TOXRIC: a comprehensive database of toxicological data and benchmarks

Lanlian Wu^{1,2,†}, Bowei Yan^{1,3,†}, Junshan Han¹, Ruijiang Li¹, Jian Xiao^{4,5}, Song He^{1,*} and Xiaochen Bo^{1,2,*}

¹Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, China.

²Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.

³State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.

⁴Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.

⁵Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.

*To whom correspondence should be addressed (Xiaochen Bo). Tel: +86 010 66931207; Email: boxc@bmi.ac.cn,boxiaoc@163.com.

*Correspondence may also be addressed to Song He. Tel: +8601066931450; Email: hes1224@163.com

[†]These authors contributed equally to this work.

© The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplementary Table

Species	Endpoint	Administration	Unit
human	TDLo、LDLo	oral, skin, intravenous	mg/kg, gm/kg, ug/kg, ng/kg, uL/kg, mL/kg
rat	LD50、LDLo	oral	mg/kg, gm/kg, ug/kg, uL/kg, mL/kg
mouse	LD50、LDLo	oral	mg/kg, gm/kg, ng/kg, uL/kg, mL/kg
rabbit	LD50、LDLo	oral	mg/kg, gm/kg, ug/kg, ng/kg, mL/kg
dog	LD50、LDLo	oral	mg/kg, gm/kg, ug/kg, uL/kg, mL/kg
cat	LD50、LDLo	oral	mg/kg, gm/kg, ug/kg
guinea pig	LD50、LDLo	oral	mg/kg, gm/kg, ug/kg, ng/kg

Supplementary Table 1 The units in endpoints of typical species in TOXRIC.

Supplementary Data

STEP-BY-STEP TUTORIAL OF TOXRIC WEBSITE (https://toxric.bioinforai.tech/)

Data browsing.

1. Browse dataset composition on Home page

TOXRIC provides 13 toxicity datasets and 6 feature datasets. Each dataset includes multiple subdatasets of toxicity endpoints and feature types.

On the Home page, the number of sub-datasets of both toxicity and feature datasets is displayed in the form of two-layer concentric circles. The outer layer and inner layer represent toxicity and feature datasets respectively. When clicking on the dataset field, users will be linked to the corresponding dataset description on the Data Collection page.

2. Browse information of toxicity datasets on Data Collection page

(1) Enter the Toxicity Dataset page on Data Collection page, or click the Toxicity Dataset field in the page, the descriptions of all toxicity datasets will be displayed, including dataset description, number of compounds, and sources. Click the Details button on the far right of each row to view the detailed information.

TOXRIC		Home Data Collection - Search Be	enchmark & Representation St	atistics Download	Contribute Contact & About
Toxicity Category	Tovicity Cotogony	Toxicity Category	County		
 Toxic Effect 	Toxicity Category	External Database Links	Number of compounds	Sources 🚖	Details
Acute Toxicity Carcinogenicity		This dataset lists the acute systemic toxicity outcome			Details
Mutagenicity Developmental and Reproductive Toxicity	Acute Toxicity	records (e.g., lethal dose, 50% or LD50) in different species and multiple routes of administration. The data is collected from the study by Jain et al., which included, data, obtained, from the ChemDolus	59	Scientific Literature, ChemIDplus database	B
 Target Organ Toxicology Hepatotoxicity 		database.			
Cardiotoxicity Respiratory Toxicity Endocrine Disruption Irritation and Corrosion	Carcinogenicity	The data is collected and reveals from the Carcinogenic Potency Database (CPDB) summary tables (CPDBAS, version 5d), which is a unique and standardized resource of long-term animal carcinogenesis study results on more than 1500 chemical substances.	1	Scientific Literature	
Applied Toxicology Ecotoxicity Clinical Toxicity Other Toxicology Datasets ToxCast&Tox21 Assay CYP450	Mutagenicity	Mutagenicity refers to the induction of permanent transmissible changes in the amount or structure of the genetic material of cells or organisms. These changes may involve a single gene or gene segment, a block of genes or chromosomes. The data contains 7485 compounds associated with known mutagenicity.	1	Scientific Literature	

(2) The interactive filter located on the left side of the Toxicity Dataset page allows users to explore the endpoint sub-datasets. The information of sub-datasets includes dataset description, number of compounds and sources. Click the Details button on the far right of each row to view the detailed information and all the compounds included in the sub-dataset.

