Therapeutic targeting of inflammation in hypertension: from novel mechanisms to translational perspective

Eleanor C. Murray¹, Ryszard Nosalski^{1,2}, Neil MacRitchie³, Maciej Tomaszewski^{4,5}, Pasquale Maffia^{1,3,6}, David G. Harrison⁷, and Tomasz J. Guzik^{1,2*}

¹ Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK; ² Department of Internal Medicine, Collegium Medicum, Jagiellonian University, 31-008 Krako´w, Poland; ³ Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK; ⁴ Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, M13 9PL Manchester, UK; ⁵ Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, M13 9WL Manchester, UK; ⁶ Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; and ⁷ Division of Clinical Pharmacology, Department of Medicine, Vanderbildt University Medical Centre, Nashville, 37232 TN, USA

Online Supplementary data

Methods

To evaluate evidence regarding the role of inflammation in hypertension we conducted a review of data pertaining to 1) BP outcomes with immunomodulatory medications, selected for inclusion on their ability to illustrate a broad range of pharmacological classes, 2) effects of antihypertensive pharmacological agents on immune and inflammatory parameters, and 3) non-pharmacological approaches targeting inflammation in hypertension. The systematized approach was adopted, as data was largely not adequate to complete meta-analysis according to PRISMA requirements. The population comprised any disease group requiring immunomodulatory medication (the intervention), with comparisons where possible of placebo groups, and normotensive versus hypertensive. Data extracted included design of study including use of randomisation or placebo-control; cohort size, therapeutic agent and dose; duration of follow up with 12 month data chosen if numerous time points available, baseline blood pressure values, change in blood pressure (and any statistical analysis of), and other cardiovascular outcome measures. Ethical approval was not required due to the review nature of the study.

With regard to the human data only, Embase and Pubmed Search Strategies included search terms: blood pressure, hypertens*, inflammatory disease, transplant*, effect, impact, action, tacrolimus, ciclosporin, abatacept, belatacept, rituximab, mycophenolate, basiliximab, infliximab, etanercept, tocilizumab, vascular stiffness, PWV. Furthermore, we also searched ClinicaTrials.Gov for "hypertension" to capture additional studies actively recruiting, or as of yet unpublished. 479 registered trials were screened; 31 in detail, one contributing to the publication. Papers published subsequent to the date of the literature search (03/05/2019) were included if deemed critically relevant to the topic and otherwise met the criteria.

Studies were excluded if duplicates, if based on animal models, participant number was 5 or less, they were review articles (though systematic reviews are referred to if offering additional perspective), were not directly relevant e.g. referred to pulmonary hypertension. Studies of potential value but without reported blood pressure values were contacted to request blood pressure data, though not always successfully.

Adequate number of studies and data were available for meta-analysis of TNF-α inhibitors alone; protocol for assessing inclusion eligibility was as follows:

1) Full-length publication in peer-reviewed journal, or abstract presented at international meeting.

2) Administration of TNF- α inhibitor for a minimum of 6 weeks, for any disease indication.

3) Cross-over, placebo-controlled, and head-to-head comparison studies included.

4) Other immunomodulatory medications not an exclusion if adequately controlled for.

5) Data retrieved included proportion with hypertension or on anti-hypertensive medications; baseline and follow up blood pressure (systolic and diastolic), change in BP and confidence interval as published, or calculated.

6) Minimum number of participants 5; case reports excluded.

On the basis of this protocol, 880 abstracts were reviewed pertaining to $TNF-\alpha$ inhibitors and BP outcomes; 862 excluded on the above grounds; 2 added from search of citations and subsequent publications, and final number included in qualitative synthesis of the paper totaled 20.

Drug class Reference	Population	Design (Observational unless specified) / follow-	SBP Baseline	SBP Treated	Δ SBP (95% CI,	P value	Notable and confounding features
		up / comparator	20000000		or SD)		
HCQ Rho 2009 ¹	N=42 RA Age 54	Current use (cross- sectional) Vs other DMARDs (n=134)	136 ± 20	127 ± 21	-8.8	0.01	53% of whole cohort (90/169) had HTN, not broken down by drug class. Beta (adjusted for known confounders) -4.59 (-9.99–0.82), $P = 0.1$
HCQ Baker 2018 ²	N= 7147 (15% F) RA Age 63	Observational (database interrogation) 26 wks Pre-/post-HCQ	130 ± 17	Not reported	-1.2	Not reported	 77% HTN Based on proportion with optimal BP, MTX RR 1.09 P<0.0001; Leflunomide RR 0.97 (NS); HCQ RR 1.07 P<0.0001; TNFi RR 1.05 P<0.05. Multivariable Model evaluating Δ SBP: MTX as reference; Leflunomide β 1.82 (1.2 to 2.5) P<0.001; TNFi β 0.9 (0.3 to 1.5) p=0.003; HCQ β -0.31 (-0.9 to 0.3) NS.
HCQ Gao 2017 ³	N=14 (9 F) IgAN Age 39	FU 52 wks Pre/post-HCQ Pre/post Losartan comparator	119 ±12 116 ± 14	116 ± 9 119 ± 10	-3	NS NS	All on losartan (standard care) Neither pre-/post-HCQ nor between-group differences statistically significant.
RTX Provan 2015 ⁴	N=24 (17 F) RA Age 57	Observational;12 wks Pre/post RTX Pre/post ABT comparator	128 ± 16 109 ± 11		-1.3 ± 10.1 4.0 ± 9.6	0.53 0.4	RTX vs ABT Δ SBP 0.85 (beta -8.8 (-14.6,-3)

Supplementary Table. Blood pressure outcomes of therapeutic agents targeting the immune system.

