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Reviewers' Comments:

Reviewer #1:

Remarks to the Author:

Tietscher and colleagues present a study evaluating immune microenvironments in luminal breast
cancer. Specifically, the team conducted both single cell sequencing and imaging mass spec on 14
tumors that were either classified based on the presence of so-called exhausted PD-1+/CTLA-
4+4/CD38+ T cells. Both the sequencing and imaging yielded a large amount of data that was then
analyzed using various bioinformatics tools. Based on the established dichotomy, the authors
concluded that there were differences between the two subsets based on several analyses. Of those
findings, the authors propose that PD-1 and CXCL13 on T cells and MHC class I on tumor cells are key
biomarkers separating the two types of tissues. Overall, the study methods were innovative and the
analyses and volume of data were comprehensive. The impact of the findings looks to be relatively
modest however, particularly since both PD-1 and CXCL13 are already known biomarkers in breast
cancer and are associated with outcomes.

Strengths include:

1. Innovative assays methods and innovative bioinformatic pipelines.

2. Extensive quality control.

3. High quality figures.

Weaknesses include:

1. Incorrect introduction first paragraph which states that there are no approved immunotherapeutic
options for other subsets of breast cancer. Arguably both Trastuzumab and Pertuzumab have both
ADCC inducing features as well as vaccinal effects. Thus, the paragraph should be rephrased.

2. There are no functional tests or protein-base tests to support the data. Although this problem is
alluded to in the conclusions, this is considered a major deficit.

3. It is not clear how the ROIs for the imaging mass spec were selected and if they were
representative of the general tumor.

4. Conclusions are made that are sometimes not supported by the data. For example, it is stated that
the T cells that were analyzed were tumor reactive but the lack of functional data precludes such as a
statement.

5. Several genes were differentially expressed but there was no assays to confirm differential protein
levels.

6. Sections are long in some cases, difficult to get through and in some cases containing material
seemingly unrelated to the theme of the sections.

7. The conclusions has irrelevant sections or sections which are not clearly linked to the results
sections.

Reviewer #2:
Remarks to the Author:
General comments:

Very relevant research question and appropriately framed by the introduction. Timely, addressed with
state-of-the art technologies. It leads the way in its attempt to draw relevant biological conclusions
from patterns in expression and cellular arrangement, connecting single cell phenotypes with cellular
and spatial relationships. In a way that is also where the potential pitfalls lie for this work, as the
authors frequently draw “functional” conclusions from merely descriptive data. Nevertheless, in most
cases they take care to phrase those conclusions carefully and to support any assumptions with
relevant references.

1. Both techniques (scRNAseq and IMC) have their caveats, loss of cells by dissociation (e.g.
neutrophils), lack of signal or segmentation errors in IMC. How much do the two techniques agree on
the proportionality of cell types of the samples in general? A specific example: T and NK cells



constitute a very large proportion of the cell types in the scRNAseq (Fig 1F). Is this proportion
realistic, representative, and confirmed by IMC?

2. Based on PD1 expression in the IMC data one would derive a very different separation of samples
into IE1 and IE2 (Fig S5C). Should the IMC samples be regrouped into different IE1 and IE2 based on
their proportion of exhausted T cells for the analysis, or why not?

Is this discrepancy due to sampling bias? Do different areas of the tissues show different proportions
of exhausted T cells? This would be an important notion: It means that there is high intratumour
heterogeneity, and extensive sampling per patient would be required to eventually link such profiles to
clinical responses. Will it be the area with highest count for PD1+ T cells that is predictive for
response, or just the average of all samples?

3. As you have sampled multiple areas per patient, it is something that you can start to address in the
data. How much agreement is there between samples within a patient? Figure S2G conveys some of
that information. While that figure is beautiful, ranked as it is by tumour proportion, it would provide
more insight into the heterogeneity between the samples and differences between groups, if that data
were grouped by IE and then by patient.

4. Following from that, as you have multiple ROIs per patient, a statistical test that incorporates that
information would be more appropriate (e.g. for fig S5C), especially with high variability seen between
samples of one patient. A linear mixed effects model might be worth considering.

In the Discussion, the authors summarise that IE1 is characterised by an exhausted but also cytolytic
phenotype. Can you comment on whether the cytolytic T cells, NK and NKT cells, can physically come
in contact with the tumour, based on IMC data? Is there any evidence of local cytolytic activity
towards the tumour, e.g. by looking at the apoptosis markers in nearby tumour cells?

Specific comments:

1. Separation in groups IE1 (exhausted) and IE2 (non-exhausted): This being the foundation of the
study, please specify in more detail what is the proportion/cut-off of exhausted T cells in each group.

2. Figure 1F:
It is unclear from the legend whether this quantification was based on scRNAseq or IMC data.

3. Fig 2B.
Why this analysis on “bulk” level? What cell subsets are these transcription factors mostly associated
with? Is this difference due to higher expression levels per cell, or higher abundance of subset?

4. Fig 2G. In transcriptional T cell profiles (Fig 2G), the highest TCF7 is assigned to naive T cells.
Figure S5B shows the clusters of T and NK cells identified by IMC. Cluster 1 (CD4+ PD1-high) contains
highest expression of TCF7 and memory cell markers. Would further subsetting of this IMC cluster 1
separate naive from memory T cells?

5. Line 255
According to the reference provided, Tfh cells are mainly associated with TLS. Can you confirm this
association based on the IMC data? And if they aren’t associated with TLS, can they still be called Tfh?

6. From line 322

The authors show previously unreported CSF1 expression in the scRNA data. As this is a novel finding,
it would be helpful to get visual confirmation of that finding in the IMC. Show us an image example of
that what that expression looks like in NKT cells, to convince us that it is valid to use that as a marker



for NKT cells.

Furthermore, do you see association of these NKT cells with (a specific subset of) myeloid cells to
support the suggestion that this expression may provide a link between T cell activity and myeloid cell
mediated immune responses, as claimed? With NKT cells representing only a minority of the cells (1-
6% of all T and NK cells), how likely is it that these are strongly influencing myeloid cell activation and
differentiation? To assess this it is also relevant to know what is contribution of the expression of CSF1
in other cells in the tissue, such as the tumour cells? Morandi et al. (PlosOne 2011) showed that 16/17
of their breast cancer cell lines expressed CSF1.

7. CCL18 is one of the most differentially expressed genes between the groups. What subset of
myeloid cell is expressing this? Can you include this in one of the figures, e.g. Fig 4D of S7F. Further
in the manuscript, discussing the IMC data (Fig 6F) you highlight a CCL18 community to overlap with
myeloid cells, which is hardly surprising if it is expressed highly in the myeloid cells. I am not
convinced that this illustration is useful. It would be more interesting if any other cell type not
expressing the cytokine is enriched in this CCL18 community, such as the Tregs that were said to be
expressing the CCRS.

8. Line 367:

“We were able to functionally validate the T cell attraction signature and a subset of markers within
the T cell suppression signature using spatial IMC analysis”

It is not clear how you functionally validated the signatures.

Fig S7G: Please provide the names of the T cell attracting cytokines considered for this plot.

