Supporting Information

Binding of Human ACE2 and RBD of Omicron Enhanced by Unique Interaction Patterns Among SARS-CoV-2 Variants of Concern

Seonghan Kim¹, Yi Liu¹, Matthew Ziarnik¹, Sangjae Seo², Yiwei Cao³, X. Frank Zhang^{1,4*}, Wonpil Im^{1,3*}

¹Department of Bioengineering, ²Korean Institute of Science and Technology Information, Daejeon 34141, Republic of Korea, ³Departments of Biological Sciences, Chemistry, and Computer Science and Engineering, Lehigh University, 111 Research Dr, Bethlehem, PA 18015, USA ⁴Current address: Department of Biomedical Engineering, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA 01003, USA

*Correspondence and requests for materials should be addressed to X.F.Z and W.I. (emails: frank.zhang@umass.edu and wonpil@lehigh.edu)

Figure S1. Force profiles of 20 replicas of (A) WT, (B) Omicron Q493K, and (C) Omicron Q493R as a function of the distance between the COM of RBD and ACE2.

Figure S2. Separation process between Omicron RBD and ACE2 at D = 53 Å, 60 Å, and 83 Å, respectively. The color scheme is the same as in **Figure 1B**.

Figure S3. Model comparisons between experimentally obtained structures from (B,E) X-ray crystallography (PDB ID: 7WBP), (C,F) cryo-EM (PDB ID: 7WBL), and (D,G) the model used in this work. Residues located in the RBD^{Omicron}-ACE2 interface are compared. (A) Two groups are defined and magnified on the right: (B,C,D) for group 1 and (E,F,G) for group2. The color scheme is the same as in **Figure 1B**.

Figure S4. Comparison of interaction maps between Omicron RBD and ACE2. **(A)** Probability of hydrogen bonds obtained from 100 ns of simulations started from Omicron RBD cryo-EM structure (PDB ID: 7T9L). The figure was regenerated from the study conducted by Hossen et al.¹, where the unique interfacial hydrogen bonds found in Omicron are colored in green on the X- and Y-axes. **(B)** Pair interaction map from 500 ns of simulations started after Omicron mutation based on WT RBD X-ray structure (PDB ID: 6M0J). The figure was reproduced from the study by Jawad et al.² The residues colored in blue on the X-axis are Omicron residues, and residues colored in black are WT. **(C)** The interaction map from this study. The yellow boxes represent interactions reported by Hossen et al. in **(A)**, the cyan boxes present interactions reported by Jawad et al. in **(B)**, and the orange boxes are interactions reported in both studies. Dotted magenta boxes represent missing weak interactions shown in **(B)**. Interactions reported by Hossen et al. were fully captured. Note that **(A)** and **(B)** show RBD residues only subjected to mutation in Omicron, while **(C)** provides more interaction information caused by key interacting RBD residues in addition to mutated residues addressed in the previous two studies.

Figure S5. Linear regression between MST experiments ($\log(K_d)$) and SMD simulations (F_{WT}/F). The F_{WT}/F is a ratio, where F_{WT} and F are the maximum pulling forces of WT and all variants (Alpha, Delta, and Omicron Q493R) from our SMD simulations.

References	WT	Alpha	Beta	Delta	Omicron
This study	27.5	11.8	23.1	21.5	5.50
ref ³ (SPR)	8.30	-	-	-	-
ref ⁴ (SPR)	24.6	5.40	13.8	25.1	31.4
ref ⁵ (SPR)	26.3	3.64	8.10	-	-
ref ⁶ (SPR)	44.2	-	-	-	-
ref ⁷ (BLI)	58.8	20.8	-	-	-
ref ⁸ (SPR)	62.6	5.50	17.4	-	-
ref ⁹ (SPR)	68.3	-	-	-	24.4
ref ¹⁰ (BLI)	75.1	10.7	-	-	-
ref ¹¹ (SPR)	5.92	-	-	-	2.80
ref ¹² (SPR)	-	-	7.35	2.85	8.85
ref ¹³ (SPR)	58.6	9.56	24.9	-	25.7
ref ¹⁴ (SPR)	7.30	1.50	3.20	4.90	7.80

Table S1. Comparison of the affinities in K_d (nM) reported in the current study and other reported in the literature. Abbreviations: SPR, surface plasmon resonance; BLI, biolayer interferometry.