RTX	N=55 (55 F)	26 wks					Concurrent DMARDS in 47/55, steroids in 44/55, NSAIDs in 54/55
Novikova 2016	RA	Pre/post-RTX	119 ± 2.8*	119 ±	0	NS	* BP in RTX responder subgroup, n= 41 (non-responder group: 112 ± 2.8 , to $125 \pm$
5	Age 50			2.4*			2.4)
	N=33 (29F)	52 wks					
RTX	RA	Pre/post-RTX	130 ± 21		'No change'		26/33 concurrent DMARDs
Mathieu 2012 ⁶	Age 61	-			-		13/33 concurrent anti-hypertensive
	N=8 (4 F)						
RTX	Membranous	4 wks			_	210	BP likely reflects disease treatment, with SBP back to baseline by week 20 (130 \pm 5
Remuzzi 2002 ⁷	Nephropathy	Pre/post-RTX	131 ± 2	136 ± 4	-5	NS	mmHg)
	Age 52						
		D 1 1 1					*Baseline BP recorded at 2 weeks may reduce confounding from early physiological
CNI	N=43 (12 F)	Randomised	104 144	125 10	1 (17 17)	NG	changes. Used ABPM.
Andreassen	Cardiac Tx	52 wks	136 ± 16*	135 ± 10	-1 (-17,15)	NS	EVR arm also on CIC until week 7 to 11. Concurrent MMF and steroids.
2019 ⁸	Age 51	Pre/post-CIC:					Δ SBP 8 mmHg more in the EVR arm vs CIC (95%CI 0, 15), P = 0.05.
		EVR comparator (n=40):	140 ± 14*	132 ± 12	-8 (-23, 7)	0.05	Antihypertensive drug use: CIC 80% to 90%; EVR 78% to 69%, P= 0.14
	N=356 (104 F; 125	Dan da miar de Cama					
CNI	CIC and 231 TAC)	Randomised; 2yrs	100	100	0	NG	HTN as cause of ESRD equal both groups.
Fijter 2017 ⁹	Kidney Tx	vs EVR (n=359)	132	132	0	NS	HTN as adverse event during FU equal both groups.
	Age 47	comparator					Concomitant mycophenolic acid and steroids.
CNI	Kidney Tx	Randomised; 2yrs	121 + 15	126 + 11	-5.6	NS	HTN as cause of ESRD equal both groups.
	-	Pre/post high-TAC	131 ± 15	126 ± 11	-3.0	IND	Difference in TAC levels between groups lost by 24 months.
10	N=14 (5 F); age 41		120 + 12	120 + 14	0.2	NC	BP reported at multiple time points, with variability by FU period and no consistent
10	N=15 (7 F); age 46	Pre/post low-TAC	120 ± 12	120 ± 14	0.3	NS	difference between groups.
CNI	N=84 (40 F)	Randomised; 52 wks				Not	Antihypertensive drugs could be commenced, but proportion of patients on drugs fell
Larson 2006 ¹¹	Kidney Tx	Pre/post TAC	130 ± 20	135 ± 22	5	reported	over the study period
Larson 2000	Age 48	vs SRL (n=81)	137 ± 15	135 ± 22	-2	0.56	over the study period
CNI	N=27 (9 F)	Randomised; 3yrs					Mixed model for difference between groups from baseline to 3 yrs FU P=0.96
Murbraech	Kidney Tx	Pre/post CIC	142 ± 15	136 ± 13	-6	0.08	No difference in antihypertensive use ($P=0.97$) between groups of time-points.
2015 12	Age 58	Pre/post EVR comparator	140 ± 14	134 ± 12	-6	0.14	1 to enterence in analypertensive use $(1 - 0.77)$ between groups of unit-points.
	N=1645 (33-38% F)	Randomised; 52 wks				Low-CIC vs	Concomitant MMF and corticosteroids. Daclizumab induction to all patients except
CNI	Kidney Tx	Std CIC (n= 390)	144	133	-11	low-TAC	Std-CIC group.
Claes 2012 ¹³	Age 46	Low-CIC (n= 399)	143	134	-10	-4 mmHg,	Antihypertensive drug use: 77%, no between group difference, P=0.61
	1150 40	Low-TAC (n= 401)	143	130	-13	P<0.05*	* After adjustment for multiple comparisons

