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1 Supplementary Figures
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Figure S1: Analysis of the simulation SRT data generated from pancreas scRNA-seq data in
scenario 1. The subfigure corresponds to the performance of the deconvolution methods on
single evaluation metric. In subfigures, each color represents a deconvolution method. The
results are averaged over 10 random generations of the data.
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Figure S2: Analysis of the simulation SRT data generated from ovarian cancer scRNA-seq data
in scenario 1. The subfigure corresponds to the performance of the deconvolution methods on
single evaluation metric. In subfigures, each color represents a deconvolution method. The
results are averaged over 10 random generations of the data.
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Figure S3: Correlation analysis between the weights (x-axis) inferred by EnDecon and the PCC
scores (y-axis) of the base deconvolution methods on ovarian cancer data in scenario 1. The dot
presents a base deconvolution method. The Pearson correlation coefficient (τ ) and Spearman
correlation coefficient (ρ) between the learned weights and PCC scores of base methods, and
the corresponding p values (from one-sided t-test) are provided.
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Figure S4: Performance of the deconvolution methods on simulated SRT data with reference
datasets from different techniques in scenario 2. The subfigure corresponds to the performace
of the methods on single evaluation metric. In subfigures, each color represents different refer-
ence scRNA-seq datasets generated from different techniques. The results are averaged over 10
random generations of the data.
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Figure S5: Correlation analysis between the weights (x-axis) inferred by EnDecon and the PCC
scores (y-axis) of the base deconvolution methods in scenario 2. The subfigure corresponds to
the reference scRNA-seq dataset generated from different techniques. In subfigures, each dot
presents a base deconvolution method. The Pearson correlation coefficient (τ ) and Spearman
correlation coefficient (ρ) between the weights and PCC scores, and the corresponding p values
(from one-sided t-test) are provided.
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Figure S6: Visualization of cell type spatial distribution for STARmap mouse visual cortex in
scenario 3. Each grid represents a simulated spot consisting of multiple cells. Each color repre-
sents a cell type. There are 11 cell types, containing 4 excitatory neurons (eL2/3, eL4, eL5, and
eL6), Astro (astrocytes), Endo (endothelial), Micro (microglia), Oligo (oligodendrocytes) and
Smc (smooth muscle cells).
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Figure S7: Analysis of the simulation SRT data in scenario 3. The subfigure corresponds to the
performance of the deconvolution methods on simulation data with single evaluation metric.
In subfigures, each color represents a deconvolution method.
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Figure S8: Correlation analysis between the weights (x-axis) inferred by EnDecon and the PCC
scores (y-axis) of the base deconvolution methods in scenario 3. The dot presents a deconvo-
lution method. The Pearson correlation coefficient (τ ) and Spearman correlation coefficient (ρ)
between the weights and PCC scores, and the corresponding p values (from one-sided t-test)
are provided.
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Figure S9: Visualization of the proportions of L4 excitatory neurons within spots simulated
from STARmap data, including the ground truth, predicted deconvolution results from base
deconvolution methods, EnDecon mean and EnDecon in scenario 3.
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Figure S10: Visualization of the deconvolution results inferred by the deconvolution methods
from adult mouse brain SRT data of glial cells. The spatial scatter pie chart displays cell type
compositions predicted by the deconvolution method and the scatter represents a spot in SRT
data.
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Figure S11: Visualization of the deconvolution results inferred by the deconvolution methods
from adult mouse brain SRT data of neuron cells. The spatial scatter pie chart displays cell type
compositions predicted by the deconvolution method and the scatter represents a spot in SRT
data.
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Figure S12: Correlation analysis between the weights (x-axis) inferred by EnDecon and the PC-
C scores (y-axis) of the base deconvolution methods from adult mouse brain SRT data. The
dot presents an individual deconvolution method. The Pearson correlation coefficient (τ ) and
Spearman correlation coefficient (ρ) between the weights and PCC scores, and the correspond-
ing p values (from one-sided t-test) are provided.
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Figure S13: Visualization of deconvolution results inferred by the deconvolution methods from
PDAC SRT data. The spatial scatter pie chart displays cell type compositions predicted by the
deconvolution method and the scatter represents a spot in SRT data.
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Figure S14: Visualization of dominant cell types inferred by the deconvolution methods from
PDAC SRT data. The spatial scatter pie chart displays the spatial distribution of dominant cell
types on spot by the deconvolution method.
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Figure S15: Comparisons of cell type proportions in cancer and non-cancer regions from PDAC
SRT data. The boxplot represents the distribution of cell type proportions in each region. Boxes
mark the median by a horizontal black line. In the diagrams, “ns” represents p value > 0.05, ?
represents 0.01 < p value ≤ 0.05, and ? ? ?? represents pvalue ≤ 1e-4.
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Figure S16: Enrichment (red) and depletion (green) of predicted cell types in the four main
annotated regions from PDAC SRT data. The enrichment scores are proportional to the size of
the circles (referred as effect size).
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Figure S17: Spatial colocalization map of predicted cell type by EnDecon from PDAC SRT data.
Correlation plot shows a different correlation across diverse cell types.
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Figure S18: Visualization of deconvolution results inferred by the deconvolution methods from
breast cancer SRT data. The spatial scatter pie chart displays cell type compositions predicted
by the deconvolution method and the scatter represents a spot in SRT data.
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Figure S19: Visualization of dominant cell types inferred by the deconvolution methods from
breast cancer SRT data. The spatial scatter chart displays the spatial distribution of dominant
cell types on spot by the deconvolution method.
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Figure S20: Comparisons of cell type proportions in three refined annotated regions in breast
cancer SRT data. The boxplot represents the distribution of cell type proportions in each region.
Boxes mark the median by a horizontal black line. In the diagrams, “ns” represents p value >
0.05, ? represents 0.01 < p value ≤ 0.05, and ? ? ?? represents pvalue ≤ 1e-4.
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Figure S21: Visualization of the proportion of each cell type estimated by EnDecon and the
corresponding canonical cell type marker genes on each spatial location from breast cancer SRT
data.
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Figure S22: Spatial colocalization map of predicted cell type by EnDecon from breast cancer
SRT data. Correlation plot shows a different correlation across diverse cell types.
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2 Supplementary Tables