Fig S7I-K: It is not clear whether these present data from scRNAseq or IMC nature. For visualisation
purposes, please make sure the data is randomised before plotting, as many IE1 events seem to be
on top of the graph, or use smaller dots or subsampling to reduce overlap, or perhaps choose an
alternative visualisation like a contour plot to show the difference in data spread between the two
groups.

9. Figure 6+S10, TLS

Dendritic cells can often be seen in well-developed TLS. Can you comment on whether these are
indeed detectable within the TLS that you classify as mature? They do cluster together in the
neighbourhood analysis of Fig S10F, but that is also the case in Fig 6A, and Fig S10D suggests that
there are more DCs in images with immature TLS rather than mature TLS.

Without showing data about TLS areas only, instead of considering images containing TLS as a whole,
one cannot draw a conclusion as the authors did in their last sentence of the results section:

“In addition, our data suggest that migDC-mediated regulation of T cell activity occurs via direct
interactions that take place preferentially in regions of mature and immature TLS ...”

It is not entirely clear to me whether I need to compare Fig S10F to Fig 6A to see the enrichment of
cellular neighbours in TLS containing images, or that Fig S10F has already the comparison with and
without TLS in itself.

Reviewer #3:

Remarks to the Author:

Tietscher et al have used state-of-the-art techniques and sophisticated analyses to comprehensively
profile the immune environments of 14 mainly luminal breast tumors. The pairing of single-cell
RNAseq with imaging mass cytometry makes for a rich dataset, and the analyses are comprehensive.
The work provides an important resource for understanding the heterogeneous cellular organization



and gene/protein expression properties of breast tumors. Despite this, I find some of the
interpretations of the observational data one-sided and over-reaching. A more nuanced description of
the work, careful consideration of causal inference (in particular given the small sample size and lack
of intervention), and more realistic future vision would make this manuscript an excellent contribution
to the field.

Major comments:

1) The tumor samples used in this analysis were chosen based on the expression of coinhibitory
receptors and CD38 on the surface of extracted T cells. This led to the use of “exhausted” and “non-
exhausted” categories to describe the IE1 and IE2 samples. While I appreciate how lengthy it is to say
“tumors containing exhausted-like T cells”, I found the current terminology and frequent reference to
“exhausted immune environments” distracting, particularly as the molecular characteristics of the
environments were not necessarily shared and were the very thing being tested. I would recommend
only talking about exhaustion (and strictly speaking “exhaustion-like”) with respect to the T cells in
these tumors.

2) In the course of their in-depth spatial and gene expression analyses, the authors discover other
major differences associated with their tumor categories, some of which are structural and visible to a
pathologist, or have a more likely causal role in separating tumor types: e.g. hot versus cold; MHCI
downregulation by tumor cells; presence of immature TLS. Indeed, as the authors seem to
acknowledge, the tumors may be better classified by the presence/activation of infiltrating tumor-
reactive T cells or expression of CXCL13 (which of course may themselves be related). It would be
helpful to use this information in framing the conclusions because, although the investigation started
with a handful of molecular T cell properties, the results speak to an organizational distinction between
tumors that goes beyond the vague “inflammatory immune environment” described in the abstract. I
would encourage the authors to speak with an immunologist for advice.

3) The authors state that there is no batch effect in scRNAseq (Fig 1B), but there do appear to be
many clusters (granular subclusters within Fig 1D cell types) specific to individual tumors. A granular
cluster-by-tumor plot should be included, and if single-tumor subsets occur frequently within immune
cells, the authors should test whether applying any batch correction dramatically alters their results.
4) It is unclear to me to what extent the results of pseudobulk comparisons of T/NK and myeloid cells
are driven by differential abundance of cell types, differential expression within one or a few cell types,
or global differential expression. The authors should parse these effects apart.

5) There is an assumption made in the application of NicheNet that myeloid cell signals are upstream
of T cell exhaustion. This is not necessarily true and is untestable in an observational single time-point
dataset. This analysis should be caveated appropriately.

6) The final suggestion of stratifying patients based on 3 molecular markers appears over-reaching. To
my understanding, it is unclear in the first instance whether stratifying based on PD1 expression would
improve results of an anti-PD1 trial in luminal breast cancer. So adding a few more correlated markers
seems a strange first step. Even in the situation where stratifying based on PD1 expression had
proven beneficial, post-hoc analyses of previous trials would be the likely next step before proposing
refinement of the criteria. It would benefit the manuscript to make this forward-looking statement
more realistic.

Minor comments:

1) While the authors have tested the impact of tumor grade on their results, the dataset is still
composed of a small number of tumors from each of several different types of breast cancer. It would
be helpful to acknowledge this heterogeneity and describe if it impacts any results (not a full re-
analysis, but looking at any association with clustering and key findings).

2) The sample size in this study is small by necessity. Where appropriate, the potential for spurious
correlation should be acknowledged.

3) I am surprised to see strong e-cadherin expression on T/NK cells in Figure S2F. Can the authors
explain this?

4) For binary cytokine expression status assigned using the RNA Panel of the IMC data, it would be



helpful to see a plot summarizing these results — how frequent were cytokine+ cells? Which cells
expressed which cytokines? At the moment it is difficult to assess how realistic the results from this
analysis might be.

5) Line 177: “Expression of T cell exhaustion markers at the protein level is the most distinguishing
feature of the two immune environments IE1 and IE2 in our study cohort.” Where is the data to
support this? Later data in the paper suggests that CXCL13 is actually better.

6) I cannot find a text reference for Figure S4G.

7) Line 246: “HLA-ABC" is not a protein. It refers to HLA-A, HLA-B, and HLA-C, which are all MHC
class I proteins.

8) Pseudobulk comparison of 9 selected genes in T cells and NK cells does not seem statistically
appropriate. Given the genome-wide nature of the dataset and global perspective of the paper, this
analysis should control the genome-wide false discovery rate. The effect sizes can still be discussed,
but I would recommend not using a cherry-picked list to assess statistical significance.

9) Call to Figure S4F in line 309 appears wrong.

Reviewer #4:

Remarks to the Author:

In this study, Tietscher et al. attempt to compare transcriptional signatures of exhausted T cells in
luminal breast cancer. The focus of the study is of interest to the field, however, we question the
novelty of this manuscript as it stands. We would recommend further work to extend the mechanisms
and pathways highlighted in this work.

1) First and foremost, much of the most significant differences shown between IE1 and IE2 were
circular. The initial classification of tumors was described as follows: "samples contained exhausted T
cells (i.e., PD-1high/CTLA-4high/CD38high T cells); we annotated these as immune environment 1
(IE1). The other half mainly contained Tcells that did not express exhaustion markers and were
annotated as immune environment 2 (IE2)". Therefore, the finding that there are more exhaustion-
associated markers such as BATF/TOX and more exhausted/proliferative cells in IE1 is unsurprising
and almost definitional. Similarly, the finding in Fig. 4 that TAMs and cDC2s (which are associated with
wound-healing) are enriched in immune-suppressed tumors are not surprising.