	± metabolic	Low-SRL (n= 399)	144	131	-13		
	syndrome						
CNI	N=339 (27 F)	Multi-centre, single arm 24			-5 (-6, -4)	Not	92/339 HTN; over half taking lipid lowering and/or antihypertensive medication at
Rostaing 2012	Kidney Tx	wk cross-over from CIC to				reported	baseline.
14 KOStanig 2012	HTN subgroup	TAC	109		-8.2 (-11, -	Not	Concurrent MMF and steroid as standard.
	n=92; age 57	HTN subgroup:	109		6)	reported	No change baseline to 24wks in number of antihypertensive drugs.
		Randomised. 2 yrs					ESRD due to HTN in 16.5%. Basiliximab induction; CIC, MPS, prednisolone until
CNI	N=89 (56 F)	Pre/post CIC	146 ± 20	143 ± 22	-3*	NS	randomization at 6 months.
Van Dijk 2018	Kidney Tx	Pre/post EVR comparator*	140 ± 20 143 ± 19	143 ± 22 140 ± 17	-3*	NS	Mean number of antihypertensives $1.95 (\pm 1.28)$ to $2.08 (\pm 1.07)$ P<0.005
15	Age 50	(n=96)	143 ± 19 143 ± 18	140 ± 17 146 ± 20	3*	NS	*Between groups P=0.37
		Pre/post MPS* (n=39)	145 ± 10	140 ± 20	5	115	Detween groups I =0.57
		Randomised to SEC					Similar rates of baseline hypertension across groups (28-32%)
CNI	N=50 (18 F, age 53)	(N=50), CIC, or MTX					No between group statistical comparisons made
Makavos 2020	Psoriasis	(N=50)	125 ± 15	136 ± 10	11	0.03*	* Bonferroni-adjusted P value
16	1 30114313	52 wks FU	120 - 10				
		Pre/post CIC					
	N=59 (18 F)	Randomised; 3 yrs					ABPM. >60% on BP medications.
CNI	Kidney Tx	CNI withdrawal:	128 ± 12	121 ± 9	-6.6	Not	Difference between the groups at FU: P=0.004.
Mourer 2013 ¹⁷	Age 54	MMF withdrawal	128 ± 14	129 ± 10	-0.2	reported	Decline in BP in CNI withdrawal (slope daytime SBP, -1.6 mm Hg/y, P=0.018) not
	_	comparator (n=50):				NS	seen in MMF withdrawal.
CNI	N=50 (15 F)	Randomised; 52 wks CNI	133 ± 18	125 ± 13	-8.5	0.001	>1 yr since transplant. Used ABPM
Cicinnati 2007	Liver Tx	reduction:	131 ± 17	131 ± 15	-0.9	NS	MMF up-titrated, then CNI tapered to trough levels 2–4 ng/mL (TAC) or 25–50 ng
18	Age 54	vs continuation (n=25):					/mL (CIC).
CNI	N= 15 (9 F)	Open, prospective, pre-					CIC tapered (stopped by 32 wks); MMF and 7.5mg prednisolone continued.
Schrama 2000	Kidney Tx	/post-CNI withdrawal	152 ± 13	145 ± 13	-7	< 0.01	ABPM.
19	Age 47	8 wks					
CTLA4	N=15 (7 F)	Observational; 24 wks Pre-					Concomitant DMARDs (all on MTX, 4/15 on HCQ) but no prior biologics.
Ursini 2015 20	RA	/post-ABT	124 ± 13	121 ± 10	-3	0.45	5/15 on ACEi/ARB.
	Age 53						
CTLA4	N=21 (17 F)	Observational, 26 wks Pre-	1.40				
Mathieu 2013 ²¹	RA	/ post-ABT	140 ± 22		'No change'		17/21 on DMARDs ± NSAIDs in TNFi non-responders
	Age 65	12.1			1.06	0.4	
CTLA4	N=5 (5 F)	12 wks			4 ± 9.6	0.4	RTX vs ABT Δ SBP 0.85 (beta -8.8 (-14.6,-3)

Provan 2015 ⁴	RA	Pre- / post- ABT:	109 ± 11		-1.3 ± 10.1	0.53	
	Age 54	Pre/post RTX comparator:	128 ± 16				
CTLA4	N=60 (60 F)	Randomised; 24 wks					Concurrent MTX ± steroids/NSAIDs. Prior TNFi use similar across groups.
Elmedany	RA	Pre/post-ABT*	119 ± 15	121 ± 14	2.2	0.36	*Between group difference SBP at FU 8.5mmHg P = 0.002
2019 ²²	Age 48	Pre/post-TCZ*	116 ± 16	129 ± 17	13.7	0.001	
CTLA4	N=11 (4F, age 54)	Conversion CNI to					Induction therapy: almetuzumab or basiliximab; maintenance: TAC, MMF, and
Iasella 2018 ²³	Lung Tx, CNI	BELAT; MAP	98	92	-5.4	0.38	prednisolone, with TAC to BELAT switch as intervention
	'failure'	Median 19 wks FU					Baseline HTN rates unknown
CTLA4	N=35 (8F, age 56)	Conversion CIC to BELAT					Median time Tx to conversion to BELAT was 3.3 years.
Malvezzi 2019	Kidney Tx	52 wks	146 ± 19	138 ± 16	-8.8	0.3	Maintainance MMF ± steroids
24							23 reduced antihypertensives, 12 had doses increases.
	N=527 (31/35% F,	52 wks					
CTLA4	age 44/43 by	Pre-/post more intensive	120	122 16	<i>.</i>		* both BELAT groups vs CIC group
Vincenti 2010 25	respective group)	BELAT (n=173):	139	133 ± 16	-6	0.027*	35% CIC arm vs 26-29% BELAT groups on ≥3 antihypertensives, p=0.02
2.5	Kidney Tx	Less intensive (n=181): vs CIC n=173	139	131±17	-9		
		Cross sectional data; min 20					
CTLA4 N	N=46 (13 F, age 54)	months post-Tx	137 (IQR	128 (IQR	-9	0.68	Baseline HTN 100% CIC group, vs 87% BELAT group
Seibert 2014 ²⁶	Kidney Tx	BELAT vs CIC:	121-147)	116-152)	-7	0.00	Baseline HTTV 100% CIC gloup, VS 87% BELAT gloup
	N=543 (35/26% F,						
CTLA4	age 57/56 by	52 wks					
	respective BELAT	BELAT (n=359) vs CIC	150	141	-9	Not	52% CIC arm vs 39–43% BELAT groups on ≥3 antihypertensives
27	group)	(n=184):			-	reported	
	Kidney Tx	× /					
		Observational cohort. 26					
MTX	N=20 (20 F)	wks FU					Normotensive
Daien 2013 ²⁸	RA	Pre/post-DMARD	121 ± 13		-1.9 ± 10.9	NS	* DMARD: MTX, sulfasalazine, or LFN
	Age 51	Pre/post-ETN n=28	124 ± 15		-3.1 ± 18.8		
	N-56 (20 E)	Observational: 22 and					
MTX Mangoni	N=56 (39 F)	Observational; 32 wk			-4		ABPM
2017 29	RA Age 61	a) Pre- / post-MTX b) MTX vs no-MTX*	125 ± 3	121 ± 3	-7.7 (-13.2,	0.006	* Adjusted for age, gender, BMI, and disease activity score
	Age 01	0) WITA VS 110-WITA"			-2.3)*	0.000	