Table S1: Summary of cell type deconvolution methods in EnDecon

Methods Models Designed for spatial RNA-seq dataset Website Language

CARD [1] Regression-based model; non-negative matrix factorization model ! https://github.com/YingMa0107/CARD R

Cell2location [2] Probability distribution-based model; negative binomial distribution ! https://github.com/BayraktarLab/cell2location Python

DeconRNASeq [3] Regression-based model; non-negative linear regression # https://www.bioconductor.org/packages/release/bioc/html/DeconRNASeq.html R

DestVI [4] Probability distribution-based model; negative binomial distribution ! https://docs.scvi-tools.org/en/stable/user_guide/models/destvi.html Python

DWLS [5] Regression-based model; dampened weighted linear regression # https://cran.r-project.org/web/packages/DWLS/index.html R

SVR [5] Regression-based model; nu-support vector regression # https://cran.r-project.org/web/packages/DWLS/index.html R

MuSiC all gene [6] Regression-based model; non-negative linear regression # https://github.com/xuranw/MuSiC R

MuSiC weighted [6] Regression-based model; weighted non-negative linear regression # https://github.com/xuranw/MuSiC R

RCTD [7] Probability distribution-based model; poisson distribution ! https://github.com/dmcable/spacexr R

SCDC [8] Regression-based model; non-negative linear regression and ensemble learning # https://github.com/meichendong/SCDC R

SpatialDWLS [9] Regression-based model; weighted non-negative linear regression ! https://github.com/RubD/Giotto R

SPOTlight [10] Regression-based model; non-negative matrix factorization ! https://github.com/MarcElosua/SPOTlight/tree/spotlight-0.1.7 R

STdeconvolve [11] Latent dirichlet allocation ! https://github.com/JEFworks-Lab/STdeconvolve R

Stereoscope [12] Probability distribution-based model; negative binomial distribution ! https://github.com/almaan/stereoscope Python
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Table S2: Detailed cell type information in the mouse adult mouse cortical scRNA-seq dataset.

Cell type Number of cells Cell type Number of cells
Astro 368 CR 7
Endo 94 L2/3IT 982

L4 1401 L5 IT 880
L5 PT 544 L6 CT 960
L6 IT 1872 L6b 358

Lamp5 1122 Macrophage 51
Meis2 45 NP 362
Oligo 91 Peri 32
Pvalb 1337 Serpinf1 27
SMC 55 Sncg 125
Sst 1741 Vip 1728

VLMC 67
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Table S3: Detailed cell type information in the PDAC-A scRNA-seq dataset.

Cell type Number of cells Cell type Number of cells

Acinar cells 13 Cancer clone A 126

Cancer clone B 170 Ductal antigen presenting 287

Ductal centroacinar 529 Ductal high hypoxic 215

Ductal terminal 350 Endocrine cells 3

Endothelial cells 11 Fibroblasts 5

Macrophages A 21 Macrophages B 19

Mast cells 14 mDCs A 12

mDCs B 33 Monocytes 18

pDCs 13 RBCs 15

T cells and NK cells 40 Tuft cells 32

Notes: mDCs: myeloid dendritic cells; pDCs: plasmacytoid dendritic cells; RBCs; red blood cells.
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Table S4: Detailed cell type information in the breast cancer scRNA-seq dataset.

Cell type Number of cells Cell type Number of cells

B cells 162 CAFs (cancer-associated fibroblasts cells) 106

Epithelial 441 Endothelial 210

Myeloid 385 Plasmablasts 175

T cells 1473 PVL (Perivascular like cells) 72
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3 Supplementary Text

3.1 Implementation of the individual deconvolution methods

3.1.1 CARD

CARD [1] uses a non-negative matrix factorization model to deconvolute SRT data based on the
transcriptome signatures of cell type learned from reference scRNA-seq data. Compared with
other deconvolution methods [2, 7, 10], CARD highlights that the neighboring locations (spot-
s) on the tissue tend to contain similar cell type compositions. The pairwise distance between
spots is calculated based on the 2-dimensional/3-dimensional spatial coordinate of the spots
by Gaussian kernel. Then it is integrated into the deconvolution model to accommodate spatial
correlation structure in cell type compositions across tissue locations. We obtain the CARD R
package from https://github.com/YingMa0107/CARD and follow the guidelines on the
CARD GitHub repository: https://github.com/YingMa0107/CARD-Analysis. All pa-
rameters are set with default values.

