median and mean of this
serial interval are 5.6 and 6.2 days, respectively.
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Supplementary File C

Efficacy. We defined the efficacy of case isolation as the expected propor-
tion of secondary cases averted by isolation of a symptomatic SARS-CoV-2
case. We calculated this proportion as

πI =

20∑
t=−20

I(t)Ptost(t+ δ),

where I(t) is the proportion of cases that isolated on day t since symptom
onset (Figure 3B in the main text) and Ptost(t) is the tail probability of the
TOST (time from symptoms to transmission) distribution on day t (Figure 4B
in the main text). We made a shift of δ = 0.5 days to account for the discrete
nature of the observed times to isolation.

We defined the efficacy of quarantine as the expected proportion of sec-
ondary cases averted due to quarantining an infected individual initially
identified as an exposed contact (i.e. before symptom onset). We calculated
this proportion as

πQ =

20∑
t=−20

Q(t)Ptost(t+ δ),

where Q(t) is the proportion of the exposed that isolate due to quarantine on
day t since symptom onset (Figure 3A). Also here we used a shift of δ = 0.5
days. We calculated the combined efficacy of case isolation and quarantine as
a weighted average

p1πQ + (1− p1)πI ,

where p1 = 0.33 is the proportion of cases that were first identified as exposed
(Table 1B).

Effectiveness. We evaluated the effectiveness of case isolation and quar-
antine by calculating what the effective reproduction number R would have
been in the absence of these policies. To this end, we applied a relationship
between R in the absence of case isolation and quarantine, and the growth rate
r when these activities are in place. Specifically, Ferretti et al. showed that,
given R, the epidemic growth rate r under case isolation and quarantine can
be found as the solution of the following eigenvalue problem [1]:

y(τ) = Rg(τ)e−rτ [1−εIs(τ−∆I)]

∫ ∞
0

(
1− εT + εT

1− s(ρ+ τ −∆T )

1− s(ρ−∆T )

)
y(ρ)dρ. (E1)

Here g(τ) is the density of the generation interval at duration τ since infec-
tion and s(τ) is basically the probability showing symptoms by time τ since
infection, i.e. the cumulative distribution of the incubation time (see below).
Equation (E1) is a modification of that of Ferretti et al. (see their supplemen-
tary equations (24) and (25)), here including the contributions of time lags



from symptom onset to isolation (∆I) and quarantine (∆T ). Another differ-
ence to how Ferretti et al. applied relation (E1) is that we determined the
underlying reproduction number R given the current (i.e. observed) growth
rate r (see below). Of note, in our context such a counterfactual reproduction
number pertains to a population with social distancing in place but very low
level of pre-existing immunity [2]. We approximated g(τ) by the distribution
of the serial interval (Supplementary Figure 5 in Supplementary File B). The
expectations of the two distributions are the same although the approximation
will likely overestimate the variability in generation times [3].

Parameter εI is the coverage of case isolation, i.e. the proportion of symp-
tomatic SARS-CoV-2 cases that are tested and subsequently isolate themselves
with a mean time lag ∆I = 2.6 days since symptom onset (Figure 3B).
Parameter εT is the coverage of quarantine, i.e. the proportion of secondary
SARS-CoV-2 cases that are quarantined with a mean time lag ∆T since their
infection. We set ∆T = 5 days, which is approximately the sum of the mean
incubation time (5.5 days) and the mean time from symptoms until quarantine
onset (-0.8 days; Figure 3A).

We set εI to either 0.80 or 0.50, corresponding to good or poor adherence
to the testing policy, respectively. We set εT to 0.33, which is the proportion
of all registered cases that were quarantined in our material. Finally,

s(τ) =
1− Pα

1− Pα + Pαxα

∫ τ

0

Pincub(u)du,

where Pα is the proportion of asymptomatically infected with relative infec-
tiousness xα and Pincub(u) is the probability the symptoms show by time u
since infection (i.e. the cumulative distribution of the incubation period); see
Ferretti et al. [1]. We set Pα to either 0.50 or 0.30. Combined with εI = 0.80,
these choices correspond to assuming that 56% or 40%, respectively, of all
infections are assumed to be registered (Supplementary Figure 6). We assume
that contact tracing leads to quarantining proportion εT = 0.33 of those with
asymptomatic infection.

The epidemic growth rate r during the study period was estimated from the
daily numbers of SARS-COV-2 cases in the study area (Helsinki, [4]) and in
the larger, extended capital region. A simple liner regression model was fitted
to log-transformed daily numbers with time as the explanatory variable. The
estimated growth rate was approximately 3% per day, with some variability in
the estimate depending on whether the first two months with few cases were
included or not. The estimate from the larger area was 2.8% per day, with
even more consistent exponentially growing pattern of the epidemic. In our
analysis, we used the rough value of 3.0% per day.

While Ferretti et al. applied relation (E1) to calculate epidemic growth
rates given the current reproduction number, the authors pointed out that
the relationship can be used the other way round: given a specific value of
r, one can find what value R would have had without the case isolation and
quarantine policies [1]. We applied the relationship in this manner to find



the counterfactual Rc there would have been in the absence of case isolation
and quarantine. This was based on the notion that the steady exponential
growth of the epidemic during the study period means that also the corre-
sponding effective reproduction number was constant. The same then applies
to the counterfactual reproduction number. Both the actual and counterfac-
tual reproduction numbers can be viewed as effective reproduction numbers as
both pertain to a population in which social distancing was widely exercised.
For each combintation of the parameters, once Rc was found, the correspond-
ing growth rate was determined by applying relation (E1) in the absence of
case isolation and quarantine by setting the coverages of case isolation and
quarantine to zero.

Table 3 of the main text summarises the parameters and their sources.
Supplementary Table 1 shows the values of the effective reproduction number
and the corresponding epidemic growth rates in the absence of case isolation
and quarantine under some specific choices about the coverage of case isola-
tion and quarantine and about the asymptomatic infections. The scenarios are
special cases of those presented in Figure 5 of the main text.
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Supplementary Table 1. The table summarises sets of alternative
parameter assumptions when evaluating the (counterfactual) effective repro-
duction number Rc and the corresponding epidemic growth rate r in
the absence of case isolation and quarantine in the study population in
autumn 2020. The actual values were R = 1.3 and r = 0.030 per day.

% of asymptomatic Relative infectiousness Coverage of Coverage of Rc Growth
infections Pα of asymp. infected xα case isolation εI quarantine εT rate r

(/day)

0.30 0.50 0.80 0.33 1.73 0.087
0.30 1.00 0.80 0.33 1.65 0.078
0.30 0.50 0.50 0.33 1.61 0.073
0.30 1.00 0.50 0.33 1.55 0.066
0.50 0.50 0.80 0.33 1.62 0.075
0.50 1.00 0.80 0.33 1.52 0.063
0.50 0.50 0.50 0.33 1.53 0.064
0.50 1.00 0.50 0.33 1.45 0.055



Supplementary Figure 6 Proportions of (A) asymptomatically infected
cases (Pα); (B) symptomatically infected cases who are not tested or identi-
fied through contact tracing ((1− εI)(1−Pα)); these cases are assumed not to
isolate; (C) symptomatically infected, tested and isolated cases (εI(1 − Pα)).
Under the base-case model, the proportions are as shown in the figure.
Assuming Pα = 0.50 and εI = 0.80, the proportions are 0.50,0.10 and 0.40.
Assuming Pα = 0.30 and εI = 0.50, the proportions are 0.30,0.35 and 0.35