MTX Rho 2009 ¹ MTX Rozman 2002 ³⁰ MTX	N= 31 RA Age 54 N=17 RA N= 8065 MTX (13% F, age 63)	Cross-sectional comparison between DMARD classes:- No LFN vs LFN (n=31) No MTX vs MTX (n=49) Observational; 26 wk Pre/post LFN Observational (database); 26 wks.	133 ± 20 138 ± 18 128 ± 19	137 ± 20 132 ± 21 132 ± 21	4 -5.9 4.3	0.28 0.09 0.003	Beta (adjusted for known confounders) 5.7 (-0.32–11.73), P = 0.07 Beta (adjusted for known confounders) -1.35 (-6.67–3.97) P= 0.62. ABPM ± low dose steroid/NSAID MTX 74% HTN; LFN 75% HTN Based on proportion with optimal BP, MTX RR 1.09 P<0.0001; Lefunomide RR
Baker 2018 ²	N= 3035 LFN (12%, age 64) RA	Pre/post-MTX Pre/post-LFN	131 ± 17 130 ± 17		0.2	Not reported	 0.97 (NS); HCQ RR 1.07 P<0.0001; TNFi RR 1.05 P<0.05. Multivariable Model evaluating Δ SBP: MTX as reference; Lefunomide β1.82 (1.2, 2.5) P<0.001; TNFi β0.9 (0.3, 1.5) p=0.003; HCQ β -0.31 (-0.9, 0.3) NS.
MTX Gyldenløve 2015 ³¹	N= 32 (16F, age 46) Psoriasis	Observational; 8-10 wks Pre/post-MTX	127 (95-160)	125 (95-165)	-2	0.944	16% hypertension at baseline
MTX Makavos 2020 ¹⁶	N=50 (20 F, age 53) Psoriasis	Randomised to SEC (n=50), CIC (n=50), or MTX 52 wks FU Pre/post MTX:	128 ± 10	130 ± 10	2	0.7*	Similar rates of baseline hypertension across groups (28-32%) No between group statistical comparisons made * Bonferroni-adjusted P value
MTX Tam 2012 ³²	N=20 (15 F) RA Age 53	Randomised; 26 wks Pre/post MTX: Pre/post MTX+IFX:	130 ± 24 129 ± 16	127 ± 15 125	-3 ± 15 -4.2 ± 13	0.79*	*Comparison between the changes from baseline between the 2 groups
mTOR Fijter 2017 ⁹	N=359 (114 F) Kidney Tx Age 46	Randomised; 2yrs vs CNI (n=356) comparator	132	132	0	NS	HTN as cause of ESRD equal both groups. HTN as adverse event during FU equal both groups. Concomitant mycophenolic acid and steroids.
mTOR Andreassen 2019 ⁸	N=40 (9 F) Cardiac Tx Age 51	Randomised; 52 wks Pre/post-EVR: Pre/post-CNI (n=43):	$140 \pm 14^{*}$ $136 \pm 16^{*}$	132 ± 12 135 ± 10	-8 (-23, 7) -1 (-17,15)	0.05 NS	*Baseline ABPM recorded at 2 weeks. EVR arm also on CIC until wk 7 to 11. All on MMF and steroids. EVR arm Δ SBP 8 mmHg than CIC (95%CI 0, 15), P = 0.05. Antihypertensive drugs: CIC 80% to 90%; EVR 78% to 69%, NS
mTOR Gonwa 2003 ³³	N=185 (62F) Kidney Tx Age 45	Randomised; multicentre; 26 wks MMF vs SRL	130 ± 19	134 ± 18	4	0.08	Baseline HTN SRL 28.6%, MMF 30.7%. Both groups with concomitant TAC