3.1.2 Cell2location

Cell2location [2] is built on a Bayesian model by decomposing spatially resolved gene expres-
sion profiles into signals from scRNA-seq data and technical effects such as platform effects,
contaminating RNAs, and unexplained variants. It takes a hierarchical decomposition prior
(factorization) to capture the similarity of spot patterns in cell type compositions. It is imple-
mented in the scvi-tools framework on the Python platform (https://github.com/Bayra
ktarLab/cell2location). We use the reticulate R package to develop an interface with
the scvi-tools framework. There exist several hyper-parameters to be tunned in the model
of Cell2location and two parameters, expected cell abundance per location and regulariza-
tion of within-experiment variation in RNA detection sensitivity, are advised to be adjusted
by the users in Cell2location [2]. As there is no true cell type abundance of spots in real
application, it’s difficult to select the optimal hyper-parameters. Hence, we take the default
setting for the parameters advised by the guidelines on the Cell2location tutorial repository:
https://cell2location.readthedocs.io/en/latest/.

3.1.3 DeconRNASeq

DeconRNASeq [3] is built upon a non-negative linear squares (nnls) regression model for the
estimation of the proportions of known cell types in a sample of bulk RNA-seq data. In our
implementation, the function DeconRNASeq in DeconRNASeq R package (https://www.bi
oconductor.org/packages/release/bioc/html/DeconRNASeq.html) is used for the
deconvolution of SRT data. All parameters are set with default values.

3.1.4 DestVI

DestVI [4] is built on a Bayesian model for multi-resolution deconvolution of cell types in SRT
data. Compared with other methods in our application, except for STdeconvolve, it enables to
model of both discrete cell-type specific profiles and continuous within-cell-type latent variables
through a conditional deep generative model. DestVI introduces two different latent variable
models, scLVM and stLVM, to construct the reference scRNA-seq data and SRT data. For the
scLVM model, DestVI first uses the negative binomial distribution to model the scRNA-seq data
and takes the auto-encoding variational Bayes to optimize the likelihood of the estimation of
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the parameters in the distribution. Then, stLVM adopts a weighted sum of the inferred single-
cell negative binomial distribution incorporating the learned parameters from scLVM to fit the
SRT data and uses maximum-a-posteriori (MAP) to estimate the cell-type abundance of spots.
We follow the guidelines on the scvi-tools tutorial repository: https://github.com/scv
erse/scvi-tutorials/blob/master/DestVI_tutorial.ipynb and all parameters are
set with default values. Similar to the application of cell2location, we use reticulate R package
interface with Python for the implementation of DestVI in the R command.

3.1.5 DWLS and SVR

DWLS [5] is a computational tool for bulk RNA-seq deconvolution. The method adopts a
weighted least square approach to infer the relative abundance of cell types, for which cell
types are defined by reference scRNA-seq data. Besides, the authors also propose another de-
convolution method, v-support vector regression (SVR) in their original paper. Both DWLS and
SVR are included in our application. We obtain the code of DWLS and SVR from https://cr
an.r-project.org/web/packages/DWLS/index.html and follow the guidelines on the
DWLS GitHub repository: https://github.com/dtsoucas/DWLS. DWLS includes an in-
ternal marker genes selection step by MAST [13] or SeuratBimod [14] for the construction of the
signature matrix. In our application, we find this step takes long time consumption for scRNA-
seq data with a large number of cell types or genes [15]. Hence, we take the Gini method for
the selection of marker genes, which is also used in SpatialDWLS [9], an extended version of
DWLS. In addition, the foreach R package is used for the parallel computation of the DWLS and
SVR.

3.1.6 MuSiC

MuSiC [6] is a well-established computational method to deconvolute bulk RNA-seq data on
multi-subject single-cell expression reference. It adopts a weighted nnls regression framework
to infer cell type compositions. Notably, MuSiC incorporates the multi-subject scRNA-seq ref-
erence for deconvolution by assigning appropriate weights of cross-subject and cross-cell con-
sistency genes. We obtain the Music R package from https://github.com/xuranw/MuSiC
and follow the guidelines on https://xuranw.github.io/MuSiC/articles/MuSiC.ht
ml. All parameters are set with default values. Specifically, MuSiC provides two ways, “weight-
ing gene” and “non-weighting genes”, for deconvolution. We include all of them in this study
and refer to them as “Music weighted” and “Music all gene”, respectively.