2) The identification of TLS differences between IE1 and IE2 tumors is potentially interesting, but this
part of the manuscript needs to be clarified and strengthened. Would the analyses in Fig6A - D look
different between IE1 and IE2 if the tumors were separated into TLS and non-TLS areas? Were
migDCs, which seemed to have equal humbers in IE1 vs IE2 tumors by scRNAseq, differentially
abundant by spatial analysis? Since CXCL13 "did not differ significantly between images with
immature versus mature TLS", are there other possibilities in the cytokine profiles that might be
candidates for later experimental validation? Finally, do the authors see any evidence of direct tumor
cell/T cell interactions and if so, which T cell types are found most proximal to the tumor cells?

3) The goal of identifying a program of exhaustion in luminal breast cancer is laudable, however it is
not clear how these findings compare to other single-cell profiling studies in TNBC or other breast
cancer types. It is critical to compare these data to other published datasets, both to confirm the
robustness of these findings in other cohorts and also to understand which of these findings might be
context-dependent vs. represent pan-breast-cancer biology. Some possible refs that are already cited
by the authors and are worth comparing to:

Bassez, A. et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with
breast cancer. Nature Medicine (Springer US, 2021).
doi:10.1038/s41591-021-01323-8.

Azizi, E. et al. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment.



Cell 174, 1-16 (2018).

Wagner, J. et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer.
Cell 177, 1-16 (2019).

Qian, J. et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by
single-cell profiling. Cell Res. 30, 745-762 (2020).



Reviewer #1, expertise in breast cancer immunotherapies (Remarks to the Author):

Tietscher and colleagues present a study evaluating immune microenvironments in luminal breast
cancer. Specifically, the team conducted both single cell sequencing and imaging mass spec on 14
tumors that were either classified based on the presence of so-called exhausted PD-1+/CTLA-4+/CD38+
T cells. Both the sequencing and imaging yielded a large amount of data that was then analyzed using
various bioinformatics tools. Based on the established dichotomy, the authors concluded that there
were differences between the two subsets based on several analyses. Of those findings, the authors
propose that PD-1 and CXCL13 on T cells and MHC class | on tumor cells are key biomarkers separating
the two types of tissues. Overall, the study methods were innovative and the analyses and volume of
data were comprehensive. The impact of the findings looks to be relatively modest however, particularly
since both PD-1 and CXCL13 are already known biomarkers in breast cancer and are associated

with outcomes.

Strengths include:

1. Innovative assays methods and innovative bioinformatic pipelines.

2. Extensive quality control.

3. High quality figures.

We thank the referee for their comments.

Weaknesses include:

1. Incorrect introduction first paragraph which states that there are no approved immunotherapeutic
options for other subsets of breast cancer. Arguably both Trastuzumab and Pertuzumab have both ADCC
inducing features as well as vaccinal effects. Thus, the paragraph should be rephrased.

Trastuzumab and Pertuzumab both target HER2, but as the referee states, have secondary immune
effects. We have rephrased to “there are no approved immunotherapeutic options for patients with
luminal HER2-negative breast cancer subtypes”.

2. There are no functional tests or protein-base tests to support the data. Although this problem is
alluded to in the conclusions, this is considered a major deficit.

The IMC data are protein-based and in part report on markers indicative of function such as chemokines.
But the referee is correct that we do not have functional tests such as reporter assays or perturbation
experiments in this study. We had already been careful in the initial submission to make clear that
functional interpretations were speculative, and we have now reduced such aspects even further. We
also mentioned in the discussion that, given the available samples, functional assays were not possible.

3. It is not clear how the ROIs for the imaging mass spec were selected and if they were representative
of the general tumor.

The ROIs were selected manually from whole-slide immunofluorescence (IF) scans. We selected them to
be representative of the whole tumor in terms of the T cell, macrophage and tumor cell content. We now



E-Cadherin/panCK




Figure R1: Whole-slide IF scans of two sections of the same FFPE breast cancer sample (TBB338), stained
with the RNA panel (top) and the Protein panel (bottom). Red squares indicate the ROIs that were
acquired by IMC.

4. Conclusions are made that are sometimes not supported by the data. For example, it is stated that
the T cells that were analyzed were tumor reactive but the lack of functional data precludes such as a
statement.

It is correct that, in this retrospective analysis of FFPE patient tissue, we necessarily do not have
functional assays and therefore draw conclusions based on an interpretation of marker expression. In the
manuscript, we already clearly described which marker signatures we interpreted as indicating tumor
reactivity (i.e., 4-1BB, GITR, CXCL13, ENTPD1). We have now further revised to make clearer that by
“tumor reactive” we mean that the cells display a marker signature of tumor reactivity.

5. Several genes were differentially expressed but there was no assays to confirm differential protein
levels.

We confirmed differential expression at the protein level for some of the most interesting genes (e.g., PD-
1, CXCL13, GZMB, MHC-1) using IMC. Panel design for IMC is constrained by antibody availability and also
by the need to use several markers to define cell types, without which the data are difficult to interpret.

6. Sections are long in some cases, difficult to get through and in some cases containing material
seemingly unrelated to the theme of the sections.

The manuscript describes both a single-cell resource and a highly-multiplex, single-cell, spatial
comparison of immune environments in breast cancer. We suspect that the referee’s comments pertain
to the resource aspect. We had tried to balance these aspects throughout the manuscript, and based on
the referee’s comments, we have shortened the resource description further.

7. The conclusions has irrelevant sections or sections which are not clearly linked to the results sections.

We have tried to link the two sections better in the revised manuscript.

Reviewer #2, expertise in imaging mass cytometry/TME (Remarks to the Author):
General comments:

Very relevant research question and appropriately framed by the introduction. Timely, addressed with
state-of-the art technologies. It leads the way in its attempt to draw relevant biological conclusions from
patterns in expression and cellular arrangement, connecting single cell phenotypes with cellular and
spatial relationships. In a way that is also where the potential pitfalls lie for this work, as the authors
frequently draw “functional” conclusions from merely descriptive data. Nevertheless, in most cases they



take care to phrase those conclusions carefully and to support any assumptions with relevant
references.

We thank the referee for their encouraging comments. As mentioned above, we have now made even
clearer which data support our “functional” interpretations.

1. Both techniques (scRNAseq and IMC) have their caveats, loss of cells by dissociation (e.g. neutrophils),
lack of signal or segmentation errors in IMC. How much do the two techniques agree on the
proportionality of cell types of the samples in general? A specific example: T and NK cells constitute a
very large proportion of the cell types in the scRNAseq (Fig 1F). Is this proportion realistic,
representative, and confirmed by IMC?

We show here the proportions of all major cell types as determined by scRNAseq, IMC and suspension
mass cytometry (Figure R2). As expected, the proportions do vary somewhat between techniques. The T-
NK cells are quite variable between samples, and this is reflected also in mass cytometry measurements.
We have added this figure to the revised manuscript as Figure S3A.
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Figure R2. Line plot comparing relative cell type frequencies as determined by IMC, CyTOF and scRNA-seq
analysis of the same sample. Only samples analyzed with all three technologies are included.

2. Based on PD1 expression in the IMC data one would derive a very different separation of samples into
IE1 and IE2 (Fig S5C). Should the IMC samples be regrouped into different IE1 and IE2 based on their
proportion of exhausted T cells for the analysis, or why not?