	N=81 (36 F)	Randomised, 52 wks				0.56	
mTOR	Kidney Tx	Pre/post-SRL:	137 ± 15	135 ± 22	-2	Not	Antihypertensive drugs could be commenced, but proportion of patients on drugs fell
Larson 2006 ¹¹	•	-					over the study period
	Age 50	vs TAC (n=84):	130 ± 20	135 ± 22	5	reported	
mTOR	N=17 (10 F)	Randomised; 3yrs					Mixed model: no difference between groups (P=0.96)
Murbraech	Kidney Tx	Pre-/post CIC	142 ± 15	136 ± 13	-6	0.08	No difference in antihypertensive use ($P=0.97$) between groups.
2015 ¹²	Age 61	Pre-/post EVR	140 ± 14	134 ± 12	-6	0.14	
mTOR	N=96 (49 F)	Randomised; 2yrs	146 ± 20	143 ± 22	-3*	NS	ESRD due to HTN in 16.5%.
Van Dijk	Kidney Tx	Pre/post EVR:	140 ± 20 143 ± 19	149 ± 22 140 ± 17	-3*	NS	Basiliximab induction; CIC, MPS and steroid until randomized at 6 mo.
2018 ¹⁵	2	Pre/post CNI (n=89):	143 ± 19 143 ± 18	140 ± 17 146 ± 20	-5 3*	NS	*Between group difference P=0.37
2018**	Age 51	Pre/post MPS (n=39):	143 ± 18	140 ± 20	2.	INS	
mTOR	N=176 (53 F)	Randomised; 26 wks					Both groups with TAC.
Gonwa 2003 ³³	Kidney Tx	MMF vs SRL	134 ± 18	130 ± 19	-4	0.08	HTN as cause of ESRD in 31% MMF arm vs 29% SRL.
	Age 48	WINI VS SKL					ITTIV as cause of LSKD in 5170 Wivit and vs 2570 SKL.
	N=8 (5 F)	Observational. 12 wks FU					4/8 on MTX, discontinued 2 wks previously.
MMF	Psoriasis and RA +	(1 month prior to, during,	152 ± 6.6	137 ± 5	-15.7	< 0.001	4/8 on anti-hypertensives at baseline.
Herrera 2006 ³⁴	HTN	and after cessation of	152 ± 0.0	157 ± 5	-13.7	<0.001	BP reverted after MMF stopped.
	Age 50-65	MMF)					Br levened aner MMr stopped.
	N=60 (21 F)	Randomised. 3yrs					ABPM. >60% on BP medications.
MMF		CNI withdrawal (n=59):	128 ± 12	121 ± 9	-6.6	Not	Difference between the groups at FU: P=0.004.
Mourer 2013 ¹⁷	Kidney Tx	MMF withdrawal:	128 ± 12 128 ± 14	121 ± 9 129 ± 10	-0.0	reported	Decline in BP in CNI withdrawal (slope daytime SBP, -1.6 mm Hg/y, P=0.018) not
	Age 52	WINF WILlurawai:	120 ± 14	129 ± 10	-0.2	NS	seen in MMF withdrawal.
МЛЕ	N=21 (5 F)	Randomised. 3yrs					6/21 on anti-hypertensives already. All started on ACEi as standard. Enalapril dose
MMF	IgAN	Pre/post MMF	122 ± 4	125 ± 3	3		twice as high in the MMF arm vs placebo (19 vs 11mg) P <0.05.
Maes 2004 ³⁵	Age 39	Pre/post placebo	134 ± 8	124 ± 8	-10	*	*Linear mixed model treatment effect 0.12; P= 0.72.
		Randomised. 6yrs					
MMF	N=20 (14 F)	Pre/post-MMF:	120	121	1	NG	All on ACEi/ARB as standard.
Tang 2010 ³⁶	IgAN	Comparator ACEi alone				NS	1.4 anti-hypertensives MMF arm, vs 1.7 control arm.
	Age 42	(n=20):	122	121	-1	NS	
	N=42 (18F)	Randomised; 1.5 yrs					All on ACEi/ARB as standard.
MMF	IgAN	Pre/post MMF	141 ± 15	127 ± 12*	-14	Not	Control group: CIC and prednisolone, n=42
Liu 2014 37	Age 40	Pre/post control	134 ± 18	$125 \pm 10^*$	-9	reported	* Between group difference P=0.336
MMF	N=17	Randomised; 2yrs				Not	All on ACEi/ARB \pm other antihypertensives to target <130, and higher baseline BP
Frisch 2005 ³⁸	IgAN	Pre/post MMF:	136 ± 19	129 ± 12	-7	reported	in MMF arm - reduction likely just reflects study protocol to achieve target BP

	Age 39	Pre/post placebo: (n=15)	131 ± 11	128 ± 6	-3		
MMF Pascual 2006 ³⁹	N=246 Kidney Tx	Randomised, multicentre. 3yrs FU MMF w/d vs control arm n=237	136	140	3.6	0.002	Single office BP reading. Antihypertensive use at FU: control arm (CNI/MMF/steroid) 66.2%; MMF withdrawal arm 74.4%; P 0.008). Mean number antihypertensives: 1.8 vs 2.0 respectively.
MMF Cuervas-Mons 2015 ⁴⁰	N=58 (12 F) Liver Tx Age 56	52 wks Pre/post-MMF: vs pre-/post steroid: (n=59)	129 ± 25 124 ± 17	129 ± 22 132 ± 18	0.6 7.9	0.88 <0.01	Both arms with concomitant TAC. Baseline HTN 17% vs 31%. New onset HTN 30.6% (steroid) vs 42.5% (MMF). Antihypertensive use not reported.
Interleukin antagonist Thaci 2016 ⁴¹	Psoriatic arthritis N=312 300mg N=315 150mg	Randomised. 52 wks Pre/post SEC: vs ETN n=303:	126.7 128.1	126.1 127.4	-0.6 -0.7	NS	Demographics and baseline characteristics comparable across groups
Interleukin antagonist Makavos 2020 ¹⁶	N=50 (20 F, age 51) Psoriasis	Randomised to SEC or CIC (N=50), or MTX (N=50) 52 wks FU Pre/post SEC	130 ± 10	124 ± 8	-6	0.3*	Similar rates of baseline hypertension across groups (28-32%) No between group statistical comparisons made * Bonferroni-adjusted P value
Interleukin antagonist CANTOS Rothman 2020 ⁴²	N=9549 (25-27% F*) MI with hsCRP >2mg/L Age 59-64*	Canakinumab Randomised vs placebo 52 wks	130	Not reported		>0.2	 * Average for different quartiles. 80% HTN at baseline Canakinumab did not reduce SBP at 3-, 6-, or 12-months, P>0.2 Did not reduce incident HTN (HR 0.96 [0.85–1.08], P>0.2), but did reduce MACE. Rates of incident HTN were 23.4, 26.6, and 28.1/100-person years for lowest to highest hsCRP (P>0.2).
Interleukin antagonist Provan 2015 ⁴	N=7 (6 F) RA Age 52	12 wks Pre/post TCZ Pre/post- ABT (n=5)	133 ± 22 109 ± 11	Not reported	-11.5 ± 18.6 4 ± 9.6	0.15 0.4	RTX vs ABT Δ SBP 0.85 (beta -8.8 (-14.6,-3)
Interleukin antagonist Elmedany 2019 ²²	N=58 (58 F) RA Age 51	Randomised; 24 wks Pre/post-ABT* Pre/post-TCZ*	119 ± 15 116 ± 16	121 ± 14 129 ± 17	2.2 13.7	0.36 0.001	Concurrent MTX ± steroids/NSAIDs. Prior TNFi use similar across groups. *Between group difference SBP at FU 8.5mmHg P = 0.002