†	OXRIC		Home	Data Collection -	Search	Benchmark & Representati	on Statistics	Download	Contribute	Contact & About
	Toxicity Category	Toxicity Category					earch			Q
	Acute Toxicity	Endpoint \Leftrightarrow	Description 🗢			Number of compo	unds 🗢 So	ources 🗢	0	letails
	Carcinogenicity Mutagenicity	mouse_intraperitoneal_LD5 0	This file contains for mice via the ir	the Lethal Dose Finter Financia International Internationa	fty (LD50) valu	ies 35299	So	ientific Literature	(
	Developmental and Reproductive Toxicity Target Organ Toxicology Hepatotoxicity	mammal (species unspecified)_intraperitoneal _LD50	This file contains for mammals intraperitoneal ro	the Lethal Dose Fi (species unspec ute.	fty (LD50) valu ;ified) via f	ies the 537	So	ientific Literature		8
	Cardiotoxicity Respiratory Toxicity	guinea pig_intraperitoneal_LD50	This file contains for guinea pigs vi	the Lethal Dose Fi the intraperitonea	fty (LD50) valu I route.	les 237	Sc	ientific Literature		8
	Endocrine Disruption	rat_intraperitoneal_LD50	This file contains for rats via the int	the Lethal Dose Fi traperitoneal route.	fty (LD50) valu	ies 4798	Sc	ientific Literature		8

On the detail information page, all compounds contained in an endpoint sub-dataset are listed in the form of a molecular graph. Clicking on a specific compound will open the compound information page that displays affluent chemical, toxicological, and feature data of the compound.

_D50				
_ethal Dose Fifty (LD50) values for	mice via the intraperitoneal route.			
Methods. J Chem Inf Model. 2021;6	11(2):653-663. 2. Liwanag PM, Huds	son VW, Hazard GF Jr. ChemiDplus	: A Web-Based Chemical Search	System. NLM Tech Bull. 2000;
	"• •	·*		
TOX-1279 Name: metformin	TOX-1282 Name: CARVACROL	TOX-1289 Name: PAEONOL	TOX-1292 Name: Glucoxy	TOX-1293 Name: Esculetin
	- CC- T-C-	*****	Ç,	
TOX-1307 Name: No data	TOX-1311 Name: Melatonin	TOX-1318 Name: daidzein	TOX-145 Name: hydroquinone	TOX-245 Name: thiotepa
	.050 .ethal Dose Fifty (LD50) values for r 3, Alves VM, Muratov EN, Kleinstret Methods. J Chem Inf Model. 2021;6 $*_{++}^{+}$ TOX-1279 Name: metformin \downarrow_{++}^{+} TOX-1307 Name: No data	.250 .ethal Dose Fifty (LD50) values for mice via the intraperitoneal route. 3, Alves VM, Muratov EN, Kleinstreuer N, Tropsha A, Nicklaus MC, Sim Methods. J Chem Inf Model. 2021;f1(2):653-663. 2. Liwanag PM, Hud:	.D50 .sthal Dose Fifty (LD50) values for mice via the intraperiloneal route. 3, Aves VM, Muratov EN, Kleinsteruer N, Toppha A, Nicklaus MC, Simeonov A, Zakharov AV, Large-Scale Methods. J Chem Inf Model. 2021;61(2):653-663. 2. Liwanag PM, Hudson VW, Hazard GF Jr. ChemiDplus	

3. Browse information of feature datasets on Data Collection page

The interactive filter located on the left side of the Feature Dataset page allows users to explore the feature type sub-datasets. The information of sub-datasets includes dataset description, feature dimension, number of compounds and sources. Click the Details button on the far right of each row to view the detailed information and all the compounds included in the sub-dataset.