3.1.7 RCTD

RCTD [7] leverages cell type profiles learned from scRNA-seq data and takes supervised learn-
ing to decompose cell type mixtures for SRT data. RCTD enables the correction of differences
between the sequencing platforms, scRNA-seq and ST technology, for accurately mapping cell
type populations on spots. A stepwise approach is adopted for the estimation of model pa-
rameters. The procedure of RCTD is easily accessible and we follow the guidelines on the
RCTD GitHub repository: https://raw.githack.com/dmcable/spacexr/master/vig
nettes/spatial-transcriptomics.html. We set doublet model = “full” in R function
run.RCTD, which allows multiple cell types within a spot.
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3.1.8 SCDC

SCDC [8] is designed for deconvoluting the bulk RNA-seq data by the cell-type specific gene
expression profiles from multiple scRNA-seq reference datasets. By borrowing strengths from
multiple references, SCDC proposes an ensemble learning-based deconvolution method to in-
tegrate deconvolution results from different scRNA-seq datasets sequenced in different labora-
tories and at different times. The function SCDC prop in the SCDC package (https://github
.com/meichendong/SCDC) is applied to deconvolute the cell type abundances for SRT data.

3.1.9 SpatialDWLS

As an extension of DWLS, SpatialDWLS [9] is designed for SRT data. Due to the fact that
each spot contains much smaller cells than a bulk sample, SpatialDWLS first infer cell types
that are likely to be presented at each spot by cell type enrichment analysis. Then, DWLS is
applied to infer the fraction of selected cell types across spots. We follow the guidelines on the
SpatialDWLS GitHub repository: https://github.com/rdong08/spatialDWLS_datase
t/tree/main/codes. All parameters are set to default values.

3.1.10 SPOTlight

SPOTlight [10] is built on nonnegative matrix factorization and nnls for SRT data. Given the
corresponding annotated reference scRNA-seq data, SPOTlight identifies the cell type-specific
topic profiles, which enables determining the cell states and subpopulations for the deconvolu-
tion of SRT data. In our application, we first use the function SCTransform and FindAllMaerkers
in the Seurat package to normalize the raw count scRNA-seq and to select maker genes for
the pre-defined cell types. Then, the function downsample se obj and train nmf in the SPOT-
light package is applied for selecting represented cells and genes for each cell type and training
the nonnegative matrix factorization model, respectively. Finally, we use the functions top-
ic profile per cluster nmf and mixture deconvolution nmf in the SPOTlight package for deconvo-
luting SRT data and obtaining the cell type abundance in each spot. We take the default setting
for the functions in the SPOTlight package (https://github.com/MarcElosua/SPOTligh
t).

3.1.11 Stereoscope

Stereoscope [12] is a probabilistic model-based method for SRT data. It first uses the nega-
tive binomial (NB) distribution to model the reference scRNA-seq data with pre-defined cel-
l types. After training the reference model, it adopts another NB distribution incorporating
the learned parameters from the reference model to fit the SRT data and infer the cell type
abundance within each spot. Notably, Stereoscope utilizes the approximate variational infer-
ence to estimate the model’s parameters and can be rescaled to large reference scRNA-seq data
with more than one million cells. We follow the guidelines on the scvi-tools tutorial reposito-
ry: https://docs.scvi-tools.org/en/stable/tutorials/notebooks/stereosco
pe_heart_LV_tutorial.html. All parameters are set with default values. In our experi-
ment, we find that it is important to select highly variable genes (HVGs) for the scRNA-seq
data before training the reference model. We select 5000 HVGs by Seurat.v3 [16] advised by the
tutorial of Stereoscope published on https://github.com/almaan/stereoscope. Also,
users could change the number of selected HVGs by setting the parameter Stereoscope.HVG num
of EnDecon individual methods in EnDecon R package. Since Stereoscope is built on Python, we
use the reticulate R package interface with Python to implement it in the R command.
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3.1.12 STdeconvolve

STdeconvolve [11] is built upon latent Dirichlet allocation (LDA) for the deconvolution of SRT
data. By the advantage of the LDA model, compared with other methods, STdeconvolve en-
ables to identify putative transcriptional profiles for each cell type and estimates the cell types
proportions within each spot without using external scRNA-seq reference. In our application,
we first use the function restrictCopus in the STdeconvolve to filter non-information genes and
select over-dispersion genes for the model. Then, the function fitLDA in the package is applied
for the fitting of the LDA model. STdeconvolve provides a strategy for the selection of the opti-
mal number of topics, called cell type in STdeconvolve, in the LDA model. In our experiments,
we find that STdeconvolve tends to select a smaller number of topics than the number of cell
types of reference scRNA-seq and some cell types can’t be mapped to the topics in the next
steps. Hence, in our application, we set the number of topics being the pre-defined number of
cell types in the reference of scRNA-seq. Finally, the function getCorrMtx is performed for the
annotation of the topics in the LDA model with the external scRNA-seq reference and we can
obtain the final cell type abundance within spots. The STdeconvolve provides two methods,
transcriptional correlations and gene set enrichment analysis, for the annotation of the topics.
We choose the transcriptional correlations in our study, which are also used for the benchmark-
ing of deconvolution methods [17]. All parameters are set to default values and we follow the
well-documented tutorials of STdeconvolve on https://jef.works/STdeconvolve/.

3.2 Summary of EnDecon

The complete procedure of EnDecon is summarized in Algorithm 1.