Studies of immunomodulatory medications in humans reporting SBP outcomes; grouped by mechanism of action. Age: reported average age; FU: follow up; wks: weeks; HCQ: hydoxychlooquine; RTX: rituximab; TCZ: tocilizumab; Tx: Transplant; mTOR: mammalian target of rapamycin; EVR: everolimus; SRL: sirolimus; RR: relative risk; ARR: absolute risk reduction; MTX: methotrexate; LFN: leflunomide; MPS: mycophenolate sodium; BELAT: Belatacept; SEC: Secukinumab. Design – 'Pre/post': average SBP before and following introduction of the drug; 'drug comparator': BP values before and after introduction of alternate drug are provided for comparison; 'Vs drug' = difference between groups reported. SBP: mean ± SD.

- 1. Rho YH, Oeser A, Chung CP, Milne GL, Stein CM. Drugs used in the treatment of rheumatoid arthritis: Relationship between current use and cardiovascular risk factors. Arch Drug Inf 2009;2:34–40.
- Baker JF, Sauer B, Teng CC, George M, Cannon GW, Ibrahim S, Cannella A, England BR, Michaud K, Caplan L, Davis LA, O'Dell J, Mikuls TR. Initiation of Disease-Modifying Therapies in Rheumatoid Arthritis Is Associated with Changes in Blood Pressure. J Clin Rheumatol 2018;24:203–209.
- 3. Gao R, Wu W, Wen Y, Li X. Hydroxychloroquine alleviates persistent proteinuria in IgA nephropathy. Int Urol Nephrol 2017;
- 4. Provan SA, Berg IJ, Hammer HB, Mathiessen A, Kvien TK, Semb AG. The impact of newer biological disease modifying anti-rheumatic drugs on cardiovascular risk factors: A 12-month longitudinal study in rheumatoid arthritis patients treated with rituximab, abatacept and tociliziumab. *PLoS One* 2015;
- 5. Novikova DS, Popkova T V., Lukina G V., Luchikhina EL, Karateev DE, Volkov A V., Novikov AA, Aleksandrova EN, Nasonov EL. The effects of rituximab on lipids, arterial stiffness, and carotid intima-Media thickness in rheumatoid arthritis. *J Korean Med Sci* 2016;
- 6. Mathieu S, Pereira B, Dubost JJ, Lusson JR, Soubrier M. No significant change in arterial stiffness in RA after 6 months and 1 year of rituximab treatment. *Rheumatol (United Kingdom)* 2012;**51**:1107–1111.
- 7. Remuzzi G, Chiurchiu C, Abbate M, Brusegan V, Bontempelli M, Ruggenenti P. Rituximab for idiopathic membranous nephropathy. *Lancet* 2002;
- Andreassen AK, Broch K, Eiskjær H, Karason K, Gude E, Mølbak D, Stueflotten W, Gullestad L. Blood Pressure in De Novo Heart Transplant Recipients Treated With Everolimus Compared With a Cyclosporine-based Regimen. *Transplantation* Ovid Technologies (Wolters Kluwer Health); 2019;103:781–788.
- 9. Fijter JW de, Holdaas H, Øyen O, Sanders JS, Sundar S, Bemelman FJ, Sommerer C, Pascual J, Avihingsanon Y, Pongskul C, Oppenheimer F, Toselli L, Russ G, Wang Z, Lopez P, Kochuparampil J,
 Cruzado JM, Giet M van der, Gaite LE, Lopez VF, Maldonado R, Massari P, Novoa P, Palti G, Chadban S, Kanellis J, Masterson R, Oberbauer R, Saemann M, Kuypers D, et al. Early Conversion From
 Calcineurin Inhibitor- to Everolimus-Based Therapy Following Kidney Transplantation: Results of the Randomized ELEVATE Trial. *Am J Transplant* 2017;
- 10. Chamienia A, Biedunkiewicz B, Król E, Dębska-Ślizień A, Rutkowski B. One-year observation of kidney allograft recipients converted from cyclosporine microemulsion to tacrolimus. *Transplantation Proceedings* 2006.
- 11. Larson TS, Dean PG, Stegall MD, Griffin MD, Textor SC, Schwab TR, Gloor JM, Cosio FG, Lund WJ, Kremers WK, Nyberg SL, Ishitani MB, Prieto M, Velosa JA. Complete avoidance of calcineurin inhibitors in renal transplantation: A randomized trial comparing sirolimus and tacrolimus. *Am J Transplant* 2006;
- 12. Murbraech K, Massey R, Undset LH, Midtvedt K, Holdaas H, Aakhus S. Cardiac response to early conversion from calcineurin inhibitor to everolimus in renal transplant recipients a three-yr serial echocardiographic substudy of the randomized controlled CENTRAL trial. *Clin Transplant* 2015;
- 13. Claes K, Meier-Kriesche HU, Schold JD, Vanrenterghem Y, Halloran PF, Ekberg H. Effect of different immunosuppressive regimens on the evolution of distinct metabolic parameters: Evidence from the Symphony study. *Nephrol Dial Transplant* 2012;
- 14. Rostaing L, Sánchez-Fructuoso A, Franco A, Glyda M, Kuypers DR, Jaray J. Conversion to tacrolimus once-daily from ciclosporin in stable kidney transplant recipients: a multicenter study. *Transpl Int* John Wiley & Sons, Ltd; 2012;25:391–400.
- 15. Dijk M van, Roon AM van, Said MY, Bemelman FJ, Homan van der Heide JJ, Fijter HW de, Vries APJ de, Bakker SJL, Sanders JSF. Long-term cardiovascular outcome of renal transplant recipients after