TOXRIC		Home Data Collection • S	Search Benchmark & Repre	esentation Statistics Down	load Contribute	e Contact &
Feature Space for	Feature Space	e for compounds				
compounds	compounds		Footure dimension	Number of compounds	Courses A	Datalla
Molecular Fingerprint	Tybe 🊊	Description 🗢	Feature dimension =	Number of compounds =	Sources =	Details
Category Target Transcriptome Profile Metabolic Reaction Chemical Checker	ECFP2	ECFP2 is a 2048-length bits vector, which represent the neighbor hood environment of each atom using the extended connectivity fingerprint encoding a circular substructure of diameter 2 bonds. An individual bit has no definite meaning.	2048	110000	Rdkit	
Descriptor ECFP4		ECFP2 is a 2048-length bits vector, which represent the neighbor hocd environment of each atom using the extended connectivity fingerprint encoding a circular substructure of diameter 4 bonds. An individual bit has no definite meaning.	2048	110000	Rdkit	
	ECFP6	ECFP6 is a 2048-length bits vector,which represent the neighbor hood environment of each atom using the extended connectivity fingerprint encoding a circular substructure of diameter 6 bonds. An individual bit has no definite meaning.	2048	110001	Rdkit	

On the detail information page, all compounds contained in a feature type sub-dataset are listed in the form of a molecular graph. Clicking on a specific compound will open the compound information page that displays affluent chemical, toxicological, and feature data of the compound.

v Annaves for Hangard Companyation		Home Data Collection	r Search Benchmark & Rep -	resentation Statistics Down	nload Contribute Cor
Feature Space for comp	ounds				< (
Type: ECFP2					
Feature: Molecular Fingerprints					
Description: ECFP2 is a 2048-len individual bit has no o	gth bits vector, which represent the definite meaning.	neighbor hood environment of each	atom using the extended connectivi	ty fingerprint encoding a circular su	bstructure of diameter 2 bon
Feature dimension: 2048					· · · · · · · · · · · · · · · · · · ·
Number of compounds: 110000					- 194 🛌
Sources: Rdkit					
and the	"°,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	°, ***	a, [™] I I I a. a a b a b.	CHC CHC II	o ^{re} n
TOX-11	TOX-12	TOX-2	TOX-1	TOX-10	TOX-3
Name: No data	Name: L-ascorbate	Name: nitrate	Name: glucarate	Name: No data	Name: Nitroxyl
×	÷	×		E.	N N N
TOX 1	TOX-5	TOX-6	TOX-7	TOX-8	TOX-9
10X-4		and a second second second second			

Data retrieval.

1. Keyword search for a compound

(1) Enter a keyword in the search box of the Home page. The search box accepts both complete or partial keywords of TAID, name, IUPAC name, PubChem CID, SMILES, InChIKey, and InChI identifiers. Fuzzy search is allowed.

There are three examples below the search box, users can click the example keywords to view the search results.

(2) After clicking the search button or pressing the Enter key, a list of compound entities will be provided. The query keyword is highlighted in red.