Algorithm 1 Algorithm of EnDecon

• Inputs: SRT data X1 ∈ Rp1×n1 and corresponding spot location information V ∈ Rn1×2,
scRNA-seq data X2 ∈ Rp2×n2 , where the rows represent genes and the columns represent
spots (or cells), and corresponding cell label vector Y ∈ Rn2 of the reference scRNA-seq
data.

• Output: Ensemble deconvolution result H and weights {ωm}.

1. Run the base deconvolution methods to get multiple base deconvolution results{
H(m)

}
, for m = 1, . . . ,M .

2. Initialization: Set w1 = · · · = wM = 1
M , and λ by Equation (5) in the main text, and

initialize H = 1
M

M∑
m=1

H(m).

3. While not converged do

4. Update H by solving Equation (2) in the main text.

5. Update ωm according to Equation (4) in the main text.

6. End while
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3.3 Simulation data analysis

3.3.1 Generation of simulated SRT data

To test the performance of different methods, we design simulated SRT data consisting of mix-
tures of cells with predefined cell type compositions. Each spot consists of 2 to 10 different cells
from the scRNA-seq dataset, and the combination of their expression levels is considered as the
expression level at that spot [10]. To better mimic biological capture locations, we randomly
downsample composed cells to 20,000 read counts if the read counts of the generated spot are
up to 25,000. The proportions of the mixed cell types in each spot are served as the ground truth
of cell type proportions information of generated data [1, 10]. Here, we generate simulation data
in three different scenarios, which include spot-based gene expression data and corresponding
cell type components within spots. Details are as follows:

Scenario 1: The SRT data and scRNA-seq dataset are generated from the same technology
to examine the accuracy of EnDecon on cell type deconvolution. Following [1, 2], we divide
the scRNA-seq dataset equally into two groups: one group is used to generate spot-based gene
expression data to mimic the outcome of gene expression dataset from STR, and the other one
is considered as the reference scRNA-seq dataset with annotated cell type labels. To test the
generalizability of the proposed EnDecon, we generate simulated SRT data based on scRNA-
seq data from two different tissues, i.e., the pancreas tissue and ovarian cancer tissue. In detail,
we first select a publicly available human pancreas dataset from scRNA-seq protocol inDrop
(named Baron), consisting of 7,742 cells and 6 common cell types (acinar, beta, delta, ductal, al-
pha and gamma) [18]. To explore the tumor microenvironment, we also generate simulated SRT
data generated from ovarian cancer scRNA-seq data. We collect scRNA-seq data generated by
10x Genomic (number: OV EMTAB8107) from link http://tisch.comp-genomics.org/.
Since this dataset contains too many cells, we stratified downsampling the sample according to
cell types from 3790 cells annotated with eight cell types (B (192), CD8T (427), Endothelial (259),
Fibroblasts (981), Malignant (889), MonoMacro (569), Myofibroblasts (309), and Plasma (164)).
For both datasets, we generate SRT data with 175 spots. To mimic the actual spots coordinates
as much as possible, spot coordinates are set according to scenario 3.

Scenario 2: In this scenario, to demonstrate the robustness of our model on predicted cell
type compositions, we mimic the case that the SRT and scRNA-seq data are generated from
two different technologies on the same tissue. We use the same group scRNA-seq dataset of
scenario 1 to generate 175 spots for the spot-based SRT data, and the scRNA-seq data from
other technique serves as reference data. For the human pancreas, there are multiple scRNA-seq
data generated by different technologies (https://hemberg-lab.github.io/scRNA.seq
.datasets/human/pancreas/). To evaluate the deconvolution results, we consider scRNA-
seq data as reference data if that contains matched six cell types in scenario 1. The scRNA-
seq datasets generated from other three techniques (e.g., Muraro: CEL-Seq2 [19], Segerstolpe:
SMART-Seq2 [20], and Wang: SMARTer [21]) are regarded as reference cell type-specific gene
expression data in this work.

Scenario 3: SRT data is simulated based on the real single-cell resolution spatial transcrip-
tomics data in this scenario. We select a public STARmap dataset, which contains the expression
levels of 981 genes in 973 cells from the mouse visual cortex at the single-cell resolution and is
refined with six neocortical layers (Figure S6) [22]. To generate coarse-grained SRT data from
single-cell resolution data, we define one spot-based region by the size of the grid and aggre-
gate the gene expression level that fall into each spot [9]. After gridding, a total of 175 spots are
simulated and each spot covers 1-13 cells. As the cell type labels of the selected cells are known,
the resulting cell type compositions of each spot can be used as the ground truth for evalua-
tion. The center of the grids is served as the coordinates of the corresponding generated spots.
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For deconvolution, a mouse primary visual cortex (VISp) scRNA-seq dataset from Smart-seq
protocol is regarded as the reference [23].