early conversion to everolimus compared to calcineurin inhibition: results from the randomized controlled MECANO trial. Transpl Int 2018;

- Makavos G, Ikonomidis I, Andreadou I, Varoudi M, Kapniari I, Loukeri E, Theodoropoulos K, Pavlidis G, Triantafyllidi H, Thymis J, Parissis J, Tsoumani M, Rafouli-Stergiou P, Katsimbri P, Papadavid E. Effects of Interleukin 17A Inhibition on Myocardial Deformation and Vascular Function in Psoriasis. *Can J Cardiol* Elsevier Inc.; 2020;36:100–111.
- 17. Mourer JSJ, Koning EEJP De, Zwet EWE van, Mallat MJKM, Rabelink TTJ, Fijter JW De, JW de F, Fijter JW De. Impact of late calcineurin inhibitor withdrawal on ambulatory blood pressure and carotid intima media thickness in renal transplant recipients. *Transplantation* 2013;**96**:49–57.
- 18. Cicinnati VR, Yu Z, Klein CG, Sotiropoulos GC, Saner F, Malago M, Frilling A, Gerken G, Brolesh CE, Beckebaum S. Clinical trial: switch to combined mycophenolate mofetil and minimal dose calcineurin inhibitor in stable liver transplant patients assessment of renal and allograft function, cardiovascular risk factors and immune monitoring. *Aliment Pharmacol Ther* John Wiley & Sons, Ltd; 2007;26:1195–1208.
- Schrama Y, Joles J, Tol A van, Boer P, Koomans H, Hene RJ. Conversion to Mycophenolate Mofetil in conjuction with stepwise withdrawal of cyclosporin in stable renal transplant recipients. *Transplantation* 2000;69:376–383.
- 20. Ursini F, Russo E, Hribal ML, Mauro D, Savarino F, Bruno C, Tripolino C, Rubino M, Naty S, Grembiale RD. Abatacept Improves Whole-Body Insulin Sensitivity in Rheumatoid Arthritis. *Med (United States)* 2015;
- 21. Mathieu S, Couderc M, Glace B, Pereira B, Tournadre A, Dubost JJ, Soubrier M. Effects of 6 months of abatacept treatment on aortic stiffness in patients with rheumatoid arthritis. *Biol Targets Ther* 2013;
- 22. Elmedany SH, Mohamed AE, Galil SMA. Efficacy and safety profile of intravenous tocilizumab versus intravenous abatacept in treating female Saudi Arabian patients with active moderate-to-severe rheumatoid arthritis. *Clin Rheumatol* 2019;
- 23. Iasella CJ, Winstead RJ, Moore CA, Johnson BA, Feinberg AT, Morrell MR, Hayanga JWA, Lendermon EA, Zeevi A, McDyer JF, Ensor CR. Maintenance Belatacept-Based Immunosuppression in Lung Transplantation Recipients Who Failed Calcineurin Inhibitors. *Transplantation* 2018;
- 24. Malvezzi P, Fischman C, Rigault G, Jacob MC, Raskovalova T, Jouve T, Janbon B, Rostaing L, Cravedi P. Switching renal transplant recipients to belatacept therapy: results of a real-life gradual conversion protocol. *Transpl Immunol* 2019;
- 25. Vincenti F, Charpentier B, Vanrenterghem Y, Rostaing L, Bresnahan B, Darji P, Massari P, Mondragon-Ramirez GA, Agarwal M, Russo G Di, Lin C-S, Garg P, Larsen CP. A Phase III Study of Belatacept-based Immunosuppression Regimens versus Cyclosporine in Renal Transplant Recipients (BENEFIT Study). *Am J Transplant* Blackwell Publishing Ltd; 2010;10:535–546.
- 26. Seibert FS, Steltzer J, Melilli E, Grannas G, Pagonas N, Bauer F, Zidek W, Grinyó J, Westhoff TH. Differential impact of belatacept and cyclosporine A on central aortic blood pressure and arterial stiffness after renal transplantation. *Clin Transplant* 2014;
- 27. Durrbach A, Pestana JM, Pearson T, Vincenti F, Garcia VD, Campistol J, Carmen Rial M Del, Florman S, Block A, Russo G Di, Xing J, Garg P, Grinyó J. A phase III study of belatacept versus cyclosporine in kidney transplants from extended criteria donors (BENEFIT-EXT Study). *Am J Transplant* Blackwell Publishing Ltd; 2010;**10**:547–557.
- 28. Daïen CI, Fesler P, Cailar G Du, Daïen V, Mura T, Dupuy AM, Cristol JP, Ribstein J, Combe B, Morel J. Etanercept normalises left ventricular mass in patients with rheumatoid arthritis. *Ann Rheum Dis* BMJ Publishing Group Ltd; 2013;**72**:881–887.
- 29. Mangoni AA, Baghdadi LR, Shanahan EM, Wiese MD, Tommasi S, Elliot D, Woodman RJ. Methotrexate, blood pressure and markers of arterial function in patients with rheumatoid arthritis: a repeated