TOXRIC	Home	Data Collection -	Search Be	nchmark & Representation	Statistics	Download	Contribute	Contact & Abou
	Quickly find cherr Try ▼ hydroquinone Example	nical and toxicity info	rmation from au	uthoritative sources				
COMPOUND BEST MATCH								
TOX-145 TAD: TOX-1	Inone enzene-1,4-diol 785 ES: Octocc(O)cc1 RSXMKCJKVMJ-UHFFFACYS0 3/C6H602/c7-5-1-2-6(8)4-3-5/ Jula: C6H602 ht: 110.11 e Toxicity Endecfine Deruption Target Category Metabolic	SA-N h1-4,7-8H Ecotoxidhy Genotor Reaction Molecular Fir	sicily Developme	ntal and Reproductive Toxicity al Checker Descriptor	Clinical Toxicity	ToxCast Assay	2 Carcinogenic	*)*
COMPOUND MATCH								
TOX-108 TAD: TOX-108 TAD: TOX-108 Name: Durohyd IUPAC Name: PubChem CID: Canonical SMIL InChilKay: SUN InChilKay: SUN InChilKay: SUN Molecular Form Molecular Weig	752 752 138346 E.S. Co1(C)c(C)c(C)c(C)c10 VJLYYDZCIIK-UHFFFAOYSA %C10H1402/c1-5-6(2)10(12)E uia: C10H1402 ht: 166.22	-N (4)7(3)9(5)11/h11-12H	1-4H3					

2. Batch search for a list of compounds

(1) Select the type of identifier to search for a list of compounds on the Search page. For the identifiers, IUPAC name, PubChem CID, SMILES, InChIKey and InChI are allowed.

(2) You can enter a compound list to query the information of the compounds.

lect an identifier:		Tips:
SMILES	•	Select an identifier and input a compound list to query the chemical information, toxicity categories and feature domain of the compounds. Or upload an EXCEL
Input a compound list:		or TXT file (separated by commas), containing the list of queried compounds.
01[CeH]([CeeH](0)CO)C([0-])=C(0)C1=0 SC[CeH]([NH3+])C(=0)[0-] 01[Ce](0)(C0)[CeeH](0)[CeH](0[CeeH]20[CeH](C0)[CeH](0)[CeH](0) [CeH]20)[CeH]1C0		For the identifiers, TAID, name, TUPAC name, PubChem CD, SMILES, InchiKey and Inchi are allowed. Try these examples: TOX-1, sulfameter, 56959, O=C(O)CCC(=O)O, ZRALSGWEFCBTJO-UHFFFAOYSA-O, or InChi=15/C3H5N3O9/c7-4(8)13-1-3(15-6(11)12)2-14-5(9)10/h3H,1-2H2.
Or upload a Excel Sheet or TXT file:		
	z) X	
Drag and drop files to upload		

(3) Or you can upload an EXCEL or TXT file to query the information of the compounds. The template file can be downloaded by clicking the button to the right of the upload box.

3. Browse compound information on Compound page

The Compound page consists of three sections, i.e., chemical information, toxicity category, and feature space.

(1) Chemical information

The chemical information section provides seven commonly used identifier types and physicochemical properties of compounds. Click on the PubChem CID to link to the Compound page of PubChem website.

	TOX-145
	TAID: TOX-145
ې ^{.H}	Name: hydroquinone
	IUPAC Name: benzene-1,4-diol
	PubChem CID: 785
	Canonical SMILES: Oc1ccc(O)cc1
O	InChilkey: QIGBRXMKCJKVMJ-UHFFFAOYSA-N
	InChl: InChl=1S/C6H6O2/c7-5-1-2-6(8)4-3-5/h1-4,7-8H
	Molecular Formula: C6H6O2
	Molecular Weight: 110.11
	XLogP: 0.6
	Acute Toxicity Endocrine Disruption CYP450 Ecotoxicity Developmental and Reproductive Toxicity Carcinogenicity Clinical Toxicity Hepatotoxicity Target
	Category Metabolic Reaction Molecular Fingerprint Chemical Checker Descriptor

(2) Toxicity category

Click on the toxicity categories in the title bar to view the toxicity values for each endpoint. If no toxicity value is currently collected for the compound, it will be shown as "Data is not available now".