Is this discrepancy due to sampling bias? Do different areas of the tissues show different proportions of
exhausted T cells? This would be an important notion: It means that there is high intratumour



heterogeneity, and extensive sampling per patient would be required to eventually link such profiles to
clinical responses. Will it be the area with highest count for PD1+ T cells that is predictive for response,
or just the average of all samples?

The reviewer is correct that the PD-1 expression in IMC would not group the samples in exactly the same
way as it would in the scRNA-seq data. This may be due in part to intratumour heterogeneity, as the
reviewer suggests. However, it is likely also affected by the fact that the PD-1 signal in IMC is generally
low (i.e., close to the detection limit), which may explain why it is not detected in two of the IE1 samples.
We note that CXCL13, which has generally much better signal in IMC, does group the samples in exactly
the same way as it does in the scRNA-seq data (Fig. 2K), further supporting this grouping as well as our
reasoning for the difference seen with PD-1. Nevertheless, we agree with the reviewer that spatial
heterogeneity is an important issue, and we have addressed it further in the next two points.

3. As you have sampled multiple areas per patient, it is something that you can start to address in the
data. How much agreement is there between samples within a patient? Figure S2G conveys some of
that information. While that figure is beautiful, ranked as it is by tumour proportion, it would provide
more insight into the heterogeneity between the samples and differences between groups, if that data
were grouped by IE and then by patient.

Thanks for this suggestion. We have now grouped the data in Figure S2G by IE and by patient, as
suggested, and have updated the figure in the revised manuscript. It is also reproduced here for
convenience (Figure R3). We observe both inter- and intra-patient variation, which is indeed more
apparent in the revised plot.

TSR IR TR Imnrr o m sample E
v [ T RN (O (NI (N N D NN DN SNENDN TEett I:E;
sample T [ [N NI | NN DS N ] (e E

1.00- H TBB171 TLS
TBB184 no
TBB338 pre
TBBO035 iyes
TBBO75
TBB102
TBB212

TBB214
TBB226

0.75-

Cell type

. Stromal undefined

[ Neutrophil

B Bcel

B Migratory DC

B Myeloid

|| Plasma cell
pDC

[ Tand NK cell

[ Endothelial

[ Fibroblast

. Tumor

Proportion
o
8

0.25-

0.00
Image (ROI)



Fig R3: Stacked barplot of IMC protein panel data displaying cell type compositions for all individual
images. Patient sample, IE classification, and TLS status are indicated.

4. Following from that, as you have multiple ROls per patient, a statistical test that incorporates that
information would be more appropriate (e.g. for fig S5C), especially with high variability seen between
samples of one patient. A linear mixed effects model might be worth considering.

Thanks for this suggestion. We have now used mixed effect models wherever possible (i.e., where the
data fit the assumptions of the MEM) when comparing features between the two IEs based on IMC data,
to account for the presence of multiple ROIs per patient. This led to revised Fig. 21 (reproduced below in
Figure R4), S5C, S5D and S6A. The overall conclusions remain unchanged.

We have updated the Methods section as follows: “Mixed effect models were estimated and p-values
calculated using the mixed function of the afex package (v1.0-1) using default parameters with IE as
fixed effect and ROI ID as random effect. For each case, three models were fit using either the original
data, loglp-transformed and sqrt-transformed data; model fit was assessed by checking the normal
distribution of residuals. In cases where none of the three models reached a good fit, individual ROl
values were averaged for each sample and Wilcoxon rank sum test was used instead to compare
between the two IEs.”
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Figure R4. Use of mixed effect model - comparison of data in initial submission versus revised
manuscript. Boxplot comparing the mean single-cell HLA-ABC expression in IMC data for the epithelial
subsets of IE1 versus IE2 samples. The left plot shows the data averaged over all cells per patient (Figure
2l in initial submission), with each dot representing one patient. The right plot shows the data averaged
over all cells per image (Figure 21, revised manuscript), with each dot representing one image, and
images separated by patient. A mixed effects model was fitted on the log1p-transformed data.

In the Discussion, the authors summarise that IE1 is characterised by an exhausted but also cytolytic
phenotype. Can you comment on whether the cytolytic T cells, NK and NKT cells, can physically come in
contact with the tumour, based on IMC data? Is there any evidence of local cytolytic activity towards the
tumour, e.g. by looking at the apoptosis markers in nearby tumour cells?



Using Granzyme B expression as a proxy for a cytolytic phenotype, our IMC data shows that cytolytic T
and NK cells do indeed directly contact tumor cells. However, their average number of direct tumor cell
neighbors does not differ from those of non-cytolytic (Granzyme B-low) T and NK cells ( Figure R5, left).
The proportion of T and NK cells with a cytolytic phenotype also did not correlate with the proportion of
apoptotic T cells at the image level (Figure R5, right). However, since Granzyme B is certainly not the only
cytolytic molecule expressed by T cells, the IMC data is most probably insufficient to fully characterize
cytolytic T cell phenotypes. The IMC panel does not include additional cytolytic T cell or apoptosis
markers.
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Figure R5. Left: Paired box plot comparing the average number of direct tumor cell neighbors for
Granzyme B-high and Granzyme B-low T and NK cells. Each pair of dots represents a separate sample. A
paired Wilcoxon rank sum test was used for statistical analysis. Right: Scatterplot of the proportion of
apoptotic tumor cells vs the proportion of Granzyme B-high T and NK cells. Each dot represents one
image. T and NK cells were defined as Granzyme-B high if they had an average Granzyme B count > 1.

Specific comments:

1. Separation in groups IE1 (exhausted) and IE2 (non-exhausted): This being the foundation of the study,
please specify in more detail what is the proportion/cut-off of exhausted T cells in each group.

For 12 out of our 14 samples, this was previously defined based on suspension mass cytometry data as
described in Wagner et al (doi: 10.1016/j.cell.2019.03.005; note that in Wagner et al, IE1 and IE2 were
referred to as tumor-immune group or TIG2 and TIG3 respectively). The samples were defined by
grouping them according to shared patterns of immune cell phenotypes, assessed using the Jensen-
Shannon divergence to measure the similarity between probability distributions representing population
frequencies. Thus, the IE1 versus IE2 classification is not based on a simple cut-off of exhausted T cells.



However, once the groups were defined, it was observed that they differed with respect to T cell
exhaustion phenotypes.

For the remaining two samples we used additionally in our study, we selected the samples based on
similar T cell phenotypic composition (i.e., proportions of PD-1 high T cells and Tregs) to the previously
defined IE1 and IE2 samples. Again, for these two samples we did not use a pre-defined T cell cut-off. We
have added further explanation to both the results and the methods section to make this clearer.

2. Figure 1F:
It is unclear from the legend whether this quantification was based on scRNAseq or IMC data.

It was based on scRNAseq data, we have now made this clear in the legend.

3. Fig 2B.
Why this analysis on “bulk” level? What cell subsets are these transcription factors mostly associated
with? Is this difference due to higher expression levels per cell, or higher abundance of subset?

We did the bulk analysis simply as an initial overview of expression patterns. We then went on to single-
cell analysis precisely to tease out the reviewer’s questions. These data are in Figure 2D-2G in the case of
T cells and we have now added the single-cell transcription factor expression patterns to revised Figure
2F. The difference between IE1 and IE2 is partly due to higher expression per cell and partly due to higher
abundance of particular cell types.