3.3.2 Effect of sample sizes of the reference scRNA-seq data on the performance of decon-
volution

To explore how the sample sizes of the reference scRNA-seq data affect the results, we evaluate
the performance of cell type deconvolution methods with different reference sample sizes. For
this goal, the Baron dataset used in scenario 1 is considered. For a given reference scRNA-seq
data, we use a stratified subsampling approach to divide cells into subpopulations according to
their types and sample each subpopulation independently to generate sub-reference datasets.
Four sub-reference datasets are generated with down-sampling ratios of 0.2, 0.4, 0.6, and 0.8.
The details of reference sample sizes are listed in Table S5. Thus, we generate four different
sample sizes of reference scRNA-seq data against the whole reference scRNA-seq data. We
run each deconvolution method with these sub-reference datasets and compare the results with
changes in downsampling rate.

Under PCC, RMSE, and JSD metrics, we find all methods (except DestVI) are not very sensi-
tive to the sample sizes of the reference scRNA-seq datasets (Figure S23). This may be because
most deconvolution methods only use reference scRNA-seq data to estimate the gene expres-
sion profiles of each cell type. If the estimated cell type-specific gene expression profiles are
able to capture the distribution of the corresponding cell types and distinguish different cell
types, the deconvolution results of these methods may not change much. For DestVI, it adopts
amortized variational inference with deep neural networks to learn the cell-type-specific repre-
sentations of cell states on reference datasets, which rely on the number of cells. Therefore, we
observe that its performance increases with the number of cells in the reference dataset. In sum-
mary, our method and most individual methods do not depend heavily on the number of cells
in the reference scRNA-seq dataset. Therefore, in our opinion, reference scRNA-seq datasets
that contain a certain number of cells, are low in noise, and have small technical and biological
differences from the SRT data may all be appropriate in practice.

Table S5: Detailed cell type information of the reference scRNA-seq dataset in downsampling
experiments.

downsampling ratio
Number of cells per cell type

acinar beta delta ductal alpha gamma

1 479 1163 1263 301 539 128

0.8 384 931 1011 241 432 104

0.6 288 699 759 181 324 78

0.4 192 467 507 121 216 52

0.2 96 234 254 61 108 26
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Figure S23: Performance of the compared methods on simulation data with different sample
sizes of reference scRNA-seq datasets. The subfigures correspond to different evaluation met-
rics. In the subfigure, each color represents a downsampling ratio (0.2, 0.4, 0.6, 0.8, and 1) on
the reference datasets. The results are averaged over 10 random generations of the data.

3.3.3 Running time comparison

For a computational method, the accuracy is important, but the running time also needs to be
considered. Therefore, we also report the computational time requirement for the deconvolu-
tion methods. To obtain the running time, we run the deconvolution methods on a workstation
with Intel core i7-10700 CPU (2.90GHz × 16), 64 RAM and RTX 3080 GPU. Figure S24 presents
the running times of the 14 individual methods as well as our ensemble process on the six
datasets across the three scenarios in the simulation experiments. All individual deconvolu-
tion methods can be finished in less than 50 minutes on a given dataset. Cell2location, DestVI,
DWLS, and Stereoscope require more times than other methods. Note that after running the
individual methods, EnDecon can integrate the base results in a short time. In addition, we also
provide an overview of the deconvolution methods in term of PCC, 1-RMSE, and 1-JSD, and
running time on all simulated datasets (Figure S25) for the users to select appropriate individual
deconvolution methods for integration.
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Figure S24: Running times of different deconvolution methods on the simulation data in scenar-
ios 1 and 2. The x-axis is the deconvolution methods, and the y-axis is the log scale of running
times in minutes of each method. Each color represents reference scRNA-seq data for the de-
convolution. Notice that, for our EnDecon, only the time used for integrating deconvolution
results from base methods is presented.

3.4 Real SRT data analysis

3.4.1 Collecting real SRT data and reference scRNA-seq dataset

We apply EnDecon to four published SRT data that include two from the ST protocol and two
from the 10x Visium protocol. We use corresponding scRNA-seq datasets as references.

Adult Mouse Brain. We first analyze an adult mouse brain SRT data of coronal section 2
downloaded from the 10x Genomics website: (https://www.10xgenomics.com/resourc
es/datasets/adult-mouse-brain-section-2-coronal-stains-dapi-anti-gfap-a
nti-neu-n-1-standard-1-1-0). To do cell type deconvolution, the reference scRNAseq
dataset (GSE71585) is generated from adult mouse cortical cell taxonomy with the SMART-
Seq2 protocol provided by the Allen institute, which contains ∼14,000 cells and 23 annotated
cell types [24]. In this work, we filter out genes expressed on less than 5% cells (spots) and cells
with less than 100 total read counts. 11,764 common genes are expressed in 2,804 spots in the
adult mouse brain SRT data, and these expressed genes are present in 8,412 cells (Table S2).

For this SRT data, the 10x Genomics platform provides SRT data along with cell type-
informative images, e.g., immunofluorescence (IF) staining images for two cell type-specific
marker proteins (glial cells marker protein: GFAP, and neuron cells marker protein: RBFOX3).
The staining IF images are collected from the backside of tissue sections affixed to spatial tran-
scriptomics capture slides. Following [25], we use spot-level intensities which are the average
pixel intensity of each of these two markers in all image pixels overlapping each capture spot
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Figure S25: Overview of deconvolution methods by PCC, 1-RMSE, 1-JSD and running times
for the six datasets across three scenarios in the simulation experiments. The lightness of colors
filled in each box is proportional to the rank of each method. The time consumption is propor-
tional to the size of the circle. Notice that we only label the first top five methods in experiments
of each metric.

on the Visium slide, as the ground truth of cell type proportions. The calculated cell type pro-
portions for glial and neuron cells are available from the link: https://osf.io/u79fc/.