Clicking the download button in the upper-right corner will download the toxicity values for all endpoints under the selected toxicity category in .csv format.

xicity Categ	jory						⊻Dowk
ToxCast&Tox	(21 Assay Acute To	exicity Endocrine Disruption	CYP450	Cardiotoxicity	Ecotoxicity	Developmental and Reproductive Toxicity	Irritation and Corrosion
Endpoint ≑	Toxicity value $\ensuremath{\hat{\Rightarrow}}$	Source					
CYP1A2	0	Wu Z, Jiang D, Wang J, Hsie	h CY, Cao D, Ho	u T. Mining Toxicity I	nformation from L	arge Amounts of Toxicity Data. J Med Chem. 20	21;64(10):6924-6936.
CYP2C19	0	Wu Z, Jiang D, Wang J, Hsie	h CY, Cao D, Ho	u T. Mining Toxicity I	nformation from L	arge Amounts of Toxicity Data. J Med Chem. 20	21;64(10):6924-6936.
CYP2C9	0	Wu Z, Jiang D, Wang J, Hsie	h CY, Cao D, Ho	u T. Mining Toxicity I	nformation from L	arge Amounts of Toxicity Data. J Med Chem. 20	21;64(10):6924-6936.
CYP2D6	0	Wu Z, Jiang D, Wang J, Hsie	h CY, Cao D, Ho	u T. Mining Toxicity I	information from L	arge Amounts of Toxicity Data. J Med Chem. 20	21;64(10):6924-6936.
ALL 4 item	15					< 1 > 10/pa	ge v Go to 1

(3) Feature space

Click on the feature spaces in the title bar to view the features for each feature type. The targets, categories, and metabolic reactions of compounds are listed in text format to be queried, while the feature vectors of transcriptome profiles, molecular fingerprints, and CC descriptors should be downloaded to view because the length of the vectors is too long to display. Clicking the download button in the upper-right corner to download.

eature Space					±Dowload
Target Catego	ry Metabolic Reaction	Transcriptome Profile	Molecular Fingerprint	Chemical Checker Descriptor	
Feature type $\ \Leftrightarrow$	Source				Details
Target	DrugBank The Binding Database				P14679
Target	DrugBank The Binding Database				O42275
Target	DrugBank The Binding Database				O42713
Target	DrugBank The Binding Database				O43570
Target	DrugBank The Binding Database				P00918
Target	DrugBank The Binding Database				P07451
ALL 6 items					 ✔ 1 > 10/page ∨ Go to 1

Below the feature list, the top 10 GOBP (Gene Ontology Biological Process) and KEGG pathway enrichment results of compounds' target proteins are displayed in a bubble plot.

View Benchmark and representation distribution

1. View benchmarks for feature types

On Benchmarks for Feature Types page, the bar charts show the predictive effect of 36 feature types on all toxicity endpoints.

In the legend, the parentheses after each feature type indicate the feature space it belongs to. MF represents Molecular Fingerprint, TP represents Transcriptome Profile, and CC represents Chemical Checker Descriptor.

Note: MF: Molecular Fingerprint; TP: Transcriptome Profile; CC: Chemical Checker Descriptor

Three metrics are used to evaluate the performance. The classification datasets use F1 metric, while the regression datasets (Acute Toxicity, Ecotoxicity) use RMSE and R2 metrics. For the regression datasets, click on RMSE or R2 button to view performance results.

For RMSE metric, lower value represents the higher prediction performance. While for R2 and F1 metric, the higher the value, the higher the prediction performance. It should be noted that if the value of metric is 0, it represents the number of samples with the feature type at the endpoint sub-dataset is less than 10 and no benchmark experiment is performed.

When the mouse is suspended on the bar, the mean and standard deviation are showed

Click on a bar or the title of an endpoint, the corresponding feature or endpoint dataset on the Download page will open in a new tab.

In addition, users can enter the keywords of required endpoint and feature to search.