cross-sectional study. Ther Adv Musculoskelet Dis 2017;

- 30. Rozman B, Praprotnik S, Logar D, Tomšič M, Hojnik M, Kos-Golja M, Accetto R, Dolenc P. Leflunomide and hypertension. Ann. Rheum. Dis. BMJ Publishing Group Ltd; 2002. p. 567–569.
- 31. Gyldenløve M, Jensen P, Løvendorf MB, Zachariae C, Hansen PR, Skov L. Short-term treatment with methotrexate does not affect microvascular endothelial function in patients with psoriasis. J Eur Acad Dermatology Venereol 2015;
- 32. Tam LS, Shang Q, Li EK, Wang S, Li RJ, Lee KL, Leung YY, Ying KY, Yim CW, Kun EW, Leung MH, Li M, Li TK, Zhu TY, Chui RK, Tseung L, Yu SL, Kuan WP, Yu CM. Infliximab is associated with improvement in arterial stiffness in patients with early rheumatoid arthritis A randomized trial. *J Rheumatol* 2012;
- 33. Gonwa T, Mendez R, Yang HC, Weinstein S, Jensik S, Steinberg S. Randomized trial of tacrolimus in combination with sirolimus or mycophenolate mofetil in kidney transplantation: Results at 6 months. *Transplantation* 2003.
- 34. Herrera J, Ferrebuz A, MacGregor EG, Rodriguez-Iturbe B. Mycophenolate Mofetil Treatment Improves Hypertension in Patients with Psoriasis and Rheumatoid Arthritis. *JASN* American Society of Nephrology (ASN); 2006;17:S218–S225.
- 35. Maes BD, Oyen R, Claes K, Evenepoel P, Kuypers D, Vanwalleghem J, Damme B Van, Ch Vanrenterghem YF, Vanrenterghem YFC. Mycophenolate mofetil in IgA nephropathy: Results of a 3-year prospective placebo-controlled randomized study. *Kidney International* 2004. p. 1842–1849.
- 36. Tang SCW, Tang AWC, Wong SSH, Leung JCK, Ho YW, Lai KN. Long-term study of mycophenolate mofetil treatment in IgA nephropathy. *Kidney Int* 2010;77:543–549.
- 37. Liu X, Dewei D, Sun S, Xu G, Liu H, He L, Zhang P. Treatment of severe IgA nephropathy: Mycophenolate mofetil/prednisone compared to cyclophosphamide/prednisone. *Int J Clin Pharmacol Ther* 2014;**52**:95–102.
- 38. Frisch G, Lin J, Rosenstock J, Markowitz G, Agati VD', Radhakrishnan J, Preddie D, Crew J, Valeri A, Appel G. Mycophenolate mofetil (MMF) vs placebo in patients with moderately advanced IgA nephropathy: a double-blind randomized controlled trial. *Nephrol Dial Transpl* 2005;**20**:2139–2145.
- 39. Pascual J, Hooff JP Van, Salmela K, Lang P, Rigotti P, Budde K. Three-year observational follow-up of a multicenter, randomized trial on tacrolimus-based therapy with withdrawal of steroids or mycophenolate mofetil after renal transplant. *Transplantation* 2006;
- 40. Cuervas-Mons V, Herrero JI, Gomez MA, González-Pinto I, Serrano T, la Mata M de, Fabregat J, Gastaca M, Bilbao I, Varo E, Sánchez-Antolín G, Rodrigo J, Espinosa MD. Impact of tacrolimus and mycophenolate mofetil regimen vs. a conventional therapy with steroids on cardiovascular risk in liver transplant patients. *Clin Transplant* 2015;**29**:667–677.
- 41. Thaci D, Girolomoni G, Philipp S, Qureshi A, You R, Fox T. Secukinumab treatment does not induce blood pressure change in subjects with moderate to severe plaque psoriasis: Results from the FIXTURE study. *J Am Acad Dermatol* Elsevier; 2016;**74**:AB273.
- 42. Rothman AMK, MacFadyen J, Thuren T, Webb A, Harrison DG, Guzik TJ, Libby P, Glynn RJ, Ridker PM. Effects of Interleukin-1β Inhibition on Blood Pressure, Incident Hypertension, and Residual Inflammatory Risk: A Secondary Analysis of CANTOS. *Hypertension* Lippincott Williams and Wilkins; 2020;**75**:477–482.