REFERENCES

(1) Hossen, M. L.; Baral, P.; Sharma, T.; Gerstman, B.; Chapagain, P. Significance of the RBD mutations in the SARS-CoV-2 omicron: from spike opening to antibody escape and cell attachment. *Phys. Chem. Chem. Phys.* **2022**, *24*, 9123-9129.

(2) Jawad, B.; Adhikari, P.; Podgornik, R.; Ching, W. Y. Binding Interactions between Receptor-Binding Domain of Spike Protein and Human Angiotensin Converting Enzyme-2 in Omicron Variant. *J. Phys. Chem. Lett.* **2022**, *13*, 3915-3921.

(3) Tian, F.; Tong, B.; Sun, L.; Shi, S.; Zheng, B.; Wang, Z.; Dong, X.; Zheng, P. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. *Elife* **2021**, *10*.

(4) Han, P.; Li, L.; Liu, S.; Wang, Q.; Zhang, D.; Xu, Z.; Han, P.; Li, X.; Peng, Q.; Su, C.; Huang, B.; Li, D.; Zhang, R.; Tian, M.; Fu, L.; Gao, Y.; Zhao, X.; Liu, K.; Qi, J.; Gao, G. F.; Wang, P. Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. *Cell* **2022**, *185*, 630-640 e610.

(5) Han, P.; Su, C.; Zhang, Y.; Bai, C.; Zheng, A.; Qiao, C.; Wang, Q.; Niu, S.; Chen, Q.; Zhang, Y.; Li, W.; Liao, H.; Li, J.; Zhang, Z.; Cho, H.; Yang, M.; Rong, X.; Hu, Y.; Huang, N.; Yan, J.; Wang, Q.; Zhao, X.; Gao, G. F.; Qi, J. Molecular insights into receptor binding of recent emerging SARS-CoV-2 variants. *Nat. Commun.* **2021**, *12*, 6103.

(6) Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. *Nature* **2020**, *581*, 221-224.

(7) Lee, J. H.; Lee, Y.; Lee, S. K.; Kim, J.; Lee, C. S.; Kim, N. H.; Kim, H. G. Versatile role of ACE2-based biosensors for detection of SARS-CoV-2 variants and neutralizing antibodies. *Biosens. Bioelectron.* **2022**, *203*, 114034.

(8) Barton, M. I.; MacGowan, S. A.; Kutuzov, M. A.; Dushek, O.; Barton, G. J.; van der Merwe, P. A. Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. *Elife* **2021**, *10*.

(9) Cui, Z.; Liu, P.; Wang, N.; Wang, L.; Fan, K.; Zhu, Q.; Wang, K.; Chen, R.; Feng, R.; Jia, Z.; Yang, M.; Xu, G.; Zhu, B.; Fu, W.; Chu, T.; Feng, L.; Wang, Y.; Pei, X.; Yang, P.; Xie, X. S.; Cao, L.; Cao, Y.; Wang, X. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. *Cell* **2022**, *185*, 860-871 e813. (10) Supasa, P.; Zhou, D.; Dejnirattisai, W.; Liu, C.; Mentzer, A. J.; Ginn, H. M.; Zhao, Y.; Duyvesteyn, H. M. E.; Nutalai, R.; Tuekprakhon, A.; Wang, B.; Paesen, G. C.; Slon-Campos, J.; Lopez-Camacho, C.; Hallis, B.; Coombes, N.; Bewley, K. R.; Charlton, S.; Walter, T. S.; Barnes, E.; Dunachie, S. J.; Skelly, D.; Lumley, S. F.; Baker, N.; Shaik, I.; Humphries, H. E.; Godwin, K.; Gent, N.; Sienkiewicz, A.; Dold, C.; Levin, R.; Dong, T.; Pollard, A. J.; Knight, J. C.; Klenerman, P.; Crook, D.; Lambe, T.; Clutterbuck, E.; Bibi, S.; Flaxman, A.; Bittaye, M.; Belij-Rammerstorfer, S.; Gilbert, S.; Hall, D. R.; Williams, M. A.; Paterson, N. G.; James, W.; Carroll, M. W.; Fry, E. E.; Mongkolsapaya, J.; Ren, J.; Stuart, D. I.; Screaton, G. R. Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. *Cell* **2021**, *184*, 2201-2211 e2207.