TOXRIC		Home Data Collection -	Search Benchmark & Represen	tation Statistics	Download Contribute	Contact & About
Select a dataset	Toxicity Category			ACEA_AR_a	agonist_80hr	Q
 Toxicity Datasets Toxic Effect 	Category \$	Descriptions 💠	Number of comp	bounds \Rightarrow	Sources 🗢	Operation
Acute Toxicity Carcinogenicity Mutagenicity Developmental and Productive Toxicology Target Organ Toxicology Applied Toxicology Other Toxicology Other Toxicology Datasets Feature Datasets Molecular Fingerprint Category Target	ACEA_AR_agonist_80hr	Data from the assay ACEA_AR_agonist_80hr was an positive fitting direction relative to negative control and baseline or a type of growth reporter, measures gain-of-signal activity can be used to signaling at the pathway-level as th geneAR Furthermore, this assay er referred to as a primary readout, bec- has produced multiple assay endp- one serves a signaling function. To intended target to other relatable tar endpoint is annotated to the "ni- intended target family, where th "steroida".	component Ilyzed in the DMSO as the citruity. Using a of the cells for understand the ey relate to the ndpoint can be 1757 isause this assay inst where this o generalize the gets, this assay ciclear receptor" e subfamily is		ToxCast database	

2. View benchmarks for algorithms

On Benchmarks for Algorithms page, the bar charts show the predictive effect of 4 algorithms on all toxicity endpoints.

XGB represents eXtreme Gradient Boosting. RF represents Random Forest. SVM represents Support Vector Machine. DNN represents Deep Neural Network.

Each picture shows 10 endpoints, slide the mouse on the bar chart and drag the scroll bar below the chart to view the results of 10 endpoints.

Three metrics are used to evaluate the performance. The classification datasets use F1 metric, while the regression datasets (Acute Toxicity, Ecotoxicity) use RMSE and R2 metrics. For the regression datasets, click on RMSE or R2 button to view performance results.

For RMSE metric, lower value represents the higher prediction performance. While for R2 and F1 metric, the higher the value, the higher the prediction performance.

When the mouse is suspended on the bar, the mean and standard deviation are showed.

3. View t-SNE embedding of molecular representations

The T-SNE Embedding of Molecular Representations page shows the clustering effects of multiple

representations on the classification endpoint sub-datasets. The representations include 10 original features and three ML-based representations.

Above all scatter plots, the number of samples for both classes (Toxic, Non-toxic) in most images is shown. The number of samples in four images is different and marked separately. That is because there are compounds missing these four feature types.

Click to view or save each image.

View statistical information of datasets

1.Number of compounds for toxicity categories

The number of compounds under all toxicity categories is displayed in the form of a pie chart. Hover the mouse to view the number and proportion of compounds under this category.

2. Number of endpoints for toxicity categories

The number of endpoints under each toxicity category is displayed in the form of a bar chart. Hover the mouse to view the number of endpoints under this category.

3. Number of compounds for feature spaces

The number of compounds under all feature spaces is displayed in the form of a pie chart. Hover the mouse to view the number and proportion of compounds under this space.

4. Number of types for feature spaces

The number of feature types under each feature space is displayed in the form of a bar chart. Hover the mouse to view the number of types under this feature space.

5. Number of compounds with multiple toxicity endpoints

For a compound, TOXRIC provides toxicity values across multiple endpoints. The number of compounds with multiple endpoint values is presented as a bar chart. Hover the mouse to view the number of compounds.

For example, the first bar indicates that 97,304 compounds have 0-5 endpoints values.

6. Number of compounds with multiple features

For a compound, TOXRIC provides multiple features types. The number of compounds with multiple feature types is presented as a bar chart. Hover the mouse to view the number of compounds.

For example, the first bar indicates that 603 compounds have 0-5 feature types.

Download required dataset.

1.Download the toxicity endpoint sub-dataset

Select a toxicity category and an endpoint dataset of interest. Click the Detail button to view the detailed information of this dataset. Click the Download button to download the dataset in .csv format.