For example, the transcription factor BATF is especially high in Tregs, whose abundance is similar in IE1
and IE2, but within the Treg subset it is higher in IE1 cells compared to IE2 (Figure R6). Additionally, BATF
is also high in Tfh cells, which are more abundant in IE1 (Fig 2E in the manuscript).
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Fig R6: Violin plot of SCTransformed BATF transcript counts of single Tregs from IE1 vs IE2 samples.

4. Fig 2G. In transcriptional T cell profiles (Fig 2G), the highest TCF7 is assigned to naive T cells. Figure
S5B shows the clusters of T and NK cells identified by IMC. Cluster 1 (CD4+ PD1-high) contains highest
expression of TCF7 and memory cell markers. Would further subsetting of this IMC cluster 1 separate
naive from memory T cells?



This is a good point. We have tried clustering the T/NK cells in IMC at different resolutions, but the
clusters remain roughly the same, suggesting that subclustering based explicitly on TCF7 is also not likely
to yield interpretable cell types. We note that it is also possible that TCF7 gene expression does not
correlate well with TCF7 protein expression, as we mention in the text (line 226, Fig S5D). We do not have
other memory cell markers in the IMC panel.

5. Line 255
According to the reference provided, Tfh cells are mainly associated with TLS. Can you confirm this
association based on the IMC data? And if they aren’t associated with TLS, can they still be called Tfh?

Yes, Tfh cells are associated with TLS. This is shown in Fig S10D (see the panel for the CD4+ PD1-high T
cells).

6. From line 322

The authors show previously unreported CSF1 expression in the scRNA data. As this is a novel finding, it

would be helpful to get visual confirmation of that finding in the IMC. Show us an image example of that
what that expression looks like in NKT cells, to convince us that it is valid to use that as a marker for NKT
cells.

CSF1 staining is shown in the newly added Fig S13, top right, and reproduced here (Figure R7). We note
that there are no defined NKT markers. We defined NKT cells as any cell previously defined as an NK or T
cell that was also CSF-1 positive.



DapB (RNA)

Furthermore, do you see association of these NKT cells with (a specific subset of) myeloid cells to
support the suggestion that this expression may provide a link between T cell activity and myeloid cell
mediated immune responses, as claimed?
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Figure R8: Smoothed line plot of the proportion of myeloid cells expressing at least one cytokine-
encoding mRNAs versus distance to the nearest T/NK/NKT cell expressing the indicated cytokines.
Individual cells were binned in 5-um steps. Myeloid cells from images with no T/NK/NKT cells or with a
distance to these cells > 800 um were assigned to the maximum bin of 800 um.

With NKT cells representing only a minority of the cells (1-6% of all T and NK cells), how likely is it that
these are strongly influencing myeloid cell activation and differentiation? To assess this it is also relevant
to know what is contribution of the expression of CSF1 in other cells in the tissue, such as the tumour
cells? Morandi et al. (PlosOne 2011) showed that 16/17 of their breast cancer cell lines expressed CSF1.

The referee is correct that CSF-1 is likely to be expressed by other cells in the tissue. We do not claim that
NKT cells are the only source of CSF-1.

7. CCL18 is one of the most differentially expressed genes between the groups. What subset of myeloid
cell is expressing this? Can you include this in one of the figures, e.g. Fig 4D of S7F.

We have added CCL18 to Fig S7F (reproduced here as Figure R9). This shows that the CCL18 transcript is
exclusively expressed in TAMs, being highest in TAM-7, TAM-4 and TAM-5.
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Figure R9: Heatmap showing normalized average expression of myeloid markers commonly used for
subtype classification in FACS and CyTOF experiments.

Further in the manuscript, discussing the IMC data (Fig 6F) you highlight a CCL18 community to overlap
with myeloid cells, which is hardly surprising if it is expressed highly in the myeloid cells. | am not
convinced that this illustration is useful. It would be more interesting if any other cell type not
expressing the cytokine is enriched in this CCL18 community, such as the Tregs that were said to be
expressing the CCRS.

We have made clear in the revised manuscript that it is expected to find myeloid cells enriched in CCL18
milieus. We unfortunately cannot assess Treg enrichment directly in the CCL18 community since we have
no Treg marker in our RNA panel. However, CD4+ T cells are the second-most enriched cell type in the
CCL18 community after myeloid cells, which may be due to Treg enrichment, and would be consistent
with a CCR8/CCL18 interaction.

8. Line 367:

“We were able to functionally validate the T cell attraction signature and a subset of markers within the
T cell suppression signature using spatial IMC analysis”

It is not clear how you functionally validated the signatures

Yes, this wording was not precise. We mean that myeloid cells that express cytokines within the T-cell
attracting signature are spatially closer to T cells than myeloid cells that do not express these cytokines;
and that T cells in the vicinity of myeloid cells that express one of the suppressive markers PD-L1 or IDO1
more often display an exhausted phenotype compared to T cells in the vicinity of other myeloid cells
(Figure S7G and H). To keep the text concise, we have rephrased as “spatial IMC analysis further



supported the T cell attraction signature and a subset of markers within the T cell suppression
signature”.

Fig S7G: Please provide the names of the T cell attracting cytokines considered for this plot.

The cytokines that were considered are (CXCL9, CXCL10, CCL2, CCL17, CCL4, CCL5). We have now added
these to Fig S7G.

Fig S7I-K: It is not clear whether these present data from scRNAseq or IMC nature. For visualisation
purposes, please make sure the data is randomised before plotting, as many IE1 events seem to be on
top of the graph, or use smaller dots or subsampling to reduce overlap, or perhaps choose an alternative
visualisation like a contour plot to show the difference in data spread between the two groups.

The signatures in Figures S71-K are defined from scRNA-Seq data. We have now made this clear in the
figure legend. We have also adjusted Figure S7I-K as suggested (reproduced here as Figure R10), by
randomising the data before plotting and decreasing the opacity and the size of the single points.
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Figure R10. Reproduction of revised Figures S7I-K for referee. Left (revised Figure S71): Single-cell
scatterplot of the T cell-attraction score versus the T cell-suppression score. Scores are defined from
SCRNASeq data. Right (revised Figure S7K): Single-cell scatterplot of the M1 score versus the M2 score.
Scores are defined from scRNASeq data.

9. Figure 6+S10, TLS

Dendritic cells can often be seen in well-developed TLS. Can you comment on whether these are indeed
detectable within the TLS that you classify as mature? They do cluster together in the neighbourhood
analysis of Fig S10F, but that is also the case in Fig 6A, and Fig S10D suggests that there are more DCs in
images with immature TLS rather than mature TLS.



Yes, dendritic cells are detectable within mature TLS. Note that, other than the migDC and pDC subsets,
DCs are simply classified as ‘myeloid’ cells in our IMC data. All of these subsets (myeloid cells, migDCs
and pDCs) are detectable in mature TLS.

As the referee points out, migDCs and pDCs show a trend toward higher numbers in immature versus
mature TLS, but these differences are not statistically significant.

Without showing data about TLS areas only, instead of considering images containing TLS as a whole,
one cannot draw a conclusion as the authors did in their last sentence of the results section:

“In addition, our data suggest that migDC-mediated regulation of T cell activity occurs via direct
interactions that take place preferentially in regions of mature and immature TLS ...”