Human pancreatic ductal adenocarcinoma (PDAC). We consider the human PDAC data
from ST technology, consisting of four main annotated tissue regions (cancer, pancreatic, ductal
and stroma regions) annotated by histologists based onH&E staining image [26]. For deconvo-
lution, we use a matched scRNA-seq dataset on the same tissue of the same individual obtained
through inDrop (denoted as PDAC-A) [26]. The PDAC datasets are downloaded from the Gene
Expression Omnibus (GEO) website (GSE 111672), which provides both SRT data and the cor-
responding scRNA-seq dataset on the same PDAC tissue. In this analysis, the genes expressed
on less than 1% of cells (spots) and the cells that have less than 100 total read counts are filtered.
The filtering step leads to SRT data consisting of 9,923 common genes expressed in 427 spots. It
also leads to a scRNA-seq dataset including 9,923 common genes, 1,914 cells and 20 annotated
major clusters (Table S3).

Human breast cancer. The mouse brain cortex is a complex tissue that comprises a com-
plex mixture of cell types that present well-defined structures with location-specific types. We
also focus on human breast cancer data from ST technology (Section D1 of patient D), and use
breast cancer scRNA-seq data from 10x Chromium protocol as reference [27, 28]. The SRT data
consists of three annotated regions (connective tissue (CT), immune infiltrate (II) and invasive
cancer (IC) regions) and one undetermined (UN) region, annotated by a pathologist based on
the morphology of the associated H&E staining [27]. The data are available at the Zenodo data
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repository (https://doi.org/10.5281/zenodo.4739739). Following the original paper,
we focus on the scRNA-seq dataset for the CID3921 HER2-positive patient, which is available
on the GEO website under accession number ID GSM5354515 [27, 28]. Based on the filtering
criterion mentioned above, a final set of 11,920 genes and 306 spots for SRT data and 11,920
genes and 3,024 cells for scRNA-seq data (Table S4) are induced.

Mouse brain cortex. The mouse brain cortex is a complex tissue that comprises a complex
mixture of cell types that present well-defined structures with location-specific types. To explore
the cell types’ spatial distributions, we select SRT data of sagittal mouse brain slice (anterior
slice) generated using the Visium v1 chemistry from the 10x Genomics website. The mouse
cortex region containing 1,074 spots and 31,053 genes is analyzed in this work. Here, we use
the same reference scRNA-seq data for the adult mouse brain tissue from the cornel section as
a reference dataset. After removing none expressed genes and low-quality cells by the filtering
criterion mentioned above, SRT data includes 13,456 shared genes and 1,074 spots, and the
reference scRNA-seq dataset consists of 14,242 cells annotated by 23 different cell types (Table
S2).

3.4.2 Performance evaluation on real SRT data

Cell type colocalization analysis. The cell type colocalization map is quantified by computing
the spot-wise PCC based on the predicted cell type proportions [12, 27]. A positive correlation
between two cell types indicates colocalization in spatial tissue, and the degree of colocalization
is proportional to the correlation value. In contrast, a negative correlation indicates the opposite.
More specifically, for each pair of cell types (k and k′), PCC is computed,

PCC(k, k′) =

n∑
i=1

(hik − h̄k)(hik′ − h̄k′)√
n∑

i=1

(hik − h̄k)
2

√
n∑

i=1

(hik′ − h̄k′)
2

,

where hik represents the proportion of cell type k in spot i, and h̄k represents the arithmetic
mean of the proportion of cell types k.

Region-based cell type enrichment analysis. To assess the enrichment, or depletion, of
the predicted cell type proportions in relation to annotated spatial regions [27], we first calcu-
late the average of the proportion of spots containing each cell type in each segmented region,
referred as the true average. We then randomly permute the predicted cell type proportions
vector 10,000 times for each cell type, while maintaining the original spots annotation informa-
tion. The average proportions of each annotated region are calculated and determined by each
permutation, referred as permuted average. The enrichment score of each cell type in each re-
gion is taken as the mean value of the scaled difference between the true average and permuted
average.

3.4.3 Mouse brain cortex deconvolution

The fourth dataset we examine is the mouse brain cortex dataset from 10x Visium, using the
same reference scRNA-seq dataset of the first real SRT data as a reference dataset (Table S2).
The mouse brain cortex presents well-defined structures, consisting of six layers from inside to
out (Figure S26a). After deconvoluting, the cell type compositions inferred by EnDecon accu-
rately depict such expected structures of mouse brain anatomy (Figure S26b). The compared
methods “MuSiC all gene” and Stereoscope are unable to distinguish these six layers from each
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other, and CARD shows a blurry boundary between layers (Figure S27). The dominant cell
types within each spot are displayed from the outside layer to the inner: Astro, L2/3 IT, L4, L5
IT, L6 CT, L6 IT, L6b, and Oligo, respectively (Figure S26c). A closer examination of the spa-
tial distribution of dominant cell types on their known structures confirms the high accuracy
of the EnDecon predictions. In contrast, the compared methods, such as MuSiC, SCDC, SPOT-
light, and Stereoscope, are unable to reveal clear spatial distribution patterns in these six layers
(Figure S28).