		Home Data Collec	tion - Search	Benchmark & Representa	tion Statistics	Download	Contribute	Contact & About
Select a dataset	Toxicity Category				Search			Q
 Toxicity Datasets Toxic Effect 	Category \$	Descriptions ≑		Number of co	mpounds ≑	Sources ≑		Operation
Acute Toxicity Carcinogenicity Mutagenicity Developmental and Reproductive Toxicity Target Organ Toxicology	Carcinogenicity	This file contain the data fr Database (CPDB) summary which is a unique and stand animal carcinogenesis study chemical substances.	rom the Carcinogen tables (CPDBAS, v dardized resource of y results on more	ic Potency ersion 5d), f long-term 1021 than 1500		Scientific Lit	terature	

It should be noted that in Acute Toxicity and Ecotoxicity datasets, two types of endpoint data, the values with (mg/kg) or (mg/L) units and the dimensionless values, are provided to download.

	TOXRIC		Home	Data Collection -	Search	Benchmark	& Representation	Statistics	Download	Contribute	Contact & About
	Select a dataset	Toxicity Category						Search			Q
	 Toxicity Datasets Toxic Effect 	Category 🗢	Descriptions				Number of compou	nds ≑	Sources ≑		Operation
	Acute Toxicity mouse_intraperitone Th Carcinogenicity al_LD50 mi Mutagenicity manmal species Developmental and Reproductive Toxicity mammal (species * Target Organ Toxicology toneal_LD50 mi	This file conta mice via the inf	ains the Lethal Dose traperitoneal route.	Fifty (LD50)	values for	35299		Scientific Li	terature		
		This file conta mammals (spe	ains the Lethal Dose	Fifty (LD50) he intraperitor	values for leal route.	537		Scientific Li	terature	e • ±	

2.Download the feature type sub-dataset

Select a feature space and a feature type dataset of interest. Click the Detail button to view the detailed information of this dataset. Click the Download button to download the dataset in .csv format.

то	XRIC		Home Data Collection - Search	Benchmark & Representation	Statistics Download	Contribute Contact & Abo
5	Select a dataset	Feature Datase	its	Search		Q
	 Toxicity Datasets Toxic Effect 	Category \$	Descriptions \Leftrightarrow	Number of compounds $\ensuremath{\hat{\Rightarrow}}$	Sources \$	Operation
	Acute Toxicity Carcinogenicity Mutagenicity Developmental and Reproductive Toxicity	ECFP2	ECFP2 is a 2048-length bits vector, which represent neighbor hood environment of each atom using the extent connectivity fingerprint encoding a circular substructure diameter 2 bonds. An individual bit has no definite meaning.	the ied 110000 of	Rdkit	e •
	Target Organ Toxicology Applied Toxicology Other Toxicology Datasets Feature Datasets	ECFP4	ECFP4 is a 2048-length bits vector, which represent neighbor hood environment of each atom using the extent connectivity fingerprint encoding a circular substructure diameter 4 bonds. An individual bit has no definite meaning.	the ied 110000 of	Rdkit	E 🕈
C	Molecular Fingerprint Category Target Transcriptome Profile	ECFP6	ECFP6 is a 2048-length bits vector, which represent neighbor hood environment of each atom using the extenc connectivity fingerprint encoding a circular substructure diameter 6 bonds. An individual bit has no definite meaning.	the led 110001 of	Rdkit	E 🕈

Example application for toxicity prediction

This section describes how to use TOXRIC for toxicity prediction using the mouse_intraperitoneal_LD50 sub-dataset (Acute Toxicity) as an example.

1. Browse the Data Collection->Toxicity Category page. Select a toxicity category (Acute Toxicity). Select an endpoint dataset as the sample set.