We propose that the whole image/ROI containing a TLS could be considered a ‘region of mature or
immature TLS’ since the TLS typically occupies 10-25% of the ROl area. Also, in particular for immature
TLS it is very difficult to clearly draw a border between this structure and its surrounding. Nevertheless,
we have rephrased the text to now say “in regions at or near mature and immature TLS”.

It is not entirely clear to me whether | need to compare Fig S10F to Fig 6A to see the enrichment of
cellular neighbours in TLS containing images, or that Fig S10F has already the comparison with and
without TLS in itself.

Yes, one would need to compare Fig S10F to Fig 6A to see this. We have now mentioned this when we
describe the result.

Reviewer #3, expertise in sc-RNAseq/TME (Remarks to the Author):

Tietscher et al have used state-of-the-art techniques and sophisticated analyses to comprehensively
profile the immune environments of 14 mainly luminal breast tumors. The pairing of single-cell RNAseq
with imaging mass cytometry makes for a rich dataset, and the analyses are comprehensive. The work
provides an important resource for understanding the heterogeneous cellular organization and
gene/protein expression properties of breast tumors. Despite this, | find some of the interpretations of
the observational data one-sided and over-reaching. A more nuanced description of the work, careful
consideration of causal inference (in particular given the small sample size and lack of intervention), and
more realistic future vision would make this manuscript an excellent contribution to the field.

Major comments:

1) The tumor samples used in this analysis were chosen based on the expression of coinhibitory
receptors and CD38 on the surface of extracted T cells. This led to the use of “exhausted” and “non-
exhausted” categories to describe the IE1 and IE2 samples. While | appreciate how lengthy it is to say
“tumors containing exhausted-like T cells”, | found the current terminology and frequent reference to
“exhausted immune environments” distracting, particularly as the molecular characteristics of the
environments were not necessarily shared and were the very thing being tested. | would recommend



only talking about exhaustion (and strictly speaking “exhaustion-like”) with respect to the T cells in these
tumors.

This is a good point. In our initial submission we had already attempted to describe these environments
both concisely and accurately, but we have further revised this based on the referee’s comments. For
reasons of brevity, we do not call IE1/2 “tumors containing/not containing exhausted-like T cells”.
However, we have made the following changes: we now refrain from referring to exhausted/non-
exhausted immune environments until clearly defining what these mean in the introduction and at the
beginning of the results. We have removed the terms exhausted and non-exhausted IEs in the abstract.
We have refined the text in several concluding statements to be clearer that these are immune
environments either with or without signs of T cell exhaustion, rather than referring to them as
exhausted/non-exhausted. We hope this now strikes a better balance.

2) In the course of their in-depth spatial and gene expression analyses, the authors discover other major
differences associated with their tumor categories, some of which are structural and visible to a
pathologist, or have a more likely causal role in separating tumor types: e.g. hot versus cold; MHCI
downregulation by tumor cells; presence of immature TLS. Indeed, as the authors seem to acknowledge,
the tumors may be better classified by the presence/activation of infiltrating tumor-reactive T cells or
expression of CXCL13 (which of course may themselves be related). It would be helpful to use this
information in framing the conclusions because, although the investigation started with a handful of
molecular T cell properties, the results speak to an organizational distinction between tumors that goes
beyond the vague “inflammatory immune environment” described in the abstract. | would encourage
the authors to speak with an immunologist for advice.

Thank you for your suggestion. We have revised the discussion with these points in mind.

3) The authors state that there is no batch effect in scRNAseq (Fig 1B), but there do appear to be many
clusters (granular subclusters within Fig 1D cell types) specific to individual tumors. A granular cluster-
by-tumor plot should be included, and if single-tumor subsets occur frequently within immune cells, the
authors should test whether applying any batch correction dramatically alters their results.

A cluster-by-tumor plot is included for T cell sub-clusters (Fig S4C) and myeloid cell subclusters (Fig S7E);
these are also reproduced here for convenience (Figure R11). There are indeed a few patient-specific
clusters, but no obvious batch effect since most clusters are present in all patients.

We now also provide a cluster-by-tumor plot for the initial (full-dataset) clustering (Figure R12), but have
not included it in the manuscript as the T cell and myeloid cell subclusters are the focus of our study.
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Figure R11. Cluster-by-tumor plots for T cell and myeloid cell clusters (Fig S4C and Fig S7E). Stacked
barplots showing the number of cells originating from each patient sample in each of the scRNA-seq T
cell clusters (top) and myeloid clusters (bottom).
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4) It is unclear to me to what extent the results of pseudobulk comparisons of T/NK and myeloid cells
are driven by differential abundance of cell types, differential expression within one or a few cell types,
or global differential expression. The authors should parse these effects apart.

We included the bulk analyses simply as an initial overview of general expression patterns. The following
single-cell analyses then tease out whether these differences are due to differential abundance of cell
types or differential expression within one or more cell types. These data are in Figure 2D-2G in the case
of T cells. The difference between IE1 and IE2 is partly due to higher expression per cell and partly due to
higher abundance of particular cell types.

For example, and as also stated in our response to reviewer 2, the transcription factor BATF is especially
high in Tregs, whose abundance is similar in IE1 and IE2, but within the Treg subset it is higher in IE1 cells
compared to IE2 (Figure R6 above). Additionally, BATF is also high in Tfh cells, which are more abundant
in IE1 (Fig 2E in the manuscript).

5) There is an assumption made in the application of NicheNet that myeloid cell signals are upstream of
T cell exhaustion. This is not necessarily true and is untestable in an observational single time-point
dataset. This analysis should be caveated appropriately.

This is a good point. We have added the following sentence to the text describing the NicheNet analysis
“We cannot rule out that myeloid cells are not only upstream but also downstream of exhausted T cells.”

6) The final suggestion of stratifying patients based on 3 molecular markers appears over-reaching. To
my understanding, it is unclear in the first instance whether stratifying based on PD1 expression would
improve results of an anti-PD1 trial in luminal breast cancer. So adding a few more correlated markers
seems a strange first step. Even in the situation where stratifying based on PD1 expression had proven
beneficial, post-hoc analyses of previous trials would be the likely next step before proposing
refinement of the criteria. It would benefit the manuscript to make this forward-looking statement more
realistic.

We have softened this statement, and acknowledge (i) that it depends on linking IEs to outcome and (ii)
that there are other such strategies.

Minor comments:

1) While the authors have tested the impact of tumor grade on their results, the dataset is still
composed of a small number of tumors from each of several different types of breast cancer. It would
be helpful to acknowledge this heterogeneity and describe if it impacts any results (not a full re-analysis,
but looking at any association with clustering and key findings).

Our samples are mostly luminal. There is only one sample each of the TN and LumB/Her2+ subtypes, so
we did not include any further analysis of associations with molecular subtypes.



While we could include a further analysis of LumA vs LumB tumors, we decided not to do so since our
samples are selected to be immune-high, such that they are not entirely representative of luminal tumors
generally. Note that we explicitly excluded lumA tumors from the original cohort that are immune-
excluded and have now made this clearer in the revised manuscript.