We perform a concordance analysis of the spatial distribution of eight dominant cell types by
EnDecon and their corresponding canonical cell type marker genes obtained from [24] (Figure
S26d). Two non-neurons (Oligo and Astro) are located at the innermost and outermost parts of
the tissue, respectively, which are consistent with the spatial expression patterns of their corre-
sponding marker genes (Serpinbla and Aqp4). Two layer-specific neuronal subtypes L5 PT cells
and L5 IT cells are located in the same layer 5 with different spatial distribution patterns, which
align with the expression patterns of related marker genes (Hsd11b1 and Chrna8). These re-
sults illustrate the ability of EnDecon to discriminate between similar cell types within complex
tissues.

Most of the total 23 annotated cell types are located in distinct regions and show clear spatial
distribution patterns (Figure S29). We also observe that most cell types estimated by EnDecon
appear to have spatial colocalization patterns (Figure S26e). Non-neuronal cells (such as Endo,
Astro, Macrophage, SMC, and VLMC) present strong colocalization modules. The dominant
cell types in the neighborhood layer also show strong positive correlations, such as L6 CT and
L6 IT, L2/3 and L4.
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Figure S26: Analysis of the mouse brain cortex data. (a) Allen Brain Institute reference atlas dia-
gram of the mouse cortex with well-defined six neocortical layers. (b) Visualization of deconvo-
lution result by EnDecon. A spatial scatter pie chart displays cell type compositions predicted
by EnDecon. Each scatter represents a spot in SRT data. (c) Visualization of dominant cell types
inferred by EnDecon. A spatial scatter pie chart displays the spatial distribution of dominant
cell types on each spot. (d) Top, the abundances of dominant cell types estimated by EnDe-
con are visualized on each spatial location. Bottom, the expression level of the corresponding
canonical cell type marker genes is displayed. (e) Spatial colocalization map of predicted cell
type by EnDecon. The correlation plot shows a different correlation across diverse cell types.
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Figure S27: Visualization of deconvolution results inferred by the base deconvolution meth-
ods, EnDecon mean and EnDecon from mouse brain cortex SRT data. The spatial scatter pie
chart displays cell type compositions predicted by the deconvolution method and the scatter
represents a spot in SRT data.
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Figure S28: Visualization of dominant cell types inferred by the base deconvolution method-
s, EnDecon mean and EnDecon from mouse brain cortex SRT data. The spatial scatter chart
displays the spatial distribution of dominant cell types on spot by the deconvolution method.
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Figure S29: Visualization of cell type proportions predicted by EnDecon from mouse brain cor-
tex data. The spatial scatter plot displays the spatial distribution of each cell type.
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[20] Åsa Segerstolpe et al. Single-cell transcriptome profiling of human pancreatic islets in
health and type 2 diabetes. Cell Metab, 24(4):593–607, 2016.

[21] Yue J Wang et al. Single-cell transcriptomics of the human endocrine pancreas. Diabetes,
65(10):3028–3038, 2016.

[22] Xiao Wang et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional
states. Science, 361(6400):eaat5691, 2018.

[23] Bosiljka Tasic et al. Shared and distinct transcriptomic cell types across neocortical areas.
Nature, 563(7729):72–78, 2018.

[24] Bosiljka Tasic et al. Adult mouse cortical cell taxonomy revealed by single cell transcrip-
tomics. Nat. Neurosci, 19(2):335–346, 2016.

[25] Asif Zubair et al. Cell type identification in spatial transcriptomics data can be improved by
leveraging cell-type-informative paired tissue images using a bayesian probabilistic model.
Nucleic Acids Res, 2022.

[26] Reuben Moncada et al. Integrating microarray-based spatial transcriptomics and single-
cell rna-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotech-
nol, 38(3):333–342, 2020.

[27] Alma Andersson et al. Spatial deconvolution of her2-positive breast cancer delineates
tumor-associated cell type interactions. Nat. Commun, 12(1):1–14, 2021.

[28] Sunny Z Wu et al. A single-cell and spatially resolved atlas of human breast cancers. Nat.
Genet., 53(9):1334–1347, 2021.

44


	Supplementary Figures
	Supplementary Tables
	Supplementary Text
	Implementation of the individual deconvolution methods
	CARD
	Cell2location
	DeconRNASeq
	DestVI
	DWLS and SVR
	MuSiC
	RCTD
	SCDC
	SpatialDWLS
	SPOTlight
	Stereoscope
	STdeconvolve

	Summary of EnDecon
	Simulation data analysis
	Generation of simulated SRT data
	Effect of sample sizes of the reference scRNA-seq data on the performance of deconvolution
	Running time comparison

	Real SRT data analysis
	Collecting real SRT data and reference scRNA-seq dataset
	Performance evaluation on real SRT data
	Mouse brain cortex deconvolution