(11) Lan, J.; He, X.; Ren, Y.; Wang, Z.; Zhou, H.; Fan, S.; Zhu, C.; Liu, D.; Shao, B.; Liu, T.-Y.; Wang, Q.; Zhang, L.; Ge, J.; Wang, T.; Wang, X. *bioRxiv* **2022**.

(12) Zhang, X.; Wu, S.; Wu, B.; Yang, Q.; Chen, A.; Li, Y.; Zhang, Y.; Pan, T.; Zhang, H.; He, X. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. *Signal Transduct. Target Thers.* **2021**, *6*, 430.

(13) Cameroni, E.; Bowen, J. E.; Rosen, L. E.; Saliba, C.; Zepeda, S. K.; Culap, K.; Pinto, D.; VanBlargan, L. A.; De Marco, A.; di Iulio, J.; Zatta, F.; Kaiser, H.; Noack, J.; Farhat, N.; Czudnochowski, N.; Havenar-Daughton, C.; Sprouse, K. R.; Dillen, J. R.; Powell, A. E.; Chen, A.; Maher, C.; Yin, L.; Sun, D.; Soriaga, L.; Bassi, J.; Silacci-Fregni, C.; Gustafsson, C.; Franko, N. M.; Logue, J.; Iqbal, N. T.; Mazzitelli, I.; Geffner, J.; Grifantini, R.; Chu, H.; Gori, A.; Riva, A.; Giannini, O.; Ceschi, A.; Ferrari, P.; Cippa, P. E.; Franzetti-Pellanda, A.; Garzoni, C.; Halfmann, P. J.; Kawaoka, Y.; Hebner, C.; Purcell, L. A.; Piccoli, L.; Pizzuto, M. S.; Walls, A. C.; Diamond, M. S.; Telenti, A.; Virgin, H. W.; Lanzavecchia, A.; Snell, G.; Veesler, D.; Corti, D. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. *Nature* **2022**, *602*, 664-670.

(14) Dejnirattisai, W.; Huo, J.; Zhou, D.; Zahradnik, J.; Supasa, P.; Liu, C.; Duyvesteyn, H. M. E.; Ginn, H. M.; Mentzer, A. J.; Tuekprakhon, A.; Nutalai, R.; Wang, B.; Dijokaite, A.; Khan, S.; Avinoam, O.; Bahar, M.; Skelly, D.; Adele, S.; Johnson, S. A.; Amini, A.; Ritter, T. G.; Mason, C.; Dold, C.; Pan, D.; Assadi, S.; Bellass, A.; Omo-Dare, N.; Koeckerling, D.; Flaxman, A.; Jenkin, D.; Aley, P. K.; Voysey, M.; Costa Clemens, S. A.; Naveca, F. G.; Nascimento, V.; Nascimento, F.; Fernandes da Costa, C.; Resende, P. C.; Pauvolid-Correa, A.; Siqueira, M. M.; Baillie, V.; Serafin, N.; Kwatra, G.; Da Silva, K.; Madhi, S. A.; Nunes, M. C.; Malik, T.; Openshaw, P. J. M.; Baillie, J. K.; Semple, M. G.; Townsend, A. R.; Huang, K. A.; Tan, T. K.; Carroll, M. W.; Klenerman, P.; Barnes, E.; Dunachie, S. J.; Constantinides, B.; Webster, H.; Crook, D.; Pollard, A. J.; Lambe, T.; Consortium, O.; Consortium, I. C.; Paterson, N. G.; Williams, M. A.; Hall, D. R.; Fry, E. E.; Mongkolsapaya, J.; Ren, J.; Schreiber, G.; Stuart, D. I.; Screaton, G. R. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. *Cell* **2022**, *185*, 467-484 e415.