We have therefore addressed the referee’s concern by further emphasizing in the discussion section: the
nature of the samples we tested, the relatively small number of tumors, and the heterogeneity in terms
of grade and subtype.

2) The sample size in this study is small by necessity. Where appropriate, the potential for spurious
correlation should be acknowledged.

We have now acknowledged the general potential for spurious correlation due to small sample size in
the discussion. We have also specifically acknowledged the potential for a spurious relationship between
NKT cell frequencies and T cell exhaustion.

3) l am surprised to see strong e-cadherin expression on T/NK cells in Figure S2F. Can the authors explain
this?

The single T/NK cluster that shows e-cadherin expression likely consists of cells that border tumor cells
and thus show some artifactual signal due to imperfect segmentation; this is unfortunately unavoidable
in dense tissues and with the current resolution of IMC. Note that this signal is much lower than that of a
tumor cell - the reason it appeared strong in this case is because the signal is row-normalized in the
heatmap and tumor cells are not included in the plot. As a consequence, the stromal/immune cluster
with the highest E-cadherin expression is assigned the value 1. To avoid confusion, we have removed E-
cadherin from the heatmap.

4) For binary cytokine expression status assigned using the RNA Panel of the IMC data, it would be
helpful to see a plot summarizing these results — how frequent were cytokine+ cells? Which cells
expressed which cytokines? At the moment it is difficult to assess how realistic the results from this
analysis might be.

We now show the numbers of cells of different cell types expressing various cytokines in Figure S3F, and
reproduce it here for the reviewer (Figure R13).
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Figure R13. Reproduction of revised Figure S3F. Stacked barplot showing the frequency of positive cells
for each of the measured cytokine mRNAs, colored by cell type.

5) Line 177: “Expression of T cell exhaustion markers at the protein level is the most distinguishing
feature of the two immune environments IE1 and IE2 in our study cohort.” Where is the data to support
this? Later data in the paper suggests that CXCL13 is actually better.

This sentence refers to the features that originally distinguished IE1 and IE2 tumors in mass cytometry
data (Wagner et al). We have rephrased the text, now stating “The two immune environments in our
study cohort were defined based on protein-level expression of T cell exhaustion markers (Wagner et
al).”

6) | cannot find a text reference for Figure S4G.

We have added this now. The figure shows that scRNA-seq and CyTOF data agree as to the proportion
of PD-1 high T cells.

7) Line 246: “HLA-ABC” is not a protein. It refers to HLA-A, HLA-B, and HLA-C, which are all MHC class |
proteins.

We have rephrased this.

8) Pseudobulk comparison of 9 selected genes in T cells and NK cells does not seem statistically
appropriate. Given the genome-wide nature of the dataset and global perspective of the paper, this
analysis should control the genome-wide false discovery rate. The effect sizes can still be discussed, but |
would recommend not using a cherry-picked list to assess statistical significance.



The list was indeed selected, but we did this based on the literature, to represent a function (cytotoxicity)
we were interested to examine. The full genome-wide comparison, including FDR correction, is shown in
Figure 2.

9) Call to Figure S4F in line 309 appears wrong.

We have corrected this.

Reviewer #4, expertise in T cell exhaustion (Remarks to the Author):

In this study, Tietscher et al. attempt to compare transcriptional signatures of exhausted T cells in
luminal breast cancer. The focus of the study is of interest to the field, however, we question the novelty
of this manuscript as it stands. We would recommend further work to extend the mechanisms and
pathways highlighted in this work.

1) First and foremost, much of the most significant differences shown between IE1 and IE2 were circular.
The initial classification of tumors was described as follows: "samples contained exhausted T cells (i.e.,
PD-1high/CTLA-4high/CD38high T cells); we annotated these as immune environment 1 (IE1). The other
half mainly contained Tcells that did not express exhaustion markers and were annotated as immune
environment 2 (IE2)". Therefore, the finding that there are more exhaustion-associated markers such as
BATF/TOX and more exhausted/proliferative cells in IE1 is unsurprising and almost definitional. Similarly,
the finding in Fig. 4 that TAMs and cDC2s (which are associated with wound-healing) are enriched in
immune-suppressed tumors are not surprising.

We agree that other recent studies have shown an association between exhausted and proliferative T
cells, and between exhausted and tumor-reactive T cells, and we cite these studies in our manuscript.
Whether these studies can be called “definitional” is a matter of opinion however. We think our
observations add substantially to the body of work on these tumor microenvironments, especially in
regard to luminal breast tumors.

In regard to TAMSs, we do not report a general association of TAMs with the IE2 environment, but of a
specific TAM cluster (TAM-2), while a number of other TAM clusters show a tendency towards
enrichment in the IE1 environment.

Finally, we are not aware of previous reports of an association of cDC2s with tumors enriched in non-
exhausted T cells, as we report here.

2) The identification of TLS differences between IE1 and IE2 tumors is potentially interesting, but this
part of the manuscript needs to be clarified and strengthened. Would the analyses in FigbA - D look
different between IE1 and IE2 if the tumors were separated into TLS and non-TLS areas?

This is an interesting question. We assume, by “TLS and non-TLS areas”, the referee means “TLS-
containing and non-TLS containing images” and not some more fine-grained spatial definition.



We have compared TLS and non-TLS images for the features reported in Figures 6A, C and D (not
applicable for Figure 6B, which shows example images). We repeated the analysis in Figure 6A with TLS
images only, this is shown in Figure S10F, and was included in the initial submission. The relevant text in
the manuscript reads “Neighbourhood analysis on images containing mature or immature TLS further
revealed an enrichment of direct PD-1"9" T cell-migDC interactions in these images compared with the
full dataset (Fig. S10F, compare to Figure 6A).” The two panels are reproduced here for convenience
(Figure R14).
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Figure R14. Neighbourhood analysis in all images (lef) and in TLS-containing images (right). The heat
maps show significant pairwise cell type interaction or avoidance on individual images. Square color
indicates percentage of images with significant interaction or avoidance (P<0.01), corrected for cell type
frequency. Reproduced from Figure 6A (left) and Figure S10F (right).

We repeated the analysis in Figure 6C with TLS images and non-TLS images, and see no difference in the
results (Figure R15). We have retained the original Figure 6C in the manuscript.
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Figure R15: Paired box plots comparing the percentage of PD-1"9" T cells versus PD-1"°" T cells that have
at least one migDC as a direct neighbor, when considering only TLS images (left) or only non-TLS images
(right). Each pair of dots represents a separate sample. A paired Wilcoxon rank sum test was used for
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statistical analysis.

We repeated the analysis in Figure 6D separately for TLS and non-TLS images, and again do not find
significant differences beyond those already reported. We have revised Figure 6D to now include non-TLS
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images, reproduced here (Figure R16).
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Figure R16. Heatmap displaying the average relative proportion of each cell type among the 10 nearest
neighbours for each T cell subtype across all non-TLS images (left) and all TLS-images (both mature and
immature, right). Reproduced from revised Figure 6D.

Were migDCs, which seemed to have equal numbers in IE1 vs IE2 tumors by scRNAseq, differentially
abundant by spatial analysis?