		Home Data Collection A Search Be	nchmark & Representation Sta	tistics Download	Contribute Contact & About
Toxicity Category	Toxicity Category	Toxicity Category Feature Space	Search		Q
 Toxic Effect Acute Toxicity 	Endpoint \$	External Database Links	Number of compounds \$	Sources \$	Details
Carcinogenicity Mutagenicity	mouse_intraperitoneal_LD5 0	This file contains the Lethal Dose Fifty (LD50) values for mice via the intraperitoneal route.	35299	Scientific Literature	3 🔳
Developmental and Reproductive Toxicity Target Organ Toxicology Hepatoloxicity	mammal (species unspecified)_intraperitoneal _LD50	This file contains the Lethal Dose Fifty (LD50) values for mammals (species unspecified) via the intraperitoneal route.	537	Scientific Literature	8
Cardiotoxicity	guinea pig_intraperitoneal_LD50	This file contains the Lethal Dose Fifty (LD50) values for guinea pigs via the intraperitoneal route.	237	Scientific Literature	
Endocrine Disruption Irritation and Corrosion	rat_intraperitoneal_LD50	This file contains the Lethal Dose Fifty (LD50) values for rats via the intraperitoneal route.	4798	Scientific Literature	E
 Applied Toxicology Ecotoxicity 	rabbit_intraperitoneal_LD50	This file contains the Lethal Dose Fifty (LD50) values for rabbits via the intraperitoneal route.	113	Scientific Literature	

2. On Download page, download this endpoint sub-dataset as the label data.

D T	DXRIC		Home Data Collection -	Search Benchmark & Represen	ntation Statistics Down	nload Contribute Contact & About
	Select a dataset	Toxicity Category	1		Search	Q
	 Toxicity Datasets Toxic Effect 	Category \$	Descriptions \$	Number of compo	unds Sources	Operation
1	Acute Toxicity Carcinogenicity Mutagenicity	mouse_intraperitone al_LD50	This file contains the Lethal Dose Fifty (LD50) vi via the intraperitoneal route.	alues for mice 35299	Scientific Lite	erature
	Developmental and Reproductive Toxicity Target Organ Toxicology Applied Toxicology	mammal (species unspecified)_intrape ritoneal_LD50	This file contains the Lethal Dose Fifty (LD5 mammals (species unspecified) via the intraperite	0) values for 537 oneal route.	Scientific Lite	erature 📑 🕈
	 Other Toxicology Datasets ✓ Feature Datasets Molecular Fingerprint 		This file contains the Lethal Dose Fifty (LD5 guinea pigs via the intraperitoneal route.	0) values for 237	Scientific Lite	erature 🖹 🕈
	Category Target Transcriptome Profile	rat_intraperitoneal_L D50	This file contains the Lethal Dose Fifty (LD50) via the intraperitoneal route.	values for rats 4798	Scientific Lite	erature 📄 🗘

3. On the Benchmark&Representation page, view the benchmarks of feature types on this endpoint. It is found that the MACCS molecular fingerprint achieved the best performance.

4.Click the bar of MACCS molecular fingerprint and enter the Download page. Then, the MACCS fingerprint sub-dataset can be downloaded as the input feature.

T	OXRIC		Home	Data Collection -	Search	Benchmark & Representa	ation Sta	tistics	Download	Contribute	Contact & About
	Select a dataset	Feature Datasets	S				MACCS Fing	gerprint			Q
	Toxic Effect	Category \$	Descriptions \$			Number of compour	nds ≑	Sour	ces ≑	c	peration
	Actile Toxicity Carcinogenicity Mutagenicity Developmental and Reproductive Toxicity	MACCS	MACCS is a 168-lengt based fingerprints re substructures or fragm in the compound.	h bits vector,which is presenting the pres ents from a given list	substructure ke ence of certa of structural ke	y- in 110000 /s		Rdkit			•
	 Target Organ Toxicology Applied Toxicology Other Toxicology Datasets 	ALL 1 items					<	1	> 10/pag	e ~ G	io to 1

Now, The input and output datasets are ready for toxicity prediction.

5. On the Benchmark&Representation page, view the benchmarks of algorithms on this endpoint.

It is found that the RF algorithm achieved the best performance.

Therefore, in this dataset, RF can be considered as the baseline for the development of new ML algorithms.