Yes, we see spatial patterns of migDCs. They are enriched in TLS-containing images (mature and
immature) in both IE1 and IE2 tumors; this can be seen in the top left panel in Figure S10D, reproduced
here (Figure R17). However, we did not analyse differential abundance of migDCs in IE1 and IE2 in the
IMC data, as the need for ROI selection makes these data less unbiased and comprehensive than the
SCRNA-Seq.
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Figure R17. Boxplots comparing the frequency of all cell subtypes for non-TLS, immature TLS, and mature
TLS images. The analysis is based on the Protein Panel data and Wilcoxon rank sum test was used for
statistical analysis. Reproduced from revised Figure S10D.

Since CXCL13 "did not differ significantly between images with immature versus mature TLS", are there
other possibilities in the cytokine profiles that might be candidates for later experimental validation?

We looked into this and found that the proportion of cells expressing CCL5 and CXCL9 was significantly
higher in images containing immature TLS compared to mature TLS regions (new Fig S10G, reproduced
here as Figure R18). These could be candidates for later experimental validation.
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Figure R18. Boxplots comparing the proportion of cells expressing the indicated cytokines in images
containing immature versus mature TLS. Wilcoxon rank sum test was used for statistical analysis.
Reproduced from revised Figure S10G.

Finally, do the authors see any evidence of direct tumor cell/T cell interactions and if so, which T cell
types are found most proximal to the tumor cells?

The neighborhood analysis in the manuscript showed that T cells (like other immune cells) border tumor
cells less often than would be expected for a random distribution. However, direct tumor cell/T cell
interaction does occur, and IMC data show that an average of 25% of T cells in IE1 samples and 10% of T
cells in IE2 directly border a tumor cell (Figure R19). Within individual samples, we see no evidence that
any specific T cell type is more proximal to the tumor cells than others; this might be due to the small
sample size and the limited number of T cell markers in the IMC panel.
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Fig R19: Proportion of T cells directly bordering a tumor cell in IE1 versus IE2. Each dot represents a
patient sample. Only non-TLS images were included in the analysis.

3) The goal of identifying a program of exhaustion in luminal breast cancer is laudable, however it is not
clear how these findings compare to other single-cell profiling studies in TNBC or other breast cancer
types. It is critical to compare these data to other published datasets, both to confirm the robustness of
these findings in other cohorts and also to understand which of these findings might be context-
dependent vs. represent pan-breast-cancer biology. Some possible refs that are already cited by the
authors and are worth comparing to:

Bassez, A. et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with
breast cancer. Nature Medicine (Springer US, 2021).
do0i:10.1038/s41591-021-01323-8.

Azizi, E. et al. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment.
Cell 174, 1-16 (2018).

Wagner, J. et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell
177, 1-16 (2019).

Qian, J. et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-
cell profiling. Cell Res. 30, 745-762 (2020).

We have integrated our data set with that of Bassez et al (cohort 1) and that of Qian et al. These are the
two most recent and largest scRNA-Seq breast cancer data sets available. Briefly, cohort 1 of Bassez et al
includes 29 primary breast cancer patients of all subtypes, treated with anti-PD1 before surgery. Tumor
samples were taken pre-treatment and on treatment and included 175,942 cells total; we included only
pre-treatment samples in our analysis. The cohort of Qian et al includes 14 treatment-naive breast
cancer patients. Primary tumor samples included 44,000 cells of all cell types, of which 14,400 were T
cells.



Wagner et al describes a mass cytometry study from our own lab on the same cohort, and was used to
classify samples into the two immune environments we have studied here; we have therefore not
integrated the data sets.

We have used Seurat for integration, focusing on either immune cells or tumor cells separately; including
all cells required too much computational power. We then re-clustered the integrated data set either for
broader cell types or more detailed subtypes. There is a good correspondence between the immune cell
phenotypes/clusters found in each dataset (Figure R20A-C).

To test whether our major conclusions extend to these other datasets as well, we did the following
analyses. First, we tested our observation that tumor cells in IE1 environments have higher MHC-1
expression. We observe that, in all three data sets, there is a correlation between tumor cell MHC-1
expression (HLA-A, B, and C expression) and the proportion of CD8_exhausted or Tfh cells out of all T&NK
cell (Figure R20D, left panel).

Second, we tested our observation that CD8 cells expressing exhaustion-like markers also express
proliferation markers. We observe that, in all three data sets, there is a correlation between the
proportion of CD8_exhausted T cells and of proliferating T cells, out of all T&NK cells (Figure R20D, right
panel).

Third, we tested our observations that CXCL13, CSF1 and Granzyme B are differentially expressed in
T&NK cells of IE1 and IE2. For this analysis, we used our dataset (Tietscher) to define a threshold we
could use to classify the samples in Bassez et al and Qian et al into IE1 and IE2; this threshold was based
on the proportion of CD8 _exhausted or Tfh cells out of all T&NK cells (Figure R19E). We then used this
classification to probe the expression levels of CXCL13, CSF1 and Granzyme B between these sample
types (Figure R20F). The CXCL13 and Granzyme B result could be reproduced in both additional data sets.
The CSF-1 data showed the same trend but did not reach statistical significance in the Qian dataset,
perhaps reflecting the small numbers of cells that express this cytokine.

We thank the referee for recommending this analysis, which has strengthened several of our conclusions.
We now mention these analyses in the revised manuscript and show the data in Figure S14.
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Figure Legend:

A) UMAP of merged Bassez, Qian and Tietscher datasets, colored by original cell type annotation and dataset. Only immune cells were
included and 20.000 cells per dataset were randomly subset.

B) Same UMAP as in A, colored by newly generated and annotated clusters.

C) Stacked barplot showing the proportion of cells from each dataset in each cluster.
D) Left: Scatterplot of the proportion of CD8_exhausted and Tfh cells (out of all T&NK cells) versus the mean epithelial HLA-ABC
expression for each patient sample, colored by dataset. Right: Scatterplot of the proportion of CD8_exhausted (out of all T&NK cells)
versus the proportion of T_proliferating (out of all T&NK cells) for each patient sample, colored by dataset.Spearman correlation
coefficient and p value are indicated for each dataset separately.
E) Same scatterplot as in D (left), colored by original IE (Tietscher dataset). The dashed line indicates the cutoff that was selected
to assign IE class to the Bassez and Qian samples.
F) Comparison of the CSF1, CXCL13 and GZMB expression levels of T&NK cells from samples that were assigned to IE1 versus
samples assigned to IE2, separated by dataset. For the Tietscher dataset, the original |IE class was used. Wilcoxon testing was

used to calculate p-values.



Reviewers' Comments:

Reviewer #1:
Remarks to the Author:
The authors have addressed my concerns. The manuscript is greatly improved.

Reviewer #2:
Remarks to the Author:
I thank the authors for clarification and revision of the manuscript.

Reviewer #3:

Remarks to the Author:

The authors have addressed all of my concerns, and I believe that the manuscript has improved with
the modifications made in response to all reviewer comments. While the relatively small number of
patients and lack of functional assays preclude conclusive translational insights, the comprehensive
exploration of different luminal breast cancer immune environments is methodologically sound and
makes an important contribution to the field.

Reviewer #4:

Remarks to the Author:

The authors have addressed the points raised by the reviewers adequately to strengthen the claims in
this manuscript, and I would support publication